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Abstract

The Parameter Estimation Technique (PET) is presented
as a new technique that can be applied to numerical
codes based on dense matrices as a power booster for
the computation of frequency plots, etc. In this paper it
is applied to the Multiple Multipole Program (MMF) in
conjunction with the method of Conjugate Gradients
(CG) for iteratively and efficiently solving the
rectangular MMP matrix. The PET takes advantage of
the a priori knowledge obtained from previous
computations and allows to a dramatic reduction of the
computation time in various situations. It is
demonsirated that one of the most important drawbacks
in the use of frequency domain methods based on dense
matrices as opposed to time domain methods based on
iterative techniques can be eliminated using PET.

1. Introduction

One of the most important benefits of time domain
methods such as the Finite Difference Time Domain
(FDTD) technique [1] comes from the fact that the
information on the EM field of the previous time steps
can be used as a starting value for the computation of the
actual EM field. This rigid use of the a priori knowledge
[2,3] allows one to iteratively compute the EM field in
each time step with typically ¢me iteration only -
provided that the time step is sufficiently small. As a
consequence, the method is extremely efficient and fast.

Today, iterative matrix solvers such as the method of
Conjugate Gradients (CG) are most frequenily applied to
large sparse matrices although the CG algorithm was
originally designed for small, dense matrices [4].
Variants of the CG have also been applied to the Method
of Moments (MoM) and other integral methods [5].
Although CG is very helpful in many situations it has
important drawbacks: Its convergence depends 1o a great
extent on the choice of the preconditioner and of the
starting values. Moreover, CG is often either robust or
efficient rather than robust and efficient as desired.
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The MMP codes [6-8] are based on an overdetermined
system of equations characterized by a dense,
rectangular matrix. The condition number of the MMP
matrix is often very high. Therefore, many of the simple
matrix solvers cannot successfully be applied - except for
almost trivial problems [9]. This is the most important
reason why the CG matrix solver in the 2D MMP code
[10] and the Choleski matrix solver in the 3D MMP
code were rarely used in the past. It is important to note
that the bad condition of the matrix does not cause
inaccurate results. It has been shown [2,3] that the
accuracy of the results can often be increased by
increasing the condition number of the matrix.
Moreover, ill-conditioned matrices simplify the
modeling and are important for the user-friendliness of
the code. )

For the reasons outlined above, iterative MMP matrix
solvers were discarded [10] and Block-Iterative
Techniques (BIT) [11] were preferred for computing
large MMP models. Since the performance of block-
iterative techniques is usually not high at all, the 3D
MMP features required for easily applying such
techniques were not implemented. Instead, the 3D MMP
user applies the “connection” feature of the 3D MMP
code. He has to copy and edit MMP data files for each
iteration, whereas the MMP code performs only one
iteration in one run. Le., the BIT is rather performed by
the 3D MMP user than by the code. This explains why
block-iterative techniques were only used by 3D MMP
experts in complicated situations when the direct MMP
matrix solution failed. Since the implementation of the
2D MMP “connection” feature and the 2D MMP file
handling are much simpler, the BIT was also applied to
less complicated 2D MMP models [8].

It is very important to recognize that CG and other
iterative matrix solvers can handle ill-conditioned
matrices. The main problem for the efficient use of such
techniques is a sufficiently accurate estimation of the
initial values. FTDT codes usually start with zero fields
which allows ope to exactly set the initial wvalues.



Obviously, finding appropriate starting values for MMP
and other frequency domain codes is much less trivial.
The key to good starting values can only be some a
priori knowledge [2,3]. A priori knowledge can be some
knowledge of the user but it also can be the knowledge
obtained from previous computations. In many situations
one is not only interested in the EM ficld for a well
defined model at exactly one frequency but also in the
frequency dependence of the EM field and of quantities
derived from the EM field or in the dependence of these
quantities on other variables such as the angle of
incidence of the incident wave, material properties, of
geometric data. As soon as the EM field has been
computed for one set of variables, one has some a priori
knowledge for computations with slightly modified
variables. This knowledge should be recycted rather than
wasted. The mair idea of the Parameter Estimation
Technique (PET) is the recycling of knowledge. This
technique is explained in the following sections.

