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Abstract

The Multiple Multipole Program (MMP) [1] is based on
the Generalized Multipole Tecknique (GMT) [2]. This
method lies between a purely analytic solution and the
well-known Method of Moments (MoM) [3]. The goal of
this paper is to demonstrate how a combination of MMP
with MoM can be achieved for obtaining more powerful
codes. The combination presented here is based on an
implementation of roofiop functions as a new type of basis
function in 3D MMP. Since users of this code are gften
interested in the close near-field, a special implementation
of roofiop functions is presented and tested.

1. Introduction

Both MMP and MoM codes expand the electromagnetic
field inside a homogeneous domain by a set of basis
functions

field = Zakbasisk 1)
k

In the MoM, this expansion is more or less implicit
because one usnally expands currents rather than fields

current = ZAk Basis, 3
k

Since the electromagnetic field is obtained by integration
from the carrent and charge densities, any basis function
Basis used in MoM codes can easily be wranslated into a
basis function basis for the MMP code, ie. the
combination of MMP with MoM is straightforward.

The most frequently used basis functions of the MMP code
arc multipoles. Although these functions have many
benefits, they are not efficient for the modeling of special
structures. For this rcason, a library of other basis
functions is available in the MMP code. One part of this
library is obtained from well-known analytic solutions of
Maxwell equations (plane waves, harmonic functions,
waveguide and cavity modes). The second part of this
libvary can be obtained from the translation and
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generalization of MoM basis functions. In [4,9] the MMP
implementation of thin-wire expansions and 1S
generalization, i.e., so-called line multipoles are discussed.
For modeling thin, ideally conducting sheets, neither thin-
wire expansions nor line multipoles are appropriate. The
most snccessful MoM  approach for modeling such
structures involve the subdivision of the surface of ideal
conductors into patches and in the approximation of the
surface currents by piecewise linear functions. Rectangular
patches with rooftop basis functions for the currents are
most popular. The problems associated with the
implementation of rooftop functions in the MMP code are
discussed in the following sections.

2. MMP Basis Functions

MMP is based on a direct expansion of the EM field. One
of its most important strengths is the ability to accurately
compute the EM ficld in the near field and even on the
surface of a structure. Multipoles and many other possible
basis functions have mon-physical properties such as
singularities or discontinuities of the EM field. These non-
physical properties prevent an accurate numerical solution.
Fortunately, they are usually localized in certain pomts
(multipoles), along certain lines (wire expansions, line
multipoles) or on more complicated two-dimensional
geometric objects (rooftop functions). The MMP remedy
for ihis problem is simple. Each basis function is applied to
approximate the EM field in a certain domain. The source
of troubles, i.e., the area where the basis fimction has non-
physical properties, must be outside this domain.
Consequently, all basis functions used in MMP are strict
solutions of Maxwell's equations. Applied to "corrent
patches” this means that the patches are moved away from
the surface into the ideal conductor. Since there are no
"real” currents at this location, such patches may also be
called fictitious sources of the EM field.

It is important to note that the interpretation of fictitious
currents generating the EM field of the basis functions can
be helpful for constructing new basis functions but this
interpretation plays no role in the MMP code itself. Any
given distribution of electric and magnetic charges and



currents generates an EM field that fulfills the Maxwell
eguations outside the area of the charges and currents -
even when the Maxwell equations are violated inside this
area. This is not relevant for MMP because the critical area
is outside the domain where the basis function is applied.

3. MMP Rooftop Functions

The approximation of the electric current on the surface of
an ideal conductor by piecewise linear functions causes
discontinuities of the first derivatives along certain lines on
the surface. This causes inaccuracies of the EM field
compuiation at least close (o these lines. In MoM codes one
is often not directly interested in the EM field. In order to
fulfill the boundary conditions of the EM field on the
surface of the conductor, one can apply a projection
technigue with appropriate testing functions. This requires
the evaluation of the EM field on the patch itself which
simplifies the formulae. Moreover, the testing functions
allow one 1o avoid numerical problems arising from the
singularities of the EM field on the borders of the patch.

