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ABSTRACT. A hybrid technigue combining the Complex
Multipole Beam Approach (CMBA) with the Method of
Moments (MoM) for the solution of the problems of
electromagnetic scattering is presented in this paper. In
this technique the CMBA provides for a substantial
reduction in the matrix size by taking advantage of the
essentially band-limited spatial spectrum of the scattered
field in the vicinity of smooth surfaces, while the MoM is
employed for the modeling of non-smooth or inhomogeneous
regions within the problem geometry. The key step in the
CMBA is to represent the scattered field in terms of a
series of beams produced by multipole sources located in a
complex space. The CMBA not only reduces the number of
unknowns, but also generates a generalized impedance
matrix with a banded structure and a low condition number.
In the present hybrid technique, the scattering properties
of each complex region, requiring a relatively large number
of unknowns per unit volume, are described in terms of a
Beam-matrix, which is constructed numerically to relate
the amplitudes of outgoing beams to those of incoming ones.
The proposed direct solution scheme takes into account the
interactions between all of the complex regions and the
smooth portions of the scatterer geometry using an
algorithm similar to the recursive T-matrix approach. This
hybrid technigue, that combines the CMBA with other
conventional methods, is a versatile tool, and is expected
to enhance the scope of application of the CMBA to a much
wider class of problems.

1. INTRODUCTION

The conventional approach to formulating the problem of
electromagnetic scattering using the Method of Moments
(MoM) is to employ subdomain basis functions to represent
the surface currents [1] on the body. This approach often
requires the use of ten or more unknowns per linear
wavelength, and thus leads to relatively large matrices even
for moderately-sized scatterers. In addition, the resuiting
generalized impedance matrix is typically dense, owing to a
strong coupling, or "reaction”, between the subdomain basis
and testing functions, even when they are remotely separated
from one another. However, it is well-known from the
asymptotic solutions of canonical problems, that wave
interactions between the smooth parts of the scatterer are
essentially local. Canning {2] has shown that, for smooth
scatterers, the use of Gabor type of basis functions {3], viz.,
functions comprising of windowed exponentials, can
introduce the desired impedance matrix localization (IML)
feature in the matrix equation. It should be noted, however,
that the localization of the matrix elements near the diagonal
is achieved in this approach at the expense of a higher
computational cost, introduced by the need to compute the

double integrals for the matrix elements that involve the
special basis and testing functions. It is also worthwhile
noting that the Gabor type of basis functions have been
employed in the past for the analysis of coupling through
narrow slots [4]; however, the computational savings
achieved in this process were relatively meager due io the
highly discontinuous nature of the slot coupling problem.

Two alternate approaches, also proposed recently, are the
Multiple Multipole (MMP) [5] and the Current Model [6]
methods, both of which exhibit a potential for substantial
savings in terms of the number of unknowns relative to the
MoM. They employ the fields generated by fictitious
sources, displaced from the boundary of the scatterer, to
represent the scattered field. Major concerns with these
methods stem from a lack of well-defined guidelines for the
selection, for arbitrarily-shaped scatterers, of the locations of
the fictitious sources. Moreover, it becomes necessary in
these methods to solve an oversampled system of equations
by using a least squares approach, or a singular value
decomposition technique [7], to obviate the numerical ill-
conditioning problems of the associated matrix. A
systematic examination of the ill-conditioning problem
reveals that it can be traced to the isotropic nature of the
elemental sources, usually employed in these approaches,
because the fields radiated by these sources can be
conveniently expressed in analytical forms. Recently,
Pogorzelski [8] suggested the use of synthetic directive
sources to represent the scattered field. The possibility of
combining isotropic and directive sources has been examined
by Erez and Leviatan [9]. While in [8] 2D directive sources
are synthesized by arrays of isotropic sources, in [9] the
directivity is achieved by shifting a point source into
complex space [10). However, in both [8] and [9], only one
type of directive sources is used. This appears to be similar
to the Canning's first attempts to achieve localization
employing only cne type of basis function as described in
[2]. Thus, with the methods of [8] and [9] one can expect to
achieve localization but, probably, at the expense of solving
an ill-conditioned system of equations.