The second problem for iterative techmiques is the
stopping criterium. In FDTD codes, this problem is
avoided by a sufficiently smatl time step that guarantees
a convergence with one iteration. When one is solving
square matrices, CG algorithms converge toward the
exact solution within at least N iterations, where N
denotes the number of unknowns. This does not cause
problems in finding an appropriate stopping criterium.
Unfortunately, the convergence of the CG algorithm
applied to overdetermined systems of equations shows a
staircase behavior and the maximum number of
iterations required is not known in advance. It is shown
in this paper that the PET provides not only an
appropriate estimation of the starting values for iterative
techniques but also an appropriate stopping criterium.

2. Some important MMP features

In MMP and other matrix methods, the EM field is
defined by a series expansion of the form

K
Field = 2 A, Basis, + Error (1)
k=l
MMP provides a large library of basis functions. Since
MMP is based on a boundary method, the basis finctions
are analytic solutions of Maxwell’s equations inside the
domain where they are applied to approximate the EM
field. Multipole expansions are most frequently used due
to their local bebavior and efficient recarsive
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computation [6-8]. In the test example considered in the
following section and in most applications, plane waves
are assumed to be the incident EM ficld. Plane waves
can also be applied to simulate a part of the scattered
EM field of large bodies [12] and many other expansions
can be helpful in special situations. Since this has no
influence on the application of the PET, we only
consider multipole expansions and a plane wave
excitation.

The parameters A; of the MMP expansion (1) are
determined by the Generalized Point Matching (GPM)
technique [8]. This technique is relatively simple. It
leads to an overdetermined system of equations that is
solved in the least squares sense. Since the different
equations are weighted, this method is also called the
method of weighted residuals. The GPM implicitly
minimizes an error functon defined along the
boundaries of a4l domains and has interesting
advantages when the condition number of the matrix is
large. In the MMP codes, large condition numbers, i.c.,
ill-conditioned matrices, are tolerated because this
considerably increases the freedom in setting muitipole
expansions and makes it possible to obtain more
accurate results as we will see in the following.

The GPM allows one to easily validate the results. It
provides several measures for the accuracy. First of all,
the sum of the squares of the weighted residuals is a
scalar value that is small when the accuracy is high.
This provides a simple and quick hint. More detailed
information is obtained from the mismatching along the
boundarics. When the MMP matrix is sufficiently
overdetermined, the mismatching in the matching points
is comparable with the mismatching between them.
Therefore, it is sufficient to compute the residuals in the
matching points. The peak errors of MMP computations
are typically located on the boundaries and rapidly decay
with distance from the boundaries [13]. Therefore, the
analysis of the residuals is a reliabie measure.

The MMP codes offer several metbods for solving the
matrix equations. Givens updating (QR decomposition),
Householder transformations (another QR
decomposition) and Cholesky factorization are available
in the 3D MMP code. whereas the 2D MMP code offers
Givens updating, Singular Value Decomposition (SVD)
and iterative matrix sotvers like CG and Gauss-Seidel.
Although SVD is optimal for ill-conditioned matrices,
this technique is rarely applied because it is very time-
and memory consuming. In the following, SVD has only



been used for computing the condition numbers.
Houscholder transformations are more memory
consuming, not much faster, and have more problems
with ill-conditioned matrices than Givens updating. This
algorithm has only been used in conjunction with a
Finite Element (FE) code [14]. The Cholesky
factorization is faster than the Givens updating bat it is
useless, except when the condition number is relatively
small, Therefore, this technique has only been used in
simple benchmark cases [9]. Among the iterative matrix
solvers, CG seems to be most appropriate. This is the
first choice in conjunction with the PET.

3. The Test Example

In [10] the EM scattering of a plane wave at a
cylindrical, perfectly conducting plate with the cross
section shown in Figure 1 has been considered for
testing the performance of the CG algorithm in the 2D
MMP code. Although this example is very simple, it
shows alt the main effects. Therefore, it is well suited as
a test case for the MMP-CG-PET implementation.