MMP requires an accurate and efficient computation of the
EM field of rooftop functions anywhere in space (except on
the paich itself). This computation is not trivial. It is
outlined in the following section.

3.1 Electric and Magnetic Currents

Electric charges and currents are comsidered to be the
sources of the EM field. Although magnetic charges and
currents are missing in the ordinary Maxwell equations,
one can easily introduce them to obtain a symmetric form.
This allows one to construct a set of basis functions that is
dual to the basis functions obtained from electric currents
and charges. Since the “sources” of the EM field of MMP
basis functions are fictitions anyway. the existence of
magnetic charges and currents plays no role. Introducing
magnetic charges and currents is just a trick to obtain
another set of basis functions for modeling EM fields. Such
basis functions are helpful for certain applications, e.g.,
apertures. Since the implementation is almost identical
with the implementation of basis functions obtained from
electric charges and currents, it is not explicitly explained
in the following.
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4. Efficient Computation of the EM Field of a
Rooftop Function near the Patch

4.1 Vector Potential Formulation

For a given electric carrent distribution j one first obtains
the vector potential

in=2[i6E v o
T

where
e:kl?—?‘l eih?
G(F’?):m:-}i‘_ 4

is the well-known free space Green's function in three
dimensions.

One can directly obtain the EM field from the vector
potential using

E®) =%grad divA+in A &)
B(F)=ptculA ®)

For an arbitrary current distribution on a flat patch D’ one
obtains several integrals of the form

kR

€
dx'dy’

I(x,y,2) =.Uf(x',y’)
pe

Unfortunately, no analytical solution of (7) is known - even
for a piecewise linear current distribution on a rectangular
patch {see Figure 1). The direct numerical integration
(even with adaptive methods) is very inefficient when the
order n is large and R has small values, i.e., when the field
point is close to the patch where the current is defined. For
points far away one can use any simple numerical
technique.

4.2 Mixed Potential Formulation

Especially (5) leads to relatively high orders because of the
second order derivatives in the operator grad div. The
maximum order required it (7) can be reduced by a mixed-
potential formulation. In this formulation one first
computes the charge density on the patch from the charge
conservation law

iwp =div] (8)



then the scalar potential
o(r)= LJ p(r)GFE AV (%
4re o
and finally the electric field
E(f)=—gradd +ioA. (10)

Figure 1: Rooftop distribution of the x component of the
electric current j on a rectangular patch in the x-y plane.

Although the mixed-potential formulation can reduce the
order of the integrals (7), one still has to compute integrals
of up to third order when the most simple linear current
distribution is assumed.

4.3 Expansion of the Green’s Function

The best method [3] that has been found for points close to
the patch involves a Taylor series expansion of the
exponential function in the Green's function around the
origin R=0. This method is similar to the method proposed
in [6]. It leads to series expansions of the potentials and of
the EM field containing integrals of the following types:

K,(x,y.2) =)} rd€ dn

1)
o

L (xy.2) =))e rde an (12)
e

M,,(x,y,z)=JJ§n'r"d& dn (13)
-
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These integrals can be evaluated analyticaly by some
simple elementary functions and recurrence relations. First
of all, the auxiliary integral

1,(x,2)= ]‘(ﬁ P+ dE
4]

is computed recursively with the relation

(14)

(n+DI (x,2)-nZ’I_,(x,2) =x(x* +22)** (15)

and the following starting values:

Io(x:Z) =X (16)
I_,(x,z) = Arsinh(x/ z) 17
I,(x,2)=z"arctan(x/ z) (18)
I (x,2)=x/(Z’Nx"+2%) (19)

For the integrals {11) one has the recurrence relations
(n+2)K,(x,y,2)—nz’K, ,(x,y,2) =

{20)
A (NP +2 )+ 3 (x4 Y +2°)

and the starting values:
Ky (x,y,2)=xy (21)
"
WX +y 4z
Note that orders with n<-3 ar¢ not needed in our
formalism for rooftop patches with piecewise linear current
distributions. The integral of order -2 is numerically most
difficult. It requires the solotion of a transcendental
function related to Euler's dilogarithm. Fortunately, this
integral is not required here.