A new technique, called the Complex Multipole Beam
Approach (CMBA), which attempts to combine the
advantages of both the IML and the MMP methods has been
recently introduced by the authors [111-[12]. The strategy
followed in this method is to expand the scattered fields in
terms of beams, generated by a judiciously selected set of
multipole sources located in the complex space. These
beams are very similar to the Gabor basis functions when
sampled at the boundary of the scatterer; hence, the method
can be viewed as a numerical approach to finding an
approximate Gabor representation of the boundary field. In



fact, the problem of radiation from planar apertures has been
extensively studied using the Gabor expansion of the
aperture fields [13]. However, a straightforward Gabor
expansion of the field over a non-planar boundary would be
of little use since the subsequent determination of the
scattered field would be as difficult as solving the original
problem itself. The completeness properties and other
characteristics of the Gabor expansion functions are well-
understood [14], and this greatly facilitates the task of
developing a set of simple rules for choosing the orders and
locations of the multipoles. In common with the MMP and
the Current Model metheds, the present approach retains its
advantage over the MoM in terms of the number of
unknowns, typical figures being less than four per
wavelength.

The unidirectional character of the fields radiated by the
multipole sources, located in the complex space, is superior
to the bi-directional nature of the Gabor type of basis
functions for the induced current used in the original IML
approach [2], and is similar to the combined source IML
approach [15]. This is because the unidirectional nature of
the source fields ensures that the coupling will be low
between a given source and all distant parts of the convex
scatterer, including the part of the surface located on the
opposite side. It also helps to suppress the spurious,
interior resonance type of solutions, since the fields
generated inside the scatterer are relatively low. In fact,
numerical experiments have shown that the condition
number of the matrix generated by using the present
approach is almost independent of the shape and size of the
scatterer.

In its original form [11]-[12]), the CMBA approach was
designed for application to the problem of scattering from
large smooth bodies, with substantial savings of computer
memory and time over the conventional MoM. The
objective of this paper is to present a hybrid approach that
extends the scope of application of the CMBA method to a
more general class of scatterers. In the new approach, the
problem of scattering from a complex object is first
decomposed into a number of coupled problems. Each of
these problems belongs to one of the following three
geometrical types, each of which requires a different type of
treatment: (i) large smoocth boundaries between
homogeneous media or perfectly electric conductors that are
modeled using the CMBA method; (ii} non-smooth
portions of boundaries or wires, that require a relatively
small number of unknowns when modeled by using the
conventional MoM; and, (iii) general inhomogeneous ot
otherwise complex regions that require volumetric
discretization, and, hence, a relatively large number of
unknowns per unit volume. The above division is
eguivalent to partitioning the generalized impedance matrix
into blocks. Because the problems belonging to the third
category require a large number of unknowns, it is desirable
to reduce the number of degrees of freedom representing the
coupling between each such region and the rest of the
geometry. As a first step towards achieving this goal, each
of the subregions belonging to the third category is enclosed
in a smooth surface. Next, for sources and observation
points residing outside the surface, the scattering properties

of the region are described in terms of a Beam-matrix, which
is constructed numerically to relate the amplitudes of the
outgoing beams to the incident field, with the beams
themselves generated by multipoles located in the complex
space. This formulation is analogous to the T-mairix
description of scattering [16], although, thanks to the local
nature of the multipole beams, the circumscribing surface is
not restricted to be circular as it is in the T-matrix approach.
A portion of the smooth boundary of the type-I region,
included in the surface circumscribing a region of type-1II, is
termed a transition region. The concept of the transition
region is analogous to the notion of nearest neighbor
employed in the Fast Multipole Method (FMM) originated
by Rokhlin [17], because the field in this region is
computed directly from the equivalent currents of the type-III
region. While the FMM is formulated as an iterative
procedure {17]-[18], the proposed hybrid CMBA can be cast
into a non-iterative form. In the direct scheme, first the
interactions between all of the type-I regions are taken into
account using an algorithm similar to the recursive T-matrix
approach [19]. The remainder of the problem is then solved
using the proposed beam formalism that takes into account
the interactions between the type-III regions and the type-I
smooth boundaries except for the narrow transition regions.
This proposed hybrid technique, that combines the Complex
Multipole-Beam approach with other conventional methods,
is a versatile tool, and is expected to enhance the scope of
application of the CMBA to a much wider class of
problems.

The paper surveys the basic Complex Multipole-Beam
approach and then describes the hybrid formulation. The
application of the proposed hybrid method will be illustrated
for the two-dimensional (2D), Transverse Magnetic (TM)
scattering case. The dual case of transverse electric (TE)
polarization, as well as the extension to three-dimensions
(3D), will be dealt with in forthcoming publications.

