PARALLEL IMPLEMENTATION OF THE NUMERICAL
ELECTROMAGNETICS CODE

D.C. Nitch and A.P.C Fourie
Department of Electrical Engineering
University of the Witwatersrand
South Africa

ABSTRACT

NEC2 is a 10 000 line, public domain, FORTRAN IV program for ¢lectromagnetic analysis. This program

has been

adapted for use on transputer networks of various dimension. The FORTRAN code has been modified and translated
into OCCAM where necessary. Parallel algorithms were developed and implemented for each NEC2 function in order
to optimise efficiency. Execution efficiencies in excess of 80% were attained.

1 INTRODUCTION

The Numerical Electromagnetics Code NEC2 (Burke,
1981a, 1981b, 1981¢) was originally intended to run on
Mainframe computers but has recently been ported to run
on personal computers (PC). The main problem with
running NEC2 on a PC is that it is exceedingly slow and
insufficient memory limits the size of structures that can
be analyzed. Stellenbosch University (Le Roux, 1988)
compiled NEC to run on a single TB00 INMOS transputer
and showed that this ran much faster than the PC version.
NEC2 was later extended (Nitch and Fourie, 1920) to run
on a fixed 16 transputer network with only two of the main
algorithms rewritten to execute in parallel. The following
disadvantages were apparent:

+ The matrix was returned in full to the host transputer
which meant that problem size was limited by the
memory on the host transputer.

= Many algorithms were still sequential.
+ The transputer network was of fixed dimension

This paper presents solutions to these problems. It is
acknowledged that the transputer (T800) is quite an old
chip and is relatively slow. The parallel algorithms dis-
cussed in this paper, however, may also be applied to
contemporary distributed-memory parallel processing
machines.

2 BACKGROUND TO NEC

Structures are modelled by wire segments with options to
include sources, loads and networks. These structures may
be analyzed in various environments (free space, ground
etc). Essentially NEC calculates the interaction between
the N wire segments making up the structure and hence
obtains an NxN matrix. An excitation vector is thea
calculated as a function of the sources. Solving this matrix
equation yields the currents on each segment in the
structure. Mathematically this may be expressed as .

51

[Z, Zyp, .o Zy) [N TE)]

Zn Zzz Zzn Iz Ez
x -

_Zm sz ZNN. .IN. .EN.

where Z;; is the interaction between segment / andj and
is a function of the wire geometry
I, is the current on segment i, which is obtained by
solving the equation.
E,is the excitation on segment i which is calculated
from the specified sources.

Once the currents on the segments are found, other
electromagnetic characteristics such as electromagnetic
(EM) fields may be found.

The sequence of possible events carried out by the

program is as follows:

+ ‘The structure geometry is read from a file

e The Z-matrix is filled by calculating the interaction
between segments. This requires N operations each
of which involves numerical integration.

» The Z-malrix is factorized which requires N° simple
operations.

+ The E-vector is calculated from the sources.

+ Solve for currents which requires N simple oper-
ations.

» The effect of I networks are found by / solve oper-
ations on the Z-matrix and modifications of the
E-vector.

» Asingle EM ficld value is calculated by summin% the
effect of the structure currents at that point. Thi
involves MN operations for M field points.

NEC allows structure symmetry to be ¢xploited in order
to reduce computational effort for filling and factoring the
matrix. This involves alteration to the fill, factor and solve
of the matrix which will be discussed in more detail.

3 PARALLEL ARCHITECTURE AND
COMMUNICATION

The transputer (INMOS, 1989) is a sin%le chip micro-
processor with 4 communication links for direct com-
munication to other transputers. The general architecture
used for the parallel implementation is shown in Figure
1. It should be noted that this architecture may be gen-
eralised for processors that have more than 4 communi-
cation links.

CLUSTERO

:_I;g ﬁ":ﬁ'ﬂ

ot
LB

Figure 1: The transputer network.
The reasons for choosing this architecture are :

= the path from any r to any other processor in
the network is minimized when compared to other
networks investigated (various meshes, hypercubes
elc.).

o the algorithm controlling the communication is
simple.