K ,(x,y,2) =2 arctan( =) (22)

The integrals (12,13) are directly obtained from

IMZ(yS Ux2+7«'2)_ln+z(y,2)

L(x,y,2)= — (23)

M(xy,2)=

TR RN RS T e
) (n+d)

One cobviously cannot use (23) for the order -2 and (24) for
the orders -2 and -4. For these orders one has:



2 2 2
X +y 4z
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(25)
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2 2 2z 2 (26)
—(y" +z )log(y”" +z°)
+7*log(z")
2+ 2 2+ 2
4AM_,(x,y,z)=log (x +2)y *+2) @7

Zl(x2+y2+22)

This technique allows one to recursively compute the basis
functions with a user-defined accuracy using a minimum of
arithmetic operations.

5. Computation of the EM Field of a Rooftop
Function away from the Patch

Since the convergence of the Taylor series expansion of the
exponential function is poor for large arguments, another
technique is required for larger distances. Numerical
studies show that the series expansion method is useful and
extremely efficient for distances up to one wavelength. It is
important to note that the sides of the patch are typically
considerably smaller than one wavelength. Therefore, it is
not difficult to evaluate the EM field using a purely
numerical method.

5.1 Gaussian Quadrature

Gaussian quadrature is a well-known simple algorithm. It
has been found that this algorithm is inefficient when the
distance of the point where the EM field has to be
evaluaied to the rooftop patch is smaller than the size of
the patch. Gaussian quadrature is less efficient than our
“semi-analytic” method discussed in section 4 - provided
that the “semi-analytic” method can be applied (which is
not true for distances larger than the wavelength) and
provided that a high accuracy is desired (which is true in
3D MMP). However, Gaussian quadrature is a good choice
for distances larger than one wavelength.
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5.2 Adaptive Numerical Integration

When a simple Gaussian quadratre is applied, the user
has to set the number of integration points and the order.
Both parameters affect the accuracy and the speed.

Adaptive techniques such as adaptive Simpson algorithms
have the advantage that the user can define the maximum
error. The kernel function must be computed in at least
nine points for one-dimensional integrals. Thus, one must
evaluate the kernel function in at least 81 points on a
rectangular patch. All basis functions of the MMP code are
analytic solutions of the Maxwell equations. They are
usuaily computed with a very high accuracy of about 14
digits. This causes an cxiremely large number of kemnel
function calls for field points close to the patch.

It has been mentioned thai the paich is usually
considerably smaller than one wavelength and that the
“semi-analytic’”’ algorithm presented in the previous section
is very efficient and accurate for points close to the patch.
Qutside this area, it is not clear whether the Gaussian
quadrature is more efficient than the adaptive Simpson
algorithm. Moreover, the orders of the Gaussian
quadrature required for obtaining a given accuracy are not
known in advance. It has been found that the Simpson
algorithm is less efficient than Gaussian quadrature outside
this area becanse less than 81 function calls are required in
order to obtain an accuracy of about 14 digits with
Gaussian quadrature, whereas 81 function cails is the
minimum for the adaptive algorithm. Therefore, the
adaptive algorithm has been used for finding rules for
setting the parameters (orders) of the Gaussian quadrature.

5.3 Approximate methods

It is well-known that a piecewise linear current distribution
oh a thin wire can be approximated by a piecewise
sinusoidal current distribution that allows an analytical
ireament. This resuit can be applied to the current
distribution on rooftop patches [7]. It is obvious that the
larger the distance from the patch the better the
approximation, i.e., this approximation should not be used
for computations in the near-field. Although this method
can be useful for reducing the computation time for a
moderate distance when a moderate accuracy is desired, it
has not been implemented in the 3D MMP code where a
high accuracy is desired.



