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Abstract

A direct method for the numerical solution of
Maxwell's equations in the frequency domain
(sinusoidal stcady state), for radiation problems of
cylindrical symmetry, is incorporated into a finite
difference program called HERZ, coded in FORTRAN.
The termination of the fields on the outer boundary of
the problem domain is accomplished via an absorptive
layer, labelled a steaith layer, which attenuates the
incident fields to insignificant amounts in a small
computing space, without causing significant
reflections that would disturb the near field solutions.
No radiation boundary condition is specified on the
problem domain, rather, the transmission of the fields
to the stealth layer is optimized by specifying its
electrical properties. To validate HERZ as a useful
electromagnetic modeller for thin wire antennas,
driving point admittances and surface current
distributions for several configurations were compared
to both theoretical and measured values, with good
agreement.
Introduction

In the numerical modeling of radiation problems,
particularly those of isolated thin wire aniennas,
specific radiation boundary conditions allow finite
difference or finite element techniques to be applied
(Ramahi ez al. 1991). The implementation of non-local
boundary conditions such as boundary integral
formulations or moment method techniques is useful
for infinite homogeneous configurations but bounded
methods are typically incorporated in conjunction with
these techniques if inhomogeneities exist, such as in
the case of a dielectrically coated antenna (McDonald
and Wexler 1972, Morgan ef al. 1984, Yuan et al.
1990). Teo avoid the complication of coupling a
bounded problem to an unbounded problem, specific
radiation boundary conditions arec formulated in
conjunction with finite element techniques (Sumbar et
al. 1990).

While finite element techniques allow for very flexible
grid density and are straightforward in their treatment
of inhomogeneites, the complex nodal grids which
must be generated lack the physical transparency and
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simplicity of a finite difference grid system. In this
paper an absorbing layer adjacent to the problem space
boundary is used in place of an explicit radiation
boundary condition. Rather than specifying a radiation
condition to terminate the fields of the antenna, shown
in Fig. 1, on the problem domain, the transmission of
the fields from the problem domain to a lossy layer
enveloping the problem domain is modeiled, as
illustrated in Fig. 2. The problem domain's boundaries
arc then in an interior grid location, as the grid
encompasses both the problem domain and it's
surrounding lossy layer, which will now be referred to
as the stealth layer. The near-field problem can then
be solved at the expense of the far-field solutions,
which will be attenuated in the steaith layer, without
disturbing the field distributions within the initial
problem domain. A related technique for truncating
the solution domain in finite element scattering
problems has been discussed in the literature (Jin et al.
1991, 1992).

This methodology is incorporated into a FORTRAN
program, called HERZ (H field E ficld, R - Z
geometry), which is executed on a Macintosh II
personal computer. The (finite difference
implementation of Maxwell's equations and the use of
the absorptive stealth layer are described in the
following sections.  Several antenna configurations
are modelled with HERZ to validate this approach,
comparing field related values such as driving point
admittances and surface current distributions to
published theoretical and measured resulis.

Finite difference implementation of
Maxwell's equations

Cylindrically symmetric metallic antennas operating in
cylindrically symmetric inhomogeneous materials, with
geometries as shown in Fig. 1, will have simplified
electric and magnetic field oricntations when the
electrical properties of these materials are isotropic.
The electric fields will have radial and axial
components (r,z), and the magnetic fields only an
azimuthal component (@).



The general time-harmonic solutions will be of the
form

E = E¢(r,z)ar + Ez(r,2)4z 1))
H = Hg(r,2)ag. (2)

Assuming an eJ®t time dependence, the integral form
of Maxwell's equations can be expressed as

$E-dl=—jou|[H-dS 3)

and $H-dl =(c+ jwe)[[E-dS . @)
The solution technique adopted uses these integral
equations to form surfaces and contours accommodated
by the finite difference grid structure (Albani and
Bemardi 1974), providing an algorithm to compute the
azimuthal magnetic field component, Hy, at the center
of every gridblock. (3) was discretized to express the
Hy field in a gridblock center in terms of the four E
field values which sumround it, as is displayed in Fig. 3,
the finite difference grid implementation in HERZ.
The resulting lincar equation is of the form

3ij Ezij+bijErij+1 +Cij Eziv1j+
dijErij = ¢ijHgij G)

where the coefficients aj j 1o ¢j j depend on the grid
dimensions Arj and Azj (Nachai ef al. 1992). The
gridblocks have been assumed to be small enough that
the electric field components are constant along each
line segment of the gridblock i,j and the magnetic field
is unifortn over its cross section. In this equation

rHg = Hy'

where r is the radial distance to the center of the
gridblock where Hy is being calculated.