0.1mY

E
incident plane
wave k im
x
symmetric multipales

Figure 1. Cross section of the test case. Only the
multipoles 1.N need to be defined explicitly. The
symmelric counterparts, i.e., the multipoles N+1...2N-1
are auwtomatically generated by the 2D MMP code.
Since the first multipole is on the y axis, it has no
symmetric counterpart. The incident EM field is a plane
wave with wave vector in the x direction and an electric
field in the y direction.
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It is well known that the number and locations of
multipoles used for simulating the scattered EM field is
critical for the accuracy. Simple rules for setting the
multipoles and automatic pole setting procedures are
described in [8,15}. For our test example, a umiform
distribution of multipoles seems to be most reasonable. It
has been shown in [13] that the critical points of a model
such as our test example are at the connection of straight
lines and circles and that the efficiency and accuracy can
considerably be increased when more sophisticated
MMP expansions are applied. Such expansions should
have maltipoles iz the vicinity of the critical points.
Since the aim of our test example is the exploration of
the relation between the condition numbers and the
accuracy obtained with different MMP expansions,
uniform multipole distributions on the y axis are
appropriate.

In order to obtain a fair comparison of the different
MMP expansions, we keep the size of the MMP matrix,
i.e., total number of unknowns and of matching points,
fixed. The muitipole on top covers much more matching
points than all the other multipoles. Therefore, this
multipole must bave higher orders than all the other
multipoles. Moreover, the multipole on the x axis has
only half as many unknowns as its neighbours because of
the symmetry. Thus, the number of orders of the
different multipoles, i.e.. the number of columns of the
MMP matrix corresponding to the different multpoles,
is not fixed. The distribution of the orders of the
multipoles is not unique and has a considerable
inflnence on the condition number of the MMP maurix
and on the accuracy of the results. Instead of exploring
this influence in the following, we apply the usual MMP
rules [8].

The condition number of the single multipole expansion
with only one multipole on the x axis (N=2N-1=1)is 1 if
the MMP matrix is appropriately scaled, but this
expansion leads to completely wrong results except for
very high orders. Since we want to perform a large
number of computations, we have to keep the
computation time, i.e., the number of unknowns,
relatively small. Therefore, we will not consider the
single multipole expansion here. The MMP matrix of all
computations in this paper has 82 rows and 44 columns.
A symmetry decomposition of the incident wave and of
the matrix would allow us to obtain two 41%22 matrices
but this has not been done here for reasons of simplicity.
Figure 2 illustrates 2 typical MMP matrix for N=4.



It has been stated in [2,3] that the condition number of
the MMP matrix considerably increases with the number
N of multipoles. Figure 3 shows that this statement holds
for different frequencies.

From Figure 4 one can recognize that more accurate
results can be obtained with larger numbers N and that
this statement is also true for different frequencies. The
best results are obtained with 9 multipoles for all
frequencies. Models with less than 5 multipoles are
characterized by a good condition of the matrix but the

residuals obtained are considerably higher. Therefore, it
is not reasonable to use less than 5 multipoles. When
more than 9 multipoles on the y axis are applied, the
condition number becomes so large that even the Givens
algorithm inaccurately computes the parameters. Note
that 5 multipoles would be optimal for a matrix solver
that cannot handle large condition numbers. Such an
algorithm would force the user to guess the optimal
number and distribution of multipoles. The Givens
procedure gives much more freedom because it produces
acceptable results even for 13 multipoles.

multipoles correspond to the columns of the MMP matrix

1{on x axis) 2 .

4 {on top)

matching point
on the x axis

matching peints
correspond to
the rows of the
MMP matrix

matching point
on top iR ;

NWAIP matrix with
4 multipoles

Figure 2: Typical MMP matrix for the test example with 2N-1=7 multipoles. Only the upper half of the matrix is shown
because of its symmetry. The intensity corresponds to the size of the matrix elements.
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Figure 3: Condition number of the MMP matrix versus frequency for different total numbers of multipoles for the test

example shown in Fig. 1.
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Figure 4: Residual of MMP computations versus frequency for different total numbers of multipoles for the test example
shown in Fig. 1. The residual shown here is the square root of the sum of the squares of the weighted residuals.