At very large distances, the rough approximation of the
current on the rooftop patch by a dipole could be useful.
However, this method has also been discarded because of
the high accuracy desired in the 3D MMP code. In this
code we efficiently compute the EM field of the rooftop
patch either with the “semi-analytic” method or with the
Gaussian quadrature. The “semi-analytic” method is used
for points at a distance of less than one wavelength from
the center of the patch and the Gaussian quadrature is used
for larger distances. Note that the performance of the
Gaussian quadrature is better for larger distances. Since
the “semi-analytic” method is much faster than Gaussian
quadrature in the area where it can be applied, the longest
computation times are obtained for points within a distance
of one wavelength. It should be pointed out that these
statements hold for rooftop patches with a sidelength
smaller than one wavelength. For physical reasons, this
restriction is usually met.

6. EXAMPLE

For testing the implementation of the rooftop functions in
the MMP code, a square plate of finite thickness with
round corners and edges is considered in the following (see
Figure 2). This example has been studied by Fin Bomholt
[8,9] with an array of line multipoles parallel to the edges
and with a regular multipole in each corner of the plate.
The same problem has been solved by Peter Regli with a
slightly improved matching point distribution and with a
pure MMP expansion, i.e., with an array of regular
multipoles inside the plate.

When one compares the original model of Fin Bomholt
with the model of Peter Regli, one finds that Fin’s model is
2.5 times faster. According to the internal error checks of
the MMP code, the errors of Fin’s results are at least 2.7
times higher (the peak errors are more than 10 times
higher). Therefore, it is hard to say whether Fin’s model
with line multipoles instead of Peter's pure MMP
expansion is reasonable and efficient. In the following
investigation, we will study not only different rooftop
expansions but also the influence of the matching points
and of additional (supporting) expansions.

6.1 Matching points
The generation of an appropriate set of matching points is

tedious with the current version of the input editor, because
the refinement requires a completely new construction of
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all matching points. Therefore one tends to overdiscretized
models. Since the matching point sets of Fin Bomholt and
Peter Regli have almost the same number of matching
points, we need at least one additional set to obtain some
information concerning the convergence. A third set of
matching points has been generated by simply deleting
some of the matching points of Fin’s set (see Figure 3).
This crude set can only be used for relatively crude models.

Figure 2: Square plate of finite thickness with circular
edge proposed by Fin Bomholt. Side length of the plane =
40mm, thickness = Smm. A plane wave is incident
perpendicular to the plane, the electric field is parallel to
one of the sides of the square. Frequency = 6.6GHz. The
matching points of the refined model (by Peter Regli) are
indicated by squares.

Figure 3: Model with a reduced number of matching
points (indicated by squares). The black square area in the
shadow of the plate indicates one of the windows used for
testing the close near-field computation.

Because of the symmetry of our plate with respect to the
xy, xz, and yz planes, only one octant needs to be modeled.



In fact, the square plate has even higher symmetry but the
actual version of 3D MMP does not allow us to take such
symmetries into account. In each matching point one has
three boundary conditions (two for the tangential
components of the electric field and one for the normal
component of the magnetic field). Therefore, the number
of equations obtained with M matching points is 3M. Note
that the third boundary condition is omitted in most
numerical methods because it can cause nymerical
dependencies. This omission is not necessary in 3D MMP
where one works with an overdetermined system of
equations [1,2]. The three matching point sets used for our
comparison are characterized as foliows:

Matching point set points (M) rows (3M)
A (Peter Regli) 664 1992
B (Fin Bombholt) 616 1848
C (reduced set B) 343 1029

where “points” is the number of matching points in one
octant and “rows” is the number of rows of the resulting
symmetry-decomposed MMP matrix, i.e., the number of
equations.