By applying (4) to appropriate surfaces and contours,
the various electric ficld components in (5) can be
written in terms of the magnetic ficlds at the centers of
the surrounding gridblocks. For example, with
reference to Fig. 3, Ezj j can be expressed in terms of
Hyi-1j and Hg-j j by applying (4) to the contour
consisting of two concentric circular paths of radii rj-1
and rj to compute the total axial current (conduction
and displacement) through the enclosed surface. The
equation that results for the magnetic field is

AijHg'ij+BijHyi1j+ Cij Hyinl j+

DijHg"ij-1 +EijHgij+1=0 6
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where the coefficients Aj j to Ej j are given in terms of
the frequency o, the electrical properties ¢, £ and p and
the radial locations and dimensions of the pertinent
gridblocks (Nachai et al. 1992). The discretizations of
(3) and (4) are particularly transparent and easy to
implement because all electric and magnetic field
components are tangential to material interfaces and
the difficulties that can be encountered in handling
inhomogeneous problem domains in three dimensions
do not arise.

Each of the N gridblocks, referred to by indices i,j, will
have an associated equation of the form of (6),
providing the N unknown H fields with N linearly
independent equations, resulting in a determined
system. To completely specify the problem, conditions
must be provided on the problem boundary. Excitation
by electric fields on the grid's outer domain, the
Neumann boundary condition, requires an adjustment
of the LHS of (6), as one of the terms Er or Ez in (5) is
then predetermined. The excitation electric field
appears on the RHS of (6).

Electric field excitation is specified exclusively on the
perimeter of the problem domain, where it may, for
instance, be set to zero to signify the presence of a
perfectly conducting boundary. At all other locations
in the problem domain the electric field excitation is
zero. Magnetic ficld excitation may be applied at the
center of any gridblock by specifying a value of Hy,.

The set of N equations for Hy- represenis a banded
symmetric system which can be stored in the computer
in a compressed coefficient matrix, K. The unknown
values of Hg', and hence Hg, are obtained by Gaussian
elimination. The solution Hy is then used in (4) to
obtain the electric field values on the perimeter of
every gridblock, and simple averaging is used to obtain
the values of the electric fields at the gridblock centers.

Typical grids consist of approximately 75 x 75
gridblocks, with no more than 15 gridblocks per
wavelength. Blocks are chosen with a consideration of
the radiation wavelength, the radius and length of the
antenna being modeled, as well as the gap size used to
excite the antenna.

Incorporation of stealth boundary conditions

As was stated earlier, no radiation boundary condition
was directly applied at the problem domain's outer
surface. Rather, optimal transmission of the fields into
the stealth layer was sought. The tangential electric
field ai the outer boundary of the stealth layer was set
to zero, which is equivalent to bounding the stealth
layer with a perfect conductor.



The transmission of radiation normally incident upon a
boundary is determined by the wave impedances on
both sides of the material interface, with matched wave
impedances providing perfect transmission. To
achieve normal incidence of the radiated wave at the
stealth layer, the surface of the stealth layer should be a
sphere centered at the antenna, with a radius many
times the wavelength. In practice it was found
sufficient to approximate the surface of the sphere by a
cylindrical boundary, as shown in Fig. 2, and rely upon
multiple reflections from the stealth layer 10 minimize
the disturbances to the near fields. The distance from
the center of the antenna to the stealth layer's surface
was set al three wavelengths. A chamfer in the stealth
layer, as indicated by the dotted line in the upper right
hand corner of Fig. 2, was initially used to better
approximate a spherical boundary. Only a small
improvement was obtained, however, at the expense of
a relatively complex design. The chamfer, therefore,
was not used in any of the cases considered in this

paper.