The organization of the paper is as follows. Section 2
discusses the properties of beams generated by multipoles
located in the complex space. Formuiation of the method
is outlined in Section 3. Details of the numerical
implementation of the method and illustrative results are
presented in Section 4. Finally, a few concluding remarks
that summarize the paper are given in Section 5.

2. Multipole Beams and Gabor Expansion

This section is devoted to the study of the electromagnetic
fields produced by multipoles with the source point shifted
into the complex domain. The purpose of this siudy is
twofold: (i} to develop an understanding of the major
characteristics of the multipole fields; and, (ii} to find the
parameters that adjust these characteristics in a manner such
that they are optimally suited for the scattering problem at
hand.

Consider a time-harmonic, two dimensional (2D} multipole
source of order n located at a source point 7,. The source

can be interpreted as a singular distribution of the z-directed



uniform electric current. Let ‘¥, (r,r,) denote the z-directed
electric field of such a source at the observation point r.
For a source located at the origin of the coordinate system
(r, =0), the field expressed in tenms of polar coordinates

(p.@) is given by [20]

¥,(r,0) = B (kp)e™ ¢y

to within a constant factor suppressed herein. In (1),
H,(,z’(kp) denotes the Hankel function of the second kind

and order n, k is the intrinsic wavenumber, and the &t
time dependence is implicit. In order to analytically
continue (1) to the case of an arbitrary complex source
point, it is necessary to express it as a single-valued analytic
function that is well-defined for an arbitrary complex source
point r, =(x,.y,)=r,— jr,, where r, and r, are real
vectors. To this end, the following expression

Re{p}20 (@

JD=w/(x—x,,)2 +(y-y,)°
that interprets p for an arbitrary r, was introduced [10] in
the study of the zeroth-order multipole with a complex
source-point. The expression under the square root in (2)
vanishes at r/tZxr” and the requirement Re{p}20
defines the segment connecting the two points as a branch
cut. The requirement Re{p} 2 0 also ensures single valued
continuation of the Hankel function. It is well-known that
the radiation characteristics of the zeroth-order multipole
approximate those of a gaussian beam propagating in the
direction of r,” with the waist located on the brunch cut

[10].

Shin and Felsen [21] have proposed a derivation of the
higher-order complex multipole fields based on successive
derivatives of the zeroth-order muitipole along the direction
transverse to r;’. However, this process leads to only a
partial set of multipoles, although additional multipoles can
be obtained by taking the derivatives along r,”. The fields
derived in this manner will comprise of either the sin(n@)
or cos(ng) functions, which represent standing waves in the
@-direction. In this work, we propose an alternative
approach, which we believe to be a simpler way to derive
the higher-order multipole fields. The procedure entails a
search for analytic expressions for the higher-order fields ia
terms of cartesian coordinates of the source and observation
points. The interpretation of @ in (1) as a polar angle in
the complex source point case may not be immediately
apparent. However, we observe that the exponential factor
is easier to continue in its entirety when rewritten as

follows:

Y

ej"°’=(cosq>+jsin¢)”=(%+j—) (3)

p

Next, we define the nth order 2D muitipole field as follows:

¥, (r.1,) = Hy (kp) (ﬂ +i &] @
P P

Equation (4), with p defined as in (2), is useful for
constructing the nth order multipole field for arbitrary
complex source coordinates.

The qualitative behavior of the multipole beams is depicted
in Fig. 1 for several non-negative values of n. The negative

values of n produce mirror images of their positive counter-
parts. Here, |‘P,,| and Re{ ¥, }, computed on a circle of
Ir|= r =34 in radius, A being the wavelength, are presented
as functions of ¢ for 7,;’= 1A% and r, =0. Examination of
the |‘f’,,| , shown in Fig. la, reveals that the complex
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Fig. 1. The multipole fields W,(r,r,) with r,=-j

computed on a circle |r| =r=3A4: (a) absolute value and
(b} real part.



multipoles produce well-confined beams. For higher-order
multipoles these beams do not propagate in the r
direction. Re{ ¥, }, shown in Figs. 1b, clearly exhibit the
propagating wave behavior in the @-direction, with an
increasing spatial frequency for ascending #. The behaviors
of W, on the circular contour resemble that of the Gabor
expansion basis functions [3], that comprise a window
function multiplied by an exponential factor. Identifying the
similarity between the Gabor functions and the multipole
fields is of major importance to us, as it provides us with
the guidelines for selecting the parameters that play a critical
role in our approach to solving the scattering problem.