3. Parameter Estimation Technique (PET)

The Parameter Estimation Technique (PET) is based on
the concept of recycling the information obtained from
previous computations of a given problem. When
equation (1) bolds, this information is stored in the
parameters A, in the basis functions Basis;, and in
derived quantities. When the basis functions are kept
unchanged during several computations, the parameters
A; (angd all derived quantities) are functions of the
variables of the computations. These functions are
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known in all the points where they were computed in
previous rums. This allows one to apply any
extrapolation or interpolation technique for estmating
the parameters to be computed in the current run. If the
estimation is sufficiently accurate, one has excellent
starting values for iterative technigues.

Although the PET can be applied to any variable, we
consider the frequency as a single variable for reasons of
simplicity. When we compute the frequency dependence
of our test model, we have 44 parameters, ie., 44



functions of the frequency. If we consider the frequency
dependence of these parameters in an interesting area
where one observes resonances of the structure, we
observe a very strong variation of all the parameters.

0 order

multipole 4
(on top)

highest order—
0 order

multipole 3

Figure 5 shows the logarithm of the absolute values of
the parameters obtained from the Givens matrix solver.

highest order—
0 order

multipole 1

{om the x axis)

0 order ——;
2E8

Despite the strong variation of the parameters, we can
assume that the parameter set of a given frequency
provides a useful starting value for the iterative
computation of the parameter set at a slightly higher or
lower frequency.

Before we can apply an iterative technique, we have to
solve the problem of the stopping criterium. From an
initial computation with a direct matrix solver (in the
MMP code this usually is the Givens algorithm) we
know not only the parameter set, but also the residual

33

angular frequency ZEJ

Figure 5: Frequency dependence of the parameters of the test model obtained with the Givens updating procedure. Dark
areas indicate large values. A logarithmic scale has been used because the range of parameter values is very great.
Therefore, this representation is useful for a quick overview, but it does not show the frequency dependence in detail. The
number of multipoles shown here is 4. The total number of multipoles is 7. The parameters of the symmetric multipoles
are not explicitly shown.

(more precisely, the square root of the sum of the
squares of the weighted residuals). The residual obtained
by the Givens algorithm is the smallest residual that
might be obtained with an iterative matrix solver. It
typically does not vary rapidly when the frequency is
increased. Therefore, we can multiply the residual
res(Givens) with a factor fac<l to obtain a stopping
criterium for the iterative matrix solver, i.e., the iterative
matrix solver is stopped as soon as the condition
res(iter)<fac*res(Givens) is met. The residual
res(Givens) is obtained from an initial MMP



computation of the parameters with the Givens
algorithm. The larger we set the factor fac, the lower the
accuracy will be, and the fewer iterations will be
required for computing the new parameter set.

As one can see from Figure 4, the residuals of all
reasonable models (with 5 and more multipoles) are
almost constant up to a certain frequency. Above this
frequency, the residuals grow almost linearly. This can
easily be understood from the fact that a finer
discretization is required for obtaining solutions with the
same accuracy at higher frequencies. When we start at
the lowest frequency of interest, the condition
res(iter)<fac*res(Givens) cannot be met above a critical
frequency. Therefore, it is reasonable to introduce a
maximum number of iterations to be performed as a
second stopping criterium. This number can be defined
in such a way that the computation time required for all
iterations does not exceed the computation time for the

0 order

multipole 4
(on top)

highest order—
0 order —— 88

multipele 3

highest order—_
0 order ———

multipele 1

{on the x axis)
0 order ————

2E8

angular frequency 2E9
Figure 6: Frequency dependence of the parameters of the test model with 7 multipoles obtained with the iterative cG
procedure. Dark areas indicate large values. The same scale as in Figure 5 has been used. The computation is started at
the lowest frequency with the parameters known from the Givens solution (see Fig. 5). The factor fac of the stopping
criterium is 10, the frequency scale is linear. The parameters of the symmetric multipoles are not shown explicitly.

Givens algorithm (which is another type of a priori
knowledge). When fac is reasonably large (>2), the
second stopping criterium indicates that the actual
model is not fine enough. This means that the set of
basis functions and matching points should be improved.
If the basis functions are modified, the parameter set is
entirely changed and the knowledge of the parameter set
of the previous computation becomes useless. Such
problems can be avoided if the model is tested for the
highest frequency of interest and if the frequency is
traced backwards, i.e., if one starts with a Givens
computation at the highest frequency and decreases the
frequency for the subsequent iterative computations.