The wave impedance and propagation constant for a
plane wave propagating in a general lossy medium are

jou'—ju")

7
(o + joe) @

and  y=0a+ jB=4joq'-ju" Yo+ jwe) @)

where 7]gtealith = Tproblem domain would maximize
transmission for normal incidence at large distances
from the antenna structure, and Olggealih would define
the attenuation rate in the absorbing layer. While it can
be seen from Fig. 2 that waves will not impinge upon
the stealth layer normal to its surface, it has been found
that choosing the electrical properties to satisfy the
foregoing provides satisfactory results, as exemplified
by the case studies to follow. Given an excitation
frequency, W', L", ¢, and € in the fictitious stealth
tayer were chosen to obtain an impedance match, and
to diminish the field strength to insignificant values in
the allotted stealth layer thickness. When choosing the
parameters ', )", o, and € for the stealth layer, a great
amount of flexibility was found to exist, even when
specifying both the stealth layer wave impedance and
attenuation per wavelength. The stealth layer was
typically one wavelength (15 gridblocks) thick,
measured in the stealth material. For this thickness,
typically substantially less than 1% of the normally
incident power was reflected from the surface of the
stealth layer, and the absorbed radiation was reduced to
approximately 1% of its original value, before
impinging upon the perfectly conducting boundary
which is assumed to bound the computational grid.
Thinner stealth layers with increased attenuation per
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wavelength, or thicker stealth layers with less
attenuation generally also provide satisfactory results.
Our own choice was made for convenience and with a
view to not significantly increase computational times.
For example, in the case of the monopole in free space
® = 100 MHz, p' = 1.0pg, p" = 0.7, ¢ = 0.00389
$/m, and e = 1.0eg in the stealth layer. This maiched
the free space wave impedance and provided 98.8%
attenuation per wavelength.

Simulation results

This section presents some typical results of the thin
wire antenna configurations modeled. Simulation
results are compared to both experimental and
theoretical data. HERZ was impiemented in
FORTRAN using Macintosh Programmer's Workshop
(MPW) version 3.0 on a Macintosh II personal
computer, with an RP88 coprocessor to increase
performance, which resulted in execution times of
approximately six minutes.

Three representative antenna configurations were
considered: (1) A bare coaxially fed moncpole over an
infinite conducting plane operating in a lossless
medium, (2) a bare center fed dipole operating in a
lossy medium, and (3) a dielectrically coated monopole
operating in air. Fig. 4 displays the general
configurations modelled in each case.

To validate HERZ, the surface current distribution and
input admittance for each antenna configuration were
compared to available theoretical or measured values.
The boundary condition for the tangential magnetic
field at the antenna’s surface, nxH = Jg, was used to
determine the surface current I, directly from Hyg =
I/2xr. The driving point admittance was obtained by
dividing the current on the antenna nearest the driving
point by the voltage across the gap at that point,
calculated from JE-dl, where d! is perpendicular or
paralle! to the antenna axis, depending on whether the
gap is coaxial or that of a center fed dipole. Fig. 4
displays the driving points for all configurations.
HERZ calculates the fields at the gridblock centers, so
to find Hy on the antenna's surface, a third-order
polynomial was fitted to the field values in the
neighboring blocks, extrapolating radially to the
surface. The gridblock configuration in the excitation
gaps will be given for each case.

Fig. 5(a) displays the driving point admittance versus
antenna length for the monopole in free space. This
thin antenna, with a/A = 0.0064, and b/a = 1.189, was
excited at 100 MHz. The theoretical curve, as
determined by King {1971, p. 11), was matched very
well by the output from HERZ, for all antenna lengths.
Fig. 5(b) displays the normalized current distribution
along a similar monopole in free space, with h/A = 0.5



and a/A = 0.0254, also excited at 100 MHz. Here,
HERZ agrees closely with the transmission line model
by King (1971, p. 18). For both cases, the excitation
was specified at the ground plane level, assuming a 1/t
coaxial voltage distribution across the gap, with only 2
gridblocks across this region. The formulas used in
King's theory (1971, p. 9) rest on the assumption that a
TEM mode exists at the junction of the coaxial feed
and the antenna, justifying the 1/r excitation used in
HERZ,

Fig. 6(a) shows the excellent agreement between
HERZ's calculated admiitance and Scott's measured
values and King's theoretical results (1981 p. 170) for a
dipole radiating in a lossy medium, with a conductivity
of 5.35x103 $/m, and relative diclectric constant of
6.0. For this trial, a/A = 0.00265, and a/b =0.07, at 114
MHz, where A, o, and B are the wavelength,
attenuation constant, and propagation constant of the
radiation in the lossy medium (Ramo and Whinnery
1967). Examination of Fig. 6{(a) shows that HERZ
provides closer agreement with the measured values
than do King's theoretical results.

