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ABSTRACT

Different GMT based approaches are applied to the
problem of field distributions inside shielded
rooms. These approaches are discussed and
compared by means of modelling, computation
time and accuracy of the results compared to a
reference solution. The aim is to find a calculation
procedure which allows one to compute the
frequency behaviour of different test setups and
different environment parameters. The usual MMP
approach with a special placement of the expansion
functions turns out to be the most efficient and
accurate way to solve this kind of problem.

1. INTRODUCTION

The knowledge of field distributions in cavities
with conductive walls is of increasing interest for
EMC applications and communication inside
buildings. For the simulation of different test
semps over a wide frequency range an efficient
calculation procedure is necessary because it is not
very efficient to model and optimise the whole
setup for every single frequency. For this purpose
three different GMT - based approaches are
compared.

The GMT (Generalised Multipole Technique) [1]
is a method for numerically solving static and
time-harmonic  electromagnetic boundary and
eigenvalue problems within piecewise linear and
homogeneous domains. An expansion for the
unknown field is made with analytic solutions of
the Helmholtz equations in cylindrical and
spherical coordinates. Other solutions of Maxwell's
equations, which can be more efficient for speciat
geometries, can easily be included.

The approximate numerical solution of the
boundary value problem is a linear combination of
basis functions. A linear system of equations for
the coefficients in the expansion can be obtained by
minimising the remaining mismatching error on
the boundary with varions methods.
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2. MATHEMATICAL PROBLEM
FORMULATION

Considering time-harmonic electromagnetic fields
in piecewise linear, homogeneous and isotropic

domains, leads to the following problem
formulation:

rotE(?) - iop@®B@) =0 (1
rotH(F) +iae(ER) = 1,(® @

where £(f)=ef)+ioM)/0 is
dielectric constant and J,(f) denotes the impressed
current distribution.

the complex

Out of the first equation it follows:

div(u®H@) =0 3)
dive’ (EM) = ({o)divL, @ )

Because of the linearity of equations (1), (2), (3)
and (4} the fields can be split into a source-free
part and a part containing the source. With

ED=E®+E® 5)
HO=H'®+E'® 6)
we have

1ot @) —iep@H () = 0 )
rotH* (F) +ioeGE (D) = I, ®
and

rotE (F)— iu(DH () =0 (9)

rotH () +ioe®E F) =0 (10)
Now assuming that the whole space can be split
into ¥ domains D,,k=1.K each having linear,
homogenous and isotropic material properties, plus
one not necessarity connected fieldfree domain D,



the material properties can be written as &(f) =g, ,
W =p, and o(f)=c, for Te D, k=L.K. In
each domain the field is split according to (9) and
{10) and the part containing the source is given in
terms of the field values in the domain D,
satisfying the equations (7) and (8). The
determination of these field values out of a given
io(i‘) is a separate problem which can be used to

include different excitations.

This leads to the final formulation : The electro-
magnetic field in piecewise homogeneous, linear
and isotropic three dimensional space for the

source free part E:G),E(f) can be determined by
applying the equations :

~F _. . =F -
rotE, (1) —iop, H (1) =0 (11)
rotH, (F) +iwe,E; (£)=0 (12)

forte D_,k=1.K

with boundary conditions :

5 x(Ef ) -E; () =50 x(E] &) - E, ©)
5O (B ®-B®) = iOx(E O -E @)
OB 0 -B (D) = 5O x(B @ -B0)

50 (eEf (D -¢,E, (D) =50 (£E (- E @)
5@ (W E O-mE@)=i@ (WE O -mE6)
forfe oD, ,ikk>0,izk (13)

or for the boundary to the domain D, :

8(H)xE; @ =AOxE @,

8O- wH @ =5 1B @,

for Te dD,,,i#0 (14

3. MULTIPLE MULTIPOLE CODE (MMP)

The MMP code [2,3] is an implementation of the
formulation given above. The field fi(i") in each
domain | is expanded as a linear combination of
basis functions f_ (%)

}:i(i:) = 2 Eijiij(f)’ (15}

i

where the iij('f) are analytical solutions of the
time-harmonic Maxwell equations.

The coefficients ¢ are obtained by enforcing the

boundary conditions for all field components in
discrete matching points on the boundary. Using
the "Generalized Point Matching Technigue" with
more matching points than necessary (factor 3-10)
leads to an over determined system of equations

A-c=b, (16)

where A is a rectangular m by r matrix, ¢ the
parameter vector and & the inhomogeneity
resulting from the excitation.