» extending or reducing the network dimension is easy.
This extension or reduction may, in most cases, be
achieved by adding or removing single processors
from the network.

Three general communication strategies were required:

+ Broadcast from host to network.

* Send from all transputers to host.

+ Broadcast from any transputer to the rest of the
network.

TO CLLBTER 1

52

Each transputer has knowledge of the network size and a
number identifying its position in the network. From this
information it is possible to deduce the network inter-
connections for any processor. All unconnected links are
ignored when executing the algorithms described below.

3.1 Broadcast from host to network.

All transputers wait on link O for a message. Upon

receipt:

» the main transputer on a board whose identity is
(proc.id REM 4 = 0) sends the message on links 1
to 3. {The variable proc.id is the number identifaing
the processor in the network, whilst the
function calculates the remainder of the division of
proc.idand 4.)

» otherwise if the is not the main transputer
on a board, then send out to next board or cluster if
connected.

3.2 Send from all transputers to host

Al transputers send their own message out on link 0.
Transputers listen on links 1 to 3 for messages which
will be routed through them and passed on through link
0.

3.3 Broadcast from any transputer to
network

The broadcasting transputer sends its message on all
four links. Other transputers redirect the message in the
following way:

« If the broadcaster is on the same board as the
receiver then only redirect to other boards or
clusters

» If the broadcaster is not on the same board as the
receiver then the receiving r redirects the
message fo the rest of the s on its board
and to connected clusters (not other connected
boards).

4 IMPLEMENTATION OF PARAL-
LEL ALGORITHMS

4.1 Matrix filling

Inherently the matrix filling requires each transputer to
have knowledge of the structure and the environment
in which it is situated. This information is broadcast
from the host to the transputer network. This enables
cach transputer to calculate any matrix element inde-
pendently of other transputers. It is important to decide
on which part of the matrix each processor should fill.
The following points require consideration :

* Each r should calculate approximately the
same number of matrix elements.

« Each processor should calculate that part of the
matrix which it requires for later operations. The
reason being that the matrix occupies a large portion
of the memory and hence it is difficult to reshuffle
efficiently. In the previous implementation (Nitch
and Fourie, 1990), the matrix was returned to the
host for reordering. This method obviously did not
make efficient use of the distributed memory.

The matrix was filled by rows because:

¢ both column and row distribution reduce the
communication overhead during matrix factoring
when compared to the overhead when the matrix is
divided into blocks.

» later factoring of the cyclic block matrix (as a resuit
of structure symmetry) requires that it be in row
form to reduce communication overhead.

Wrap mapping of rows was employed for load bal-
ancing in the factoring algorithm since the diagonal
elements of the Z-matrix were generally the largest.

4.2 Matrix factoring

The matrix in NEC is solved using Gaussian elimination
with back substitution. The parallel implementation of
this algorithm was based on the algorithm nted in
a paper by Giest and Romine (1988) and is shown in
Figure 2.

FORk=0TOn-1
determine pivot row using parallel search
update permutation vector
Iﬁ' (I own pivot row)
broadcast pivot row
ELSE
receive pivot row
ENDIF
FOR (all rows i>k that I own)

I"t .= a,J 2%
FORj=k+1TOn-1
= ay-

ENDFOR
ENDFOR
ENDFOR

Figure 2: The parallel algorithm presented by Geist
and Romine.

Where [is a temporary vector housing the pivot col-
umn.

Implementing this algorithm on a network of transputers
requires that, for good load balancing, the rows of the
matrix are wrapped onto the rs (i.e for a
network of 1§jgrowssors the first processot should have
rows 1, 17, etc the second should have
rows 2, 18, 34 and so on). The reason for the wrapped
row mapping is that once a processor has operated on
the pivot column (column k), row k is not used in any
calculation for the completion of the algorithm. The

work load of the processor is therefore reduced. Thus
to ensure that the rs each have equal loads
throughout the execution of the algorithm, a wrapped
row mapping is employed.

The communication between during the

computation involves only the broadcast and reception
of the pivot column.