The Gabor expansion of the continuous function f{s) is
given by

f(s}= E Zai.!hi,l(s)

i==—oo {=—oa

&)

where

By o (5) = wis = iA)e’* )
It comprises a window function w(s} with an effective width
W, a shift parameter A controlling a discrete linear shift

along the s axis, and a Fourier kernel ™ whose frequency
is sampled at a constant interval Q. For the multipole
fields, the shift of the origin into the complex domain has
an effect similar to that of the window function. Unlike in
the Gabor expansion (5)-(6), we do not have the freedom to
select the window function; however, we can adjust the free
parameters W, 2, and A that profoundly affect the
characteristics of the complex multipole expansion.
Necessary conditions for the completeness of the set of
Gabor functions have been well-established and have been
thoroughly studied. The conventional constraints {JA =27
and W = A, advocated by Gabor [3], are not only logical but
theoretically optimal as well. However in the process of
generating the approximate Gabor expansion, we have found
it necessary to use a certain degree of oversampling [14],
achieved by letting QA <27, As will be seen in the next
section which deals with the distribution of multipole
beams, we also relax the second condition and allow Wto be
in the range W 2= A. In the remainder of this section, we
will describe how to select a set of multipoles that
approximate the set of Gabor functions i, , centered at
s=0. First, we choose to use only the multipoles of
orders n,, n, =£K, where the integer K is determined by
the condition K <2#r/W. This condition, based on an
assumption that the oscillatory behavior of e”? s
preserved, satisfies the oversampling criterion Q<2x/A,
provided that W > A. The multipole series can be truncated
by limiting ¢ to the range ~L<{=<L, where L is the
smallest integer satisfying K(L-I)>kr. The above condition
implies that the spatial spectrum of at least one of the
multipoles falls outside of the visible range.

It is evident from Fig. 1 that the multipole beams of

10

different orders have different widths. Following {14] we
define
c

max
reC

P,

L1

ds

W, )

'

n

as an effective width of the beam of order n,. Here, the
source point is centered at the origin r, =0 and shifted into
complex space by r, =(a,cos@,,a,sina,). The contour
C, along which ¥, is evaluated, is a smooth curve that

approximates the surface of the scatterer in some average
manner. Next, the amount of shift g, into the complex

domain is found for each non-negative muitipole of order »,

such that the beams are approximately equal in their
effective width, i.e. W, = W. The direction of the complex
shift of each multipole ¢, is chosen to ensure that the beam
propagates in the x-direction. Only non-negative values of
¢ are considered, since o_, =—a,. With the choice of
these carefully tuned parameters K, L, a,, and &,, the
multipole fields comprise a set of analytic solutions of the
wave equation which, when evaluated on a circular contour,
simulate a set of Gabor basis functions. This step of
constructing the above basis functions serves as a first step
toward developing the formulation of the scattering problem,
to be discussed in the following section.

3. FORMULATION

Consider a problem of scattering from a complex object
depicted in Fig. 2. In the proposed approach our general
strategy would be to decompose the problem geometry into
a number of distinct regions. Each of these regions belongs
to one of the following three geometrical types: (i) large
smooth boundaries between homogeneous media or perfectly
electric conductors; (ii) non-smooth pertions of boundaries
or wires; and, (iii) general inhomogeneous or otherwise
complex regions that require volumetric discretization. For
each of these regions we propose using a different type of
modeling. In addition, coupling between the various regions

Complex Region

Simple PEC Antenna

Smooth PEC Surface

Fig. 2.
object.

An example of scattering by a general complex



can be formulated in a way considerably reducing the overall
computational complexity of the problem in hand. The
basic complex multipole beam approach (CMBA) to
scattering by smooth surfaces is presented in the following
subsection, while treatment of non-smooth and complex
regions will be discussed, Tespectively in the two following
subsections.