Because more than one basis function is taken for
one single domain, numerical dependency has to be
avoided. There are some geometrical rules which
have to be fulfilled. These are also implemented in
an "Automatic Pole Setting Routine" [4].

The MMP solution is taken as a reference for
comparing the results of the other methods which
are not validated as often. So these solutions are
not optimised according to discretisation, expan-
sion setting and computation time. The aim of
these (MMP) computations was to have very
accurate solutions according to the boundary
conditions.

4. THE SURFACE IMPEDANCE
BOUNDARY CONDITIONS (SIBC) IN
THE MMP CODE

The surfaces of domains with a high refractive
index can be modelled with "surface impedance
boundary conditions”. The field within the
refractive domain D, is approximated by vertically
entering plane waves - explicit expansions for the
field within the domain are not made.

In the coordinate system of the matching point the
equations are:

E,=-Z H, (17)
E,=Z;H (18)

—t]?

. [ .0
with Z = |—; €=e+]—.
] 8l W

The mismatching error is taken as

=i ~i 2 |z — 2]
-E-.n"'zj'ﬂ:zl +Et2—Zj 'Eul J

(19)

sperr’ = p = %[

For high conductivities the surface impedance
boundary condition turns into the boundary
condition for perfect conductors.



5. CONDUCTIVE WALLS

For problems with conductive walls one has to deal
with reflections. As a solution a modified "image
charge principle” for dynamics seems to be
obvious. The basic idea of this approach is to place
appropriate image sources on the points of
reflection and to orient them according to the rules
of reflection. This is valid for ideal conducting
planes and walls, where the image sources are
exactly the same as the exciting source. For lossy
materials, the physical behaviour of the image
sources is no longer exactly the same. For a
multipole source over conducting ground, a
"numerical exact image” can be determined,
consisting of the multipole source and some higher
order multipole terms. These higher order terms
have more and more influence as the conductivity
decreases. By increasing the conductivity towards
infinity these higher order terms will disappear.
This has been demonstrated using the MMP code
for the calculation of a dipole over conductive
ground (Fig. 1 and 2).
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Figure 1: Values of real and imaginary parts of the
parameters of the multipole orders 1 to 7 fo/r
conducting ground with conductivity 5.6e7(copper)
and 10 (~seawater) which is about the range of the
SIBC.
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Figure 2: Example of a field distribution (iso-lines:
absolute value of Poynting vector and arrows: E-
field) of a vertical dipole over conducting ground
(6=10).

6. DEALING WITH MULTIPLE
REFLECTIONS

The easiest problem with multiple reflections is
that of a source between two interfaces. Here a
dipole is taken between two ideal conducting
interfaces. With this example the principle of the
other two approaches will be shown.

The MMP solution of this problem is to place two
higher order multipoles on the first points of
reflection. This is taken as a reference.

Due to the parallel walls the source is mirrored on
both interfaces and every mirrored source is
mirrored again. This leads to an infinite number of
images which represent the reflections and the re-
reflections of the original. Because the influence of
the image sources decreases with distance, only a
finite number of image sources has to be taken into
account. This way of calculating the field is
implemented as "Finite Image Source Method".

7. FINITE IMAGE SOURCE METHOD
(FIS)

Starting with a rectangular cavity the field is
expanded as an array of image sources. The Field
components can be represented by:

ED= 3 Y RE® @0

i=ee  jmmee  k=—se



R, =R*-R--R-R--R"R" 21

§ . 5 G
_13:"" is the reflection factor of the corresponding

ror=

wall after I reflections (p stands for x,y,z). It is
calculated as

Ip 1 gc B Ep
R™* =R (6.0) = @2
k. +k,

where the index 'p' stands for the domain of the
corresponding wall and 'c¢' for the inner domain
(the inside of the cavity).

The number of additional image sources on the I?
layer taken into account is:

N, =41’ +2. (23)

For the case of the two ideal conducting interfaces
the reflection coefficient of the two interfaces is
taken as one and the other reflection coefficients
are left zero. Looking at the convergence behaviour
towards the reference solution one can see that the
influence of the image sources decreases rapidly
and a finite number of image sources is enough to
achieve a stable solution. The average difference
between the FIS solution and the one obtained with
MMP is 2.5e-4[V/m] or 1.6 %. (Fig. 3 and 4)
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Figure 3: Average difference of 500 field points of

the solution with n layers and the solution with n-1
layers versus the number of layers n for a dipole
between two interfaces.

Figure 4: Example of the field distribution of a
vertical dipole between two ideally conducting
interfaces.

The advantage of this approach is that no system of
equation has to be solved. The computational effort
is dependent on the number of image sources and
on the number of field points in which the field
should be calculated.