The quality of the results depends to a great extent on the
expansion that has been used together with the matching
point set (see section 6.2). Comparisons of the optimal
results obtained with several expansions allows one to
reduce the influence of the expansions. The best solutions
found with the three sets can be described as follows:

set average error  peak error ratio
A 047% 1.9% 4
B 0.82% 16.4% 20
C 2.81% 20.1% 7

The errors in this table indicate the mismatching in the
matching points relative to the maximum value of the EM
field. For more information concerning the MMP error
checks see section 6.3 and [1,2]. The ratio peak error /
average error is an excellent indicator for the quality of the
model. A large ratio indicates unbalanced error
distributions that are either caused by an imappropriate
matchihg point distribution or by an inappropriate set of
expansions. Since the table is based on the best sets of
expansions that have been found for the different sets of
matching points, the ratio mainly reflects the quality of the
matching point distribution.

Set A has almost as many poinis as set B. The computation
time of set A is only about 8% higher than the computation
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time of set B when the same expansions are used for both
sets. One can conciude from these facts that set B is far
from being optimal and that the matching point
distribution plays an important role that should not be
underestimated. For example, when Peter’s pure MMP
expansion is combined with Fin's matching point set B,
the peak error is almost ten times higher than in Peter’s
original model.

The matching point distribution of set C is also worse than
the one of set A, but set C allows a considerable reduction
of the computation time. It is important fo note that the
best expansions for set A an B cannot be applied to set C
because set C does not define enough equations to compute
the parameters of these expansions. The expansions for set
C have about half as many unknowns as the best
expansions for sets A and B. The computation time for the
rectangular matrices in the MMP code i1s abmost
proportional to the number of matching points and to the
square of the number of unknowns. Therefore, the
computation of models based on set C is typically up to 8
times faster than the computatior of models based on sets
A or B. Set C is useful for obtaining quick resulis.

6.2 Expansions

A pure MMP expansion is known to be inefficient for thin
scatterers. The plate proposed by Fin Bombholt is neither
thin nor thick. When an MMP expansion is constructed
according 10 the rules for setting multipoles, 8*8=64
multipoles per quadrant are required. This results in 692
unknowns for the pure MMP model of Peter Regli (see
Figure 2.4.,5). One can easily reduce the number of
unknowns by reducing the orders of the multipoles.
Because of the fast convergence of MMP this causes a
considerable increase of the error. Instead of reducing the
number of orders of the multipoles one can reduce the
number of multipoles. This canses a less balanced error
distribution on the surface of the plate.

Since the same problem exists for wire-like stractures, line
multipoles were mntroduced in 3D MMP [4,9]. Line
multipoles are a generalization of thin-wire expansions.
These expansions offer a simple way to reduce the number
of expansions for our test case. Instead of 8*8 regular
multipoles one can use 8 line multipoles parallel to the
direction of the incident electric field and an additional
line multipole along the edge perpendicular to the electric
field. To improve the modeling of the field near the comer
a single multipole is added. Thus, Fin's model has a total



of 10 expansions instead of 64. This does not necessarily
mean that the number of unknowns is also reduced.
However, the Fin Bomholt’s model has only 425
unknowns. Figure 6 shows the results obtained with this
model.

Figure 4: Time average of the magnetic field density on
the bright side of the plate obtained by a pure MMP model
(Peter Regli). The incident electric and magnetic fields are
parallel to the horizontal and vertical axes, respectively.
Dark areas indicate strong fields. The matching points are
indicated by gray lines.

Although the reduction of the number of unknowns in the
line multipole model causes a considerable reduction of the
computation time, it also causes an increased error (see
section 6.1). The resulting lines of constant magnetic field
density in Figure 6 obviously reflect the location and
orientation of the line multipoles.