Figure 6 illustrates the frequency dependence of the
same parameters as in Figure 5 when the Givens
algorithm is applied for the lowest frequency and the CG
algorithm is used for all other frequencies with fac=10.




As one can see, the parameters obtained with the CG
algorithms (Fig.6) are far away from the parameters
obtained with the Givens algorithm (Fig.5). The same
has been found with a smaller factor fac=3, with
different frequency steps, negative frequency sieps
(starting at the highest frequency) and logarithmic
instead of linear frequency scales. The parameters
obtained for one frequency with the CG procedure with
fixed stopping criteria depend to a considerable degree
on the starting values obtained from the previous
computations. This is an effect of the large condition
number of the MMP matrix. It does not mean that the
results are completely different. When the first stopping
criterium is met, one has the same accuracy of the
results although the parameter sets are different.

Figure 7 gives some more precise information on the
frequency dependence of the first MMP parameter. Note
that this parameter corresponds to the zero order of the
first multipole. Zero orders typically have relatively
large parameters with a smooth frequency dependence.
As one can see, the Givens and the CG procedures

already lead to different parameters at relatively low
frequencies. At suificiently high frequencies one canaot
observe any correlation between the different functions.
Obviously, there is a stronger coerelation for the
parameters of the first model with 5 muitipoles than for
the parameters of the second model with 7 multipoles.
This effect is caused by the larger condition number of
the matrix of the second model. As one can see from
Figure 8, the residuals of the CG computations of the
two models remain almost constant even at frequencies
where the corresponding parameters are completely
different, One can also recognize that the large condition
nwnber of the second model causes problems for the CG
computation at high frequencies. For a third model with
9 multipoles, the condition number is so high, that the
second stopping criterium of the CG algorithm is already
met at relatively low frequencies.

Figure 9 illustrates that there is a good correlation
between the residual and the average of the error along
the boundary. In Figure ¢ one can see the same effects as
in Figure 8.

paramil
T1E-3—

7 multipoles, CG

-7 . : ,

115:9 angular frequency

Figure 7: Frequency dependence of the first parameter of the MMP expansion, i.e., the zero order of the first multipoles
located on the x axis. The parameter obtained with two different models (5 and 7 multipoles) and with two different
methods (direct Givens matrix solver and iterative CG matrix solver with the same stopping criterium as in Figure 6} is

shown.

The parameter estimation that has been used up to now
is simple and crude. The parameter set of the previous
computation is used as a starting value. This corresponds
10 a zero order extrapolation. Of course, one can expect
more accurate parameter estimations from extrapolations
with bigher order power series approximations of the
functions A, (f). For an n-th order extrapolation at least
n+1 values A, (f; ) must be stored. Since the computation
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time required for the parameter extrapolation is small,
this seems to be reasonable. As one can see from Figure
10 and from Table 1, the first order PET allows obe to
considerably reduce the number of CG iterations, but the
second order PET is much worse. Note that an average
of less than two iterations is obtained for the models
with 5 and 7 maultipoles when a first order PET is
applied.
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Figure 8: Frequency dependence of the residual (square root of the sum of the squares of the weighted residuals) of the
test example, obtained with three models (5, 7, 9 multipoles) and two different methods (direct Givens matrix solver and
iterative CG matrix solver with the same stopping criterium as in Figure 6). The residual of the CG computation with 5
multipoles is almost constant (slightly below the value of the first stopping criterium) up to the critical frequency where
the first stopping criterium can no longer be met. Above this frequency, the CG and Givens residuals are almost identical.
The residuals of the CG computations with more than 5 multipoles already increase before the critical frequency is met.
This effect is caused by the large condition numbers of the corresponding matrices.

tITOr
1E-1—
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9 mmltipoles
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Figure 9: Frequency dependence of the average of the error (mismatching) along the boundary of the test example for the

same computations as in Figure 8.