8. COMBINATION OF MMP AND FIS

The third approach is to take a few reflections into
account and calculate the coefficients of the image
sources by the MMP code. Here three reflections
are enough to achieve the same solution as the
reference. So the field is expanded as:

f®=2 ¢,f,® (24)

=1

where the fcj(f) are of the same type as the
exciting source.

The comparison of the results is carried out with
the following comparison criteria:



9. COMPARISON CRITERIA

- average of field value:

?.:‘%iilgi"'Zo':H-il (25)

i=l

- average of field change between the fields
fiand f, oraverage field difference:

N
?f-clnnge = %Zi‘[lgu “Eiz|+ZoLﬁi1 "_I-':I.izl]
(26)

- the mismatching error on the boundary (not
used for FIS)

- visualisation of the field distribution
(qualitative criteria)

Now the next step is to look at the behaviour of
these three approaches calculating the field
distribution inside a lossy rectangular cavity. The
MMP solution is taken again as reference, the
mismatching error on the boundary is in the range
of 0.1%.

10. LOSSY RECTANGULAR CAVITY
CALCULATED WITH FIS AND THE
COMBINED APPROACH

In a cavity with finite conductive walls the
eigenvalues have a small imaginary part, thus the
source-free modes would exist only for complex
values of @, which means that they will never be
excited without a source. When the walls are lossy,
only source excited solutions are possible and the
internal domain problem can be formulated
according to the equations (5) to (14). The solution
for this kind of problem is unique [6].

The field distribution in a lossy rectangular cavity
has been calculated for 30/ 100/ 300 MHz and for
G = 5.6e7 {(copper) and 10 {-seawater). In this
range for the value of sigma, the '"surface
impedance boundary conditions" can be applied.

First the convergence towards a stable solution is
shown and as a further step the convergence
towards the reference. The geometry of the cavity
is Sm+7m*4m, which means that 30MHz is below
the first resonance frequency and 100MHz and
300MHz are near resonant frequencies.

With FIS the field is calculated taking 150 layers
into account. The field distribution is calculated on
a regular grid of 500 points. For highly conductive
walls even with 150 layers the solution is not stable
for all frequencies. For ¢=10 S/m the solution
converges towards a stable solution but only for
low frequencies towards the reference.

Using the combined approach one obtains the same
solution as the reference for all frequencies but
with fewer parameters to be determined. The
computation time is dependent on M - N 2 where
M is the number of matching points and N is the
number of parameters to be determined (Fig. 5 and
6).
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Figure 5: Average difference over 500 field points
of the solution of the combined approach and the
reference solution versus the number of layers
taken into account {,,wall-conductivity" 5.6e7 S/m,
frql=30MHz, frq2= 100MHz, frq3=300MHz).



11. CONCLUSIONS

The often proposed mirror principle is not efficient
for calculating field distributions with many field
points and for highly conductive walls. It is useful
for finding an optimal expansion setting for the
two other methods compared here. Also, it can be
used to calculate the field in one point, or the field
distributions when only one or two walls are
present.
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Figure 6. Average difference over 500 field points
of the solution of the combined approach and the
reference solution versus the number of layers
taken into account (conductivity is 10 S/m,
frql=30MHz not visible on the 0.0 Iline,
frq2=100MHz, frq3=300MHz).

The most efficient approach of those compared
here, for calculating the field distributions in lossy
rectangular cavities, is the combined approach.
This approach can be seen as the same as MMP
with a very special input configuration and one can
carry out calculations of the field behaviour over a
wide frequency range with a single model.

12. OUTLOOK

An efficient approach has been found for obtaining
accurate solutions according to the boundary
conditions. For deeper insight into the accuracy,
the solutions have to be validated performing
appropriate measurements.

Another step has already been carried out namely
the problem of a scatterer placed inside

Figure 7: Field distribution in a rectangular cavity
of Sm/7m/4m at a frequency of 100MHz.

the cavity. This will be used to study the influences
of scattering objects on the standing wave patterns
depending on their geometry and their location [8].

Further, the frequency behavior of different setups
of rectangular cavities has been calculated, e.g.
different location of the source and different
materials on the walls [9].
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Figure 8: Field distribution of a rectangular cavity
with a scatterer inside.
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Figure 9: Example of the averaged E-Field value
over a region of Im’ placed Im away from the
source versus frequency for different material
properties of the walls. Meaning of legends:
"Freifeld": Dipole without cavity, "Kupfer": walls
of copper, "20dB": walls with 20dB attenuation
according to a plane wave with normal incidence
on a conducting half space (absorber-lined
chamber).
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