3.1 CMBA for Smooth Surfaces

For the sake of illustrating the application of the CMBA,
we consider a perfectly conducting cylinder of arbitrary cross-
section defined by contour S and infinite along the z-axis
(see Fig. 3). The contour, which is assumed to be piecewise
smooth with a minimum radius of curvature that exceeds
some prescribed value r, is described by 7.(s), where 5 is a
length parameter. We also assume that r.(s) has
continuous first derivatives (continuous tangent). The
cylinder is illuminated by a TM (transverse-magnetic) plane
wave E™ =ZE™ = 7¢7/*" 7 where £ is a unit vector,
k™ denotes the wave vector of the incident field, and the
harmonic e’? time dependence is implicit. Our objective
is to determine the scattered field E°® =ZE°.

We begin by setting up an equivalent problem for the region
surrounding the scatterer, in which we express E° as a
superposition of fields of a set of fictitious sources, located
in the region originally occupied by the scatterer.
Specifically, using the complex multipole sources we write

M L
ES(r)=Y, X L Eq(r) @®
i=l #=—L

where I,, are constant coefficients to be determined and

E (r)='Y,, (r.ry) 9)

¥ ‘ g~ )
Perfectly conducting E™

boundary §

Fig. 3. An example of perfectly conducting cylinder of
arbitrary smooth cross section illuminated by a T™
polarized plane wave.

is the field of the multipole of order n,, with n, =£K,
located at r,, =r/— jrj;. Note that unlike in the MMP
approach [5], only the multipoles whose orders are integer
muitiples of X are employed herein. The source locations
are chosen by analogy to the Gabor expansion. The
multipole centers r; are spaced evenly along the boundary,
and are shifted an equal distance r towards the interior of the
same. The value of r is selected such that it does not exceed
the minimum radius of curvature. The circumference of the
cylinder is divided into M segments of equal length by
points 5;, 5;=iA, i=1,..,M. The number of muitipole
centers M is determined by the requirement that the length
of the segments A be less than or equal to the predetermined
effective width W of the multipole beams. The amount and
direction of shift into the complex domain are determined in
a manner described in the previous section. Thus, we have
r/=r.(s)-n(s)r and (10

= ‘qu[al Ja(s;)

where R(s) is the unit outward normal vector at a point s on
the boundary, and the operator R[cr] denotes a rotation of
A(s) by an angle . With this distribution of sources, the
boundary is fully spanned by the multipole beams. The
direction of the complex shift of each of the 2L+1
multipoles centered at r;’ ensures that the field intensity is
maximum at the boundary point 7.(s;) closest to their
origin. We anticipate that the similarity between the set of
complex multipole beams, selected according to the
procedure described in the previous section, and the Gabor
basis functions is preserved for an arbitrarily smooth
contour. In view of this, the representation of the scattered
field given in (8) may be viewed as an approximate Gabor
expansion evaluated on the scatterer boundary.

It is evident from (8), that the approximate scattered field E*
automatically satisfies both the wave equation and the
radiation condition. Thus, it is only necessary to enforce the
boundary condition at N=M(2L+1) equispaced points on the
boundary of the scatterer to derive a matrix equation which
can be subsequently solved for the N unknown coefficients
{I,,}. Once these are known, the scattered fields and other

quantities of interest can be readily obtained.

At this point, it would be useful to make a few observations
regarding the method just outlined. First, we note that,
thanks to the properties of multipole fields, the generalized
impedance matrix involved is anticipated to have a very well
defined structure. The matrix can be expected to be
essentiaily banded with enhanced block-diagonal elements.
This pattern is attributable to the strong coupling (reaction)
between each group of 2L+1 multipoles having a common
origin and the 2L+1 matching points closest to them. For
convex scatterers, the coupling rapidly diminishes with
increasing distance between the multipole origin and the
match point. The banded structure of the matrix offers a
number of advantages in terms of computation time and
storage requirements. Additionally, we can estimate the



lower bound on the number of unknowns per linear
wavelength of the contour of the scatterer. Noting that there
are 2L+1 match points per segment of length A, and using
the constraints on the multipole parameters specified in the
previous section, we can show that this bound is given by
(2L+1)/(L-1), which approaches the Nyquist limit of 2
unknowns per wavelength for larger L. However, large
values of L can only be employed for very smooth
scatterers, and even then they tend to spoil the banded
structure of the matrix.