It is important to note that the computation tme
required for performing a few CG iterations is far below
the computation time for the elements of the MMP
matrix. Therefore, it is reasomable 1o increase the
frequency steps. One might expect that the number of
iterations required for one frequency step is at least
proportional to the size of the frequency step. As one can
see from Table 2, fewer iterations are required.
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Therefore, the total number of iterations can even be
reduced when the frequency step is increased.

It is hard to estimate the optimal length of a frequency
step because it depends o various parameters. At low
frequencies, the frequency dependence of all parameters
is very smooth and very large steps can easily be
performed (see Table 3).



PET order number of multipoles

5 7 9 11 13
0 34 29 51 115 84
1 18 19 25 712 4.2
2 24 24 25 29 26

Table 1: Average of the iterations required for the CG
algorithm for different MMP models with 5-13
multipoles and for different orders of a PET with power
series. The frequency is traced starting ai the lowest
frequency (3E7 Hz) with a logarithmic frequency scale
up to the highest frequency (3E8 Hz). The total number
of frequencies shown here is 98. The factor of the first
stopping criterium of the CG algorithm has been set 10 a
relatively low value (3) in order to obtain relatively
large numbers of iterations.

PET order number of multipoles

5 7 9 11 13
0 11 74 18 29 22
1 94 7.9 15 28 22
2 14 15 15 32 25

Table 2: Average of the iterations required for the CG
algorithm for different MMP models with 5-13
multipoles and for different orders of a PET with power
series. Same computation as in table 1 with 10 instead

of 98 frequency steps.

multipoles 3 7 9 11 13
iterations 1.3 1.5 19 1.8 1.7

Table 3: Average of iterations required for the CG
algorithm for different MMP models with 5-13
multipoles, first order PET. Same computation as in
table 2, but the frequency is traced from 3kHz up to
30MHz with 10 steps only.

When the frequency step is relatively large. one might
wish to know the EM field and derived quantities in
between. Instead of setting up the corresponding MMP
matrix and computing the corresponding parameters,
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one can estimate the parameters by an n-th order
interpolation. Since interpolations are much more
reliable than extrapolations [2,3], the parameters can
usnally be accurately estimated. Therefore, the matrix
setup and solution can be avoided by an appropriate
PET. In more complex sitwations, where the
interpolations might be inaccurate, adaptive methods
might be applied.

Note that all parameters can simultaneocusiy be estimated
with the same expansion functions. This helps to keep
the computation time of the PET very small even for
relatively large orders.

The disappointing results of higher order PET can be
removed by more sophisticated exirapolation techniques
as discussed in {2,3]). For example, one can use more
than n+1 values of the parameter to be estimated with an
n-th order approximation. This requires the introduction
of appropriate weight and leads to overdetermined
systems of equations that are similar to the matrix
equations of the MMP codes. Appropriate weights for
third order PET for our test examples have been found
that reduce the number of CG iterations to one even for
quite large frequency steps. But the optimization of the
weights is extremely time consuming and these weights
are not appropriate in general. Instead of power series,
one can apply other types of expamsion functions.
However, more sophisticated techniques require more
experience and the simple first order PET is already very
efficient.

It should be mentioned that the CG procedure has been
replaced by other iterative techmiques. So far, CG is the
most efficient algorithm that has been tested. It is
important to note that the CG algoritm has to be
applied to the rectangutar MMP matrix M rather than to
the normal equations with the symmetric matrix M*M
because of the large condition number of M. Therefore,
most of the available CG algorithms and preconditioners
cannot be applied.

Conclusion
The PET presenied in this paper is a very powerful and

promising new technique that can be applied as a power
booster to many numerical codes. It takes advantage of
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Figure 10: Frequency dependence of the number of iterations required for the CG algorithm when a PET of different
order is-applied. The frequency is traced from the lowest frequency upward with a logarithmic frequency scale. The total
number of frequencies for the entire decade shown here is 98. The factor of the first stopping criterium of the CG
algorithm has been set to a relatively low value (3) in order to obtain relatively large numbers of iterations. Moreover, an

ill-conditioned model with 11 multipoles has been used.

the a prioti knowledge obtained from previous
computations and aliows one to replace direct matrix
solvers by efficient iterative matrix solvers even when
the condition of the matyix is so bad that the iterative
matrix soivers fail without the PET.
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