King assumed a delta function generator in an
infinitesimal gap in formulating his theoretical curve,
but unfortunately, Scott's gap size is not specified in the
forementioned reference. HERZ utilized a gap size
(1.0 mm) of the same order as the antenna radius (2.65
mm) for this trial, but several other trials indicate that
the gap size is not critical, with results remaining
nearly constant for all gap sizes less than the antenna
radius. The critical factor in modeling the gap was the
number of blocks employed, with four radial and three
axial blocks sufficiently representing this sensitive
region for the trial represented, as the good results
indicated. As the number of gridblocks in this region
was decreased, the admitiance results deviated from
Scott’'s measured values, but increasing the number of
blocks increased the simulation run time, while having
insignificant effects on the simulation results. The
normalized current distribution for this antenna
configuration was also determined using HERZ, for an
antenna of length Bh = 0.315. Fig. 6(b) shows the
simulation results versus both Scott’s measured values
and King's theoretical distribution (1981, p. 165).

Experimental results for dielectrically coated antennas
by Lamensdorf (1967) were used to verify HERZ in
this capacity. Figures 7(a} and 7(b)} display
Lamensdori's measured input admittance for a
monopole operating in free space at 600 MHz with 2a
= 6.35 mm, 2b = 19.05 mm, and D/2a = 3.74, for two
different dielectric coatings, € = 9.0 and g = 15.0.
Both dielectric coatings were modeled with
conductivities of 0.001 S$/m. This value was chosen to
best represent the non-specific value of ¢ < 0.001 S/m
provided in the Lamensdorf publication. HERZ's

81

simulation results replicate the shape of Lamensdorf's
measured distribution, providing a reasonable overall
match in both cases. Unlike the monopole previously
modeled, in which a TEM coaxial field distribution
across the gap could be assumed, the coaxial line was
modeled to best represent the actual fields across the
gap at the ground plane level. The number of radial
gridblocks used to model the coaxial line feeding the
antenna depended on the ratio of the outer to inner
coaxial radii, b/a. The previous monopole modeled had
a b/a value of 1.189 so two grid blocks 1o represent the
gap were sufficient. In the present example, b/a = 3.0,
and trial and error indicated that six radial gridblocks
were optimal in modeling the gap. TEM excitation was
applied at one eighth of a wavelength of the coaxial
line below the ground plane. This length of line was
modeled in ten axial gridblocks. HERZ's current
distribution on a similar antenna configuration with 2a
= 6.35 mm, 2b = 19.05 mm and ¢ = 0.0032 S/m, but
with D/2a = 8, is displayed in Fig. 7(c} along with
Lamensdorf's measured values. The agreement is
reasonable, but not as good as in previcus cases. This
may reflect the difficulty of modeling a larger coaxial
gap than previously considered, or the inhomogeneity
associated with the long dielectric coating.

Additional antenna configurations, radiating into
materials ranging from air to highly lossy, were tested
along with those cases considered in this paper.
Similar agreement with theoretical and measured data
was obtained. This agrecement was generally
comparable to or better than that achieved earlier with a
finite element program utilizing radiation boundary
conditions (Sumbar et al. 1990).

Conclusions

The use of siealth boundary conditions in the finite
difference simulation of simple antenna problems
appears to be very effective. The method is physically
very transparent and the simplicity of the finite
difference grid structure permits easy realization of the
antenna configurations. The methodology was tested
for a monopole in free space, a dipole in a lossy
medium, and a dielectrically coated monopole in free
space. In all cases, results agreed well with published
theoretical and experimentally measured values.
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Figure 2
The outline of the finite difference grid system used to model the problem domain and stealth
layer. All boundary conditions are specified on the outermost boundary, as indicated.
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Figure 3

The finite difference grid stucture used in HERZ. All magnetic field components are
azimuthally directed and represented at the block centers, while the electric field
components are represented on the block boundaries.
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Figure 4
Three antenna configurations modelled with HERZ
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Figure 5(b) Monopole in air

The normalized current distribution
for a monopole on a conductive plane
radiating into a lossless medium.
Theoretical data published by King
(1971, p.11) is nsed to validate HERZ's
calculated values.
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Figure 6(a) Dipole in a lossy medium

The driving point admittance versus
antenna length for a dipole operating

in a lossy medium as measured by Scott,
theoretically determined by King (1981,
P. 170), and calculated with HERZ.
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Figure 6(b) Dipole in a lossy medium

HERZ's normalized current distribution
for a dipole radiating into a lossy
medium is compared to theoretical
data by King (1981, p.165) and the
measured values by Scott.
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Figure 7(a) Dielectrically coated
monopole in air

The driving point admittance versus
antenna length for a dielectrically
coated monopole in air as measured
by Lamesndorf (1967) and calcualied
with HERZ,
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