4.3 Matrix solve
Consider the lower triangular linear system
Lx=b

where L is a lower triangular matrix of order n
b is the right-hand side vector of dimension n
x is the unknown solution vector

The serial solution of this system may be represented
by the code

FORi=1TO n
FOR j=1T0 -1
b,' = b'- - .t,LU
ENDFOR
X= bJLj'
ENDFOR

Parallel matrix solve algorithms have been developed
by Guangye and Coleman (1988), and Heath and
Romine (1988), and others. The matrix solve routine
used in this implementation was based on an algorithm
presented by Heath and Romine (1988) and is shown
below :

FORj=1TOn
IF (I have row j) THEN

EnpI

fan-out Sx, map(j))
FOR (all rows i>] that own)

The function map(j) relates a processor 1o the row j.
Thus the line fan-out (x, map{j)) sends the message x;
tc the processor with row j.

4.4 Field calculations

Given below is the sequential code used in NEC for the
far field calculation.

FOR phi = 1 TO noOfPhiPoints
FOR theta = 1 TO noOfThetaPoints
FORi=1TON
calculate field at (phi,thetz) due to current

vectorially add field at (phi, theta)
ENDFOR
write out field at (phi, theta)
ENDFOR
ENDFQOR

At the end of a single pass through the inner loop, the
results are written to disk.

4.4.1 Field calculation code for the
network processors

There are anumber of ways one can split up the nested
FOR loops for execution in parallel. Either the phi,
the theta or both loops may be divided amongst the
processors. The number of theta and number of phi
points are not necessarily the same for cach radiation
pattern request. Thus splitti;ltg the phi or theta loops
could produce very poor performance figures.

The method that is employed finds the total number
of radiation points for the field calculation and hence
reduces it to a single loop. These points are divided
amongst the processors and each processor finds the
field at these points. Implementing this method
requires the decoding of radiation pattern point
number to the (theta, phi) point in space.

FOR points = 1 TO noOfPhiPoinis*noOf-
ThetaPoints

calculate phi

calculate theta

FORi=1TON

calculate field at (phi,theta) due to current|
i
vectorially add field at (phi, theta)

ENDFOR

write out field at (phi, theta)
ENDFOR

Splitting the loop amongst transputers in order to
achieve parallel execution has some difficulties. The
transputers in the network do not have access to disk
and memory will be wasted if all the fields are stored.
The loop must hence be further subdivided such that
a specified number of fields are calculated before
information is relayed to the host.

An algorithm employing this subdivision was
developed for the transputer network.

54

4.4.2 Field calculation code for the
host processor

The principle behind the algorithm for the host
processor is as follows :

FOR i = 1 TO noOfGroupsOfPoints
request network to find radiation pattern
for

up of points

OR p = 1 TO noOfProcessors

FOR j = 1 TO noQfPointsPerProcessor
receive radiation pattemn
write result to disk

ENDFOR
ENDFOR
ENDFOR

‘The deficiency in this algorithm is that it has two main
serial components. The first is the request to the
network to find the radiation pattern for a group of
points and the second is the writing of the results to
disk. Thus the network waits for the host to write the
results to disk before computing the next set of fields.

This serial component can be masked by buffering
the radiation patterns received from the host. A
request to find the next set of radiation pattern points
may be made before writing the present results to disk.
Thus at the expense of memory, the parallel execution
can be sped up. An algoritbm employing such a
buffering scheme was implemented in the parallel
NEC.

4.5 Networks

Networks are evaluated in NEC through the use of a
small network matrix with dimension equal to the
number of networks.

The following steps need to be performed for the
networks in the structure:-

Generate the RHS vector of the network matrix]
equation (Step a)
Fill neswork matrix (Step b)
FOR i = 1 TO noOfNetworks

Solve the Z-matrix to get a modification vector
(Step c)

use modification vector to adapt network matrix]
(Step d)
ENDFOR
Factor the network matrix {Step ¢)
Modify RHS of network matrix equation (Step f)
Solve network equations for voltage across ports of]
those networks without voltage soures. (Step g)

The computationally time consuming portion of this
solution is filting the network matrix (steps b, ¢ and d).
Steps a and b are carried out by the host while the
transputer network is filling and factoring the Z-matrix.
Step c requires the use of the factorised Z-matrix to find
the modification vector. While ¢ is performed in parallel
on the network, d can be made to execute concurrently
on the host.