It seems to be clear that rooftop expansions are more
appropriate for modeling the field along a flat structure
such as our plate. However, it is important to note that the
plate is not thin at all. A pure rooftop expansion causes
large errors especially along the edges and near the corners
of the plate. In order to reduce these errors, one can
support the rooftop expansions with line multipoles along
the edges and regular multipoles in the corners. The
resuling model has one rooftop expansion, two line
multipoles and one regular multipole instead of 64 regular
multipoles. Figure 7 shows the result. Instead of line
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multipoles along the edges one can also use 15 regular
multipoles to support the rooftop expansion (Figure 8). It is
important to note that the supporting line multipoles or
regular multipoles mainly affect the field near the edges
and comners. Nevertheless, they are indispensable for
accurate near-field computations.

Figure 5: Time average of the magnetic field density on
the dark side of the plate obtained by a pure MMP model
(Peter Regli). The incident electric and magnetic fields are
parallel to the horizontal and vertical axes, respectively.
Dark areas indicate strong fields.

In our investigation, we applied rooftop expansions with
5*%5 and 10*10 patches. In all patches the x or y
components of the electric or magnetic currents were used.
The most simple model uses the x component of the
electric current only, because the electric field of the
incident wave points in the x direction. This causes only
one unknown per patch, but the resulting errors are quite
high. When both components of the electric current are
used, one has two umknowns per patch without a
significant reduction of the errors. The introduction of
magnetic currents is essential for obtaining reasonable
results. In our test example, the y component of the electric
current and the x component of the magnetic current can
be omitted because their contribution to the EM field is
very small, i.e., patches with x components of the electric
current and y components of the magnetic current are
optimal.



Figure 6: Time average of the magnetic field density on
the bright side of the plate obtained by a model with line
multipoles parallel to the edges and a regular multipole in
each corner (Fin Bomholt). The incident electric and
magnetic fields are parallel to the horizontal and vertical
axes, respectively. Dark areas indicate strong fields.

Rooftop patches in MoM codes are placed on the surface of
a scatterer. In 3D MMP, we place the patches somewhere
inside the scatterer in order to obtain a smoother behavior
of the corresponding EM field. The smoothness is
increased with the distance from the surface. At the same
time, this causes a larger condition number of the MMP
matrix. When a single N*N rooftop expansion is placed in
the xy plane in the center of the plate, the size of each side
of each patch is 20mm/N and the distance from the surface
is 2.5mm. From the rules for setting multipoles, we expect
that the ratio side length / distance is between 1.5 and 2.5.
Therefore, the rough rooftop expansions with 5*5 patches
are almost optimal whereas the finer rooftop expansions
with 10*10 patches are suboptimal. The distance of the
finer rooftop expansions from the surface of the plate
should be reduced. This has another consequence: Instead
of a single expansion in the xy plane we require two
expansions, one above and one below the xy plane and the
number of unknowns is doubled. Since 3D MMP provides
an excellent matrix handling which allows one to work
with suboptimally placed expansions, excellent results
were obtained even with a 10*10 rooftop expansion in the
Xy plane.
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Figure 7: Time average of the magnetic field density on
the bright side of the plate obtained by a model with
roaftop patches in the center of the plate, additional line
multipoles along the edges and a regular multipole in each
comner. The matching point distribution is the same as in
figure 6. The incident electric and magnetic fields are
parallel to the horizontal and vertical axes, respectively.
Dark areas indicate strong fields.

6.3 Error checks

In our investigation we applied three different sets of
matching points and 8 different rooftop expansions
supported by 1) multipoles, 2) line multipoles and regular
multipoles, 3) no additional expansions. This resulted in
72 different models with different speed and accuracy. 3D
MMP provides internal error checks based on the
mismatching of the boundary conditions in the matching
points. The MMP error function [1,2] packs the
mismatching of all components of the field in a single
scalar number per matching point. Although this function
is informative, it can be misleading in some cases.
Nevertheless, the average and the peak values of the error
functions are helpful for comparing solutions of one and
the same problem obtained using different models.