3.2 Direct Hybridization of the CMBA with
the MoM

In this subsection we consider a simple way to extend the
applicability of the CMBA to structures with discontinuities
of the surface tangent or with simple appendages, such as
wires. As an example of such geometry we consider a
cylinder of a square cross-section. Here, complex multipole
beams can still adequately represent the fields in the vicinity
of the smooth portions of the cylinder boundary. However,
they clearly can not be employed to approximate fields in
the immediate vicinity of the edges. In such instances we
can use conventional MoM basis functions as additional
sources of the scattered field. In the case of the square
cylinder the scattered field would be given by a superposition
of the multipole beams and fields due to piecewise constant
distributions of electric current located in the vicinity of the
edges (see Fig. 4). By simple point matching, the problem
can now be reduced to a matrix equation, which can
subsequently be solved for the amplitudes of the multipole
beams and the pulse basis functions. As the electrical size
of the cylinder increases, the number of muitipole beams
required to span the boundary increases linearly, while the

y MoM pulse basis functions
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Fig. 4. An example of perfectly conducting cylinder with

a square cross section illuminated by a TM polarized plane
wave.
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number of MoM basis functions remains unchanged. Thus,
for sufficiently large problems the number of MoM basis
functions, required in the edge vicinity regions, will become
a small fraction of the total number of unknowns.
Consequently, special treatment, like the one described in
the following subsection is not justified for such regions
that require a relatively small number of unknowns when
modeled using the conventional MoM.

3.3 Beam-Matrix Representation of Scattering
by Complex Geometries

In this subsection we consider scattering by an object
comprising a large smooth boundary and a complex region
that requires volumetric discretization (see Fig. 5). Such
problems present speciat difficulties due to large numbers of
unknowns involved in modeling both regions. As a first
step, the complex region is enclosed in a smooth surface Q.
The main part of the large smooth boundary lying outside
£ is modeled using the CMBA. The complex region is
next discretized using a volumetric MoM formulation [22].
In addition, the narrow strip of the smooth boundary within
€ is modeled using the conventional MoM. The above
division mathematically corresponds to a partitioning of the
generalized impedance matrix into blocks, as

ZSE Zsl zsc IS Vs
ze oz oz=||r = v (11)
ze Z¢ Z<||I°| (v©

Here, superscripts "s”, "t", and “c" designated quantities
pertinent to smooth boundaries, transition region, and the
complex region, respectively.

Accurate modeling of the inhomogeneous complex region
requires arelatively large number of unknowns per unit

Complex Region
Mathematical Surface Q Transition Region
\ Smooth Surface
€ )
Fig. 5. An example of a scatterer comprising a smooth

perfectly conducting surface and a complex region
illuminated by a TM polarized plane wave.



volume. On the other hand, for observation points residing
outside £, the scattered field due to the complex region can
be represented in terms of fields of equivalent currents
flowing on €. Similarly, the field in the complex region
due to sources exterior to £ can be simulated by another set
of equivalent currents flowing on Q. These observations
motivate us in an attempt to reduce the number of degrees of
freedom representing the coupling between the complex
region and the rest of the geometry. Substituting

I =z°°"'(v° - 2P -Z°I') in (11) we obtain

88 _Zmzm_lzcs ZS! _ZSCZCC-!th IS
z6 _zezeTlges gt _zez=Tze |[I']

Vs —zezelye
Slyiogezetye| (12

where we effectively eliminated the unknowns associated

with the complex region. In (12), the term VA7 Adi A
represents the coupling between the smooth boundary and
the complex region. Direct computation of this term would
not produce any savings. In order to facilitate its efficient
evaluation we return to the above idea of equivalent
representations for the fields. This time, however, we
advocate the use of complex multipole beams instead of
equivalent surface currents. Qutside the surface 2, the field
scattered by the complex region can be represented by the
fields of complex muitipotes with real source points located
within Q as depicted in Fig. 6a. Similarly, the field in the
complex region due to sources external to £ can be
expanded using muitipole beams originating outside £ (see
Fig. 6b). With this beam representation we can write

227z ~ Z0p0Zo0 'z (13)

where, Z°2 is the rectangular matrix relating the field on the
smooth surface to the amplitudes 7™ of the multipole
beams radiating from within Q, Z®* is the matrix relating
the incoming field Y™ on Q to the amplitudes I° of
multipole beams associated with the smooth surface, and
Z2™ genotes the matrix transforming V2" on Q into
the amplitudes 7™ of multipole beams radiating towards

its interior. Also in (13), B®¢ designates the Bearn-matrix
of Q defined by

Bnﬂ = onm—lzﬂczcc“ZcQ (14)
where, Z°¢ is the rectangular matrix relating the field V°
in the complex region to the amplitudes I°" of the
muitipole beams radiating into £, Z™ is the matrix
relating the ocutgoing field Va2 on ©Q to the coefficients