Armranging the code in this manner enables the host
processor and the network to work in parallel. First, the
host processor fills the network matrix while the net-
work fills and factors the much larger Z-matrix. Then
the network finds the modification vector (using the
parallel algorithm for solving discussed before), while
the host r uses a previously computed
modification vector to update the network matrix. Using
this technique the time required to fill the network
matrix is approximately equal to the time required to
find the modification vectors.

The remaining steps are comparatively fast. There is
little point in factoring the petwork matrix on the
transputer network since the matrix is generally of small
dimension (30x30) and the efficiency of the network
when factorising such matrices is low. The solution of
a matrix of this dimension is not very time consuming.

4.6 Cyclic Block matrices

Memory and Computation time is saved when the
structure being simulated is symmetric. The time
required to fill the matrix is reduced since only the
interactions between those segments in the first sym-
metric section and the structure are calculated. Hence
the filling routine is simplified to :

FOR i = I TO noOfSegs
FORj=1T0 noOfgegsInSym.S'ection
find interaction berween segments iand j Le
Zy
ENDFOR
ENDFOR

The resulting matrix is structured as shown below.

i E,]
1, E,
[A, A, Ay x|’ |= '
.INJ .EN.

55

where [Z, Z, .- Zy]

Zs, Zgy ..o Zg
and s is the number of segments in a symmetric
section.

The solution of this system of equations is accomplished
using the following steps:

« Each submatrix is combined using the formula
" :
A.’ - E SaAp
k=l

where A, is the i* submatrix.

S, are factors calculated according to the
type of symmeiry.
M is the number of submatrices

e Each submatrix is factored.

« The excitation vector is filled in the normal fashion.

+ Fach submatrix equation is solved.

e The resulting solutions are combined using

M
I = 3 S,/, to find the currents on the segments.
kwl

whete [, is the solution to the i* submatrix equation.

Execution of these steps in parallel may be considered
in two sections, namely, the filling and the solution of
the submatrices.

The filling of the matrix is split up by asking each
processor in the network to fill specific rows. It is
important that processors fillrows of the Z-matrix, since
the formula used to combine the submatrices operate on
the rows of the submatrices. Thus, once the matrix has
been filled, each processor can combine the elements
of its portion of the submatrices without having to
communicate with other processors.

Solving the submatrix equations is accomplished by
sequentially factoring and solving each of the submatrix
equations on the network. The resulting solutions are

M
then combined usingl; = 3 S,J, to give the currents on
k=l
the structure.

5 PARALLEL PERFORMANCE

In assessing the performance of an algorithm on a network
of transputers, it is useful to compare the time taken to
complete the task on the network to the time taken on one

. Thus in gauging the performance of the parallel
g% the efficiency and speedup of the computation were
calculated.

Efficiency and speedup are defined as follows :-

. timetakentocompletetaskonone processor
Mficiency = {(timetakentocompletetaskon p processors) x p
timetakentocompletetaskonone processor

timetakentocompletetaskon p processors

Speed Up =

where the time taken to complete the task on p processors
is made up of the time spent communicating between
processors and the time spent doing the computation.

Calculating theefficiency andspeedup of the paralle] NEC
requires the times for simulating problems on both asingle

r and on the network. Since full use of the
distributed memory is used in the simulations, a single
transputer with the same amount of memory as the
network should be used. However, a r with this
amount of memory was not available. It is possible to
predict the time that it would take for a single processor
to do asimutation. Thus the efficiency and speedup graphs
use some predicted values. |

Graph 1 shows the times taken to simulate structures of
various electrical size on processor networks consisting
of 4, B, 12, and 16 processors.

800

500
400

300 1

Time (&)

200

100 o

o T T T T T Y g
100 200 300 400 500 800 700 800 900
Numbar of Segments
+ 12 Processorns + B Processorn
4 4 Processors

Graph