Figure 8: Time average of the magnetic field density on
the bright side of the plate obtained by a model with
rooftop paiches in the center of the plate and additional
regular multipoles along the edges. The matching point
distribution is the same as in figure 4. The incident electric
and magnetic fields are parallel to the horizontal and
vertical axes, respectively. Dark areas indicate strong
fields. '

Instead of an internal error check, one can compare the
results of a model with the results of a reference model that
is considered to be accurate. Peter Regli’s pure MMP
model of the plate is considered to be quite accurate -
according to the internal error checks. Therefore, it has
been used as a reference. This external error check has
other drawbacks. Models that are close to the reference
model are overestimated. When a model is more accurate
than the reference model, the error reflects the error of the
reference model rather than the error of the model to be
tested. From the internal error checks, it seems that the
10*10 rooftop expansion with electric currents in the x
direction and magnetic currents in the y direction,
supported by multipoles along the edges, is more accurate
than the pure MMP expansion. Its peak error is 2% of the
maximum field value, i.e.. slightly higher than the peak
error of the reference (1.9%), but the average of the error is
only 0.47% compared with 0.7% of the reference. The
average of the difference between the two models is 0.57%.
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6.4 Speed, efficiency, and convergence

When a new numerical technique is tested, it is important
that it allows one to accurately compute a given problem
with the desired accuracy, but it is at least as important
that the computation time can be kept as short as possible,
ie., that the method is fast and efficient. Since the
computation time depends considerably on the accuracy,
we can define the efficiency as speed*accuracy or as
1/(time*error). The different definitions of the accuracy
and of the error of a result automatically cause different
definitions of the efficiency. We have shown that the
accuracy of the results depends not only on the expansion
but also on the set of matching points. Therefore, it is not
easy to say whether our implementation of rooftop
functions is an efficient feature of 3D MMP for modeling
Fin Bomholt’s plate of finite thickness. It has been found
that the efficiency based on the average of the internal
MMP error is almost the same for our rooftop model, for
the line multipole model of Fin Bombholt, and for the pure
MMP model of Peter Regli - provided that only reasonably
good models are compared. It is quite clear that rooftop
expansions are much more efficient for thinner plates, i.e.
Fin’s plate is not a good test case for demonstrating the
power of rooftop expansions in 3D MMP.

Beside the efficiency, the convergence of a numerical
technique is certainly important. One often implicitly
assumes that a fast convergence is an attribute of a good
numerical technique. Although this might be correct for a
pure mathematician who is never satisfied by a limited
accuracy, this certainly is not correct in engineering where
the requested accuracy is often moderate. Since the
efficiency is a function of the accuracy, one usually finds a
point with a certain accuracy where two methods with a
different convergence have the same efficiency. Below this
point, i.e., for a lower accuracy, the method with the
slower convergence is more efficient than the method with
the fast convergence. Rapidly converging techniques are
therefore efficient when a high accuracy is desired.

In complex situations such as computational
electromagnetics, the speed and efficiency of a method
depends on many parameters and it is often very difficult
to estimate the accuracy of a result. Therefore, the
investigation of the convergence can be very tricky.

From large series of MMP computations of relatively
simple models, we know that the convergence of pure
MMP expansions is extremely fast. In the case of the
scattering of a plane wave at a sphere, the convergence is



at least exponential. Consequently, MMP is very efficient
for obtaining accurate results but it is difficult to obtain
results with a moderate accuracy within a short
computation time. This was confirmed in our example
when the orders of the original MMP expansion were
slightty reduced. With a reduction of the unknowns from
692 10 439 the average of the internal MMP error was
increased from 0.7% t0 4.41%.

Statements on the convergence of 3D MMP models with
rooftop expansions are even more difficult because we had
to support these expansions by additional line multipoles
and regular multipoles. However, it seems that
convergence of models with rooftop expansions is worse
than the convergence of pure muitipole models. Therefore,
one cannot efficiently obtain extremely accurate results
with rooftop expansions, but one can obtain results with a
reasonable accuracy with considerably less unknowns than
with a pure MMP expansion.
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