I° of basis functions associated with the complex region,

-1 . . .
and Z%" denotes the matrix transforming the V<°" into

the amplitudes I Qout of multipole beams radiating towards
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Fig. 6. [Equivalent situations for (a) the interior and
(b) the exterior of the surface Q.

its exterior. The entire process of computing Vs Al
is illustrated in Fig. 7. In this formulation the scattering
properties of the complex region are fully described in terms
of a Beam-matrix, which relates the amplitudes of the
outgoing beams to the those of the incoming ones. This
formulation is analogous to the T-matrix description of
scattering [16], although, thanks to the local nature of the
multipole beams, the circumscribing surface is not restricted
to be circular as it is in the T-matrix approach. A portion of
the smooth boundary, included in the surface circumscribing
the complex region, is termed a transition region. The
concept of the transition region is analogous to the notion
of the nearest neighbor employed in the fast multipole
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Fig. 7. Schematic diagram illustrating the computation

of the coupling term between the smooth surface and the
complex region.

algorithm of Rokhlin {17), because the field in this region is
computed directly from the equivalent currents of the
complex region. In the direct scheme presented herein, the
interactions between all of the complex regions are taken
into account first using an algorithm similar to the recursive
T-matrix approach [19]. The remainder of the problem is
then solved using the proposed beam formalism that takes
into account the interactions between the complex regions
and the rest of the scatterer geometry, viz., the smooth
boundaries except for the narrow transition regions and
simple regions modeled using the MoM as described in the
previous subsection.

4, NUMERICAL RESULTS

The formulation presented in the preceding section has been
implemented in a versatile computer program. In this
section, we present the computed results for several
scatterers with shapes that gradually increase in complexity.
The accuracy of the proposed method is verified by
comparing our numerical results with those obtained by
using the conventional MoM. Internal validity check is
additionally provided by evaluating the error in the
satisfaction of the boundary condition on the surface of the
scatterer at locations between the match points.

In all of the computations, presented herein, we have
employed the same basic set of multipole beams. We begin
by optimizing the parameters of the multipoles producing
these beams. We displace the multipole centers by r=3A
from the scatterer surface and choose a beamwidth of
W=3.5) as a compromise between a reasonable directivity
and locality of the interaction. For the contour C we choose
a circle 62 in radius for the effective width computation as
in (7). The center of C is offset in the negative x-direction
by 3A away from the multipole origin. For these choices,
we then optimize the remaining parameters by following the
procedure described towards the end of Section 2. To ensure
sufficient oversampling, we choose K =5 and, consequently,
L=3.

The results obtained by following the above procedure are
presented in Table I. The width of the highest order
multipole, with ns =25, was 3.42A and it could not be
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Table .  Multipole parameters optimized for W =3.54,
r=3A, and K=5.

£ Ry a,[A a, (degrees) W, /A

0 0.91 0 349

1 5 0.92 16 349

2 10 0.95 33 3.50

3 15 1.17 57 3.50

4 20 0.58 85 3.50

5 25 0.001 90 3.42

made equal to 3.5A even by letting a; — 0. This was
because, in this case, the effective width is bounded by the
evanescent behavior of the field and not by its directivity
achieved by the complex shift of the origin.

The first problem considered is that of a perfectly conducting
cylinder as depicted in Fig. 3 with R=6A and 2D=nR. This
problem allows us to exemplify the main features of the
CMBA when applied to scattering from smooth perfectly
conducting objects, as discussed in Subsection 3.1. For this
case we used 22 multipole origins each with the same 11
multipoles, with a total of N=242 unknowns, which average
out to 3.2 unknowns per wavelength, which is only slightly
higher than the lower bound derived in the previous section
((2L+1)L-1)=2.75 for L=5). The structure of the resulting
matrix is depicted in Fig. 8. Each column of the matrix is
normalized to unity maximum element. The convex shape
of the scatterer results in a low coupling between distant
sources and matching points, and this is evident from the
sparse and approximately banded structure of the matrix. We
have found that the elements with the absolute value smaller

that 10-3 can be set to zero without any significant loss of
accuracy. The bandwidth of non-zero elements in the matrix
becomes approximately 120 when this is done. In view of
this, we estimate that for a convex scatterer the storage
requirement will only be on the order of 120N, and,
consequently, will result in a reduction of computation time.
The condition number for this example was 321, a very low
value that compared very favorably with those obtained in
the conventional CM method and the MMP. The rms
boundary condition error was only about 0.5%. A
comparison was also made between the scattering cross
section results computed by our method and those obtained
by using the MoM with 800 unknowns. These results are

shown in Fig. 9 for the case of @™ =90°. Complete

agreement between the two also serves as an evidence of the
accuracy of the CMBA.

Next, we consider scattering from a perfectly conducting
square cylinder with a side length of 12A. This case will
illustrate the hybridization of the CMBA with the MoM for
objects with not entirely smooth boundaries, as discussed in
Subsection 3.2. The total number of N=132 multipoles
were distributed between M =12 origins so as to span the



Fig. 8.

Absolute value of the generalized impedance
matrix elements for the case of Fig. 2 with R=6A, 2D=nR.
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Fig. 9. Scattering cross section for the case of Fig. 2

with R=6\, 2D=nR, and @™ =90°.

boundary except for the immediate vicinity of the corners.
To represent rapidly varying fields near the edges we use a
total of 112 pulse basis functions of the z-directed electric
current (Fig. 4). The isotropic radiation of these sources is
clearly reflected in the structure of the matrix depicted in
Fig. 10, where we note that the columns corresponding to
the MoM pulse basis functions are filled with non-
negligible elements outside the main diagonal band. The
scattering cross section results computed by our method are
compared with those obtained by using the conventional
MoM with 480 unknowns in Fig. 11 for the case of

@™ =0°. The accuracy of the proposed method is
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Fig. 10. Absolute value of the generalized impedance
matrix elements for the case of Fig. 4 with L=12A.
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Fig. 11. Scattering cross section for the case of Fig. 4
with R=6A and @™ =0°.

demonstrated by the almost perfect agreement between the
two.

The last problem analyzed involved the geometry depicted in
Fig. 12, with R chosen to equal 6A, L equal to 1A, and d
equal to 14A. The relative dielectric constant £, is set equal
to 4. This geometry is of interest because it comprises a
perfectly conducting surface of the circular cylinder and a
square dielectric cylinder and, thus, can serve as a an example
of scattering from objects with smooth surfaces and complex
regions discussed in Subsection 3.3. Since the
circumference of the cylinder considered was approximately
37, the total number of N=121 multipoles were distributed
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Fig. 12. Scatterer comprising a circular perfectly
conducting cylinder and a dielectric cylinder of square cross
section.
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Fig. 13. Scattering cross section for the case of Fig. 12

with R=6A, L=1A, d=14A, &.=4, and tp““‘ =0°.

between M=11 origins so as to fully span the boundary.
The dielectric cylinder is modeled using the volumetric
discretization [22] with 400 basis functions. The incoming
and the outgoing fields on the fictitious surface € are each
represented using 121 multipoles with 11 origins evenly
distributed outside and inside Q. respectively. The
scattering cross section of the body was computed by the

present method for the case of ¢ =0°, and is compared in
Fig. 13 with that calculated by using the MoM with 800
unknowns, which are split equally between the dielectric and
the perfectly conducting cylinders. The two results
practically overlap with one another.

5. DISCUSSION

A hybrid technique combining the CMBA with MoM for a
full-wave analysis of scattering from bodies of arbitrary
shape and composition has been proposed in this paper. The
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CMBA, provides for substantial computational savings
where smooth surfaces constitute large portions of the
scatterer geometry. Additional savings stem from the use of
the Beam-matrix representation for describing the scattering
properties of complex regions, that require a relatively large
number of unknowns per unit volume. Advantages of the
proposed approach over the existing methods, in terms of
the number of unknowns and conditioning and sparsity of
the generalized impedance matrix, have been demonstrated
for a number of 2D-TM examples. Extensions of the
present formulation to the full 3D scattering [23] are
currently under investigation and the initial resuits look
quite promising. This hybridization of the Complex
Multipole-Beam approach with other conventional methods,
is a versatile tool, and is expected to enhance the scope of
application of the CMBA to a much wider class of
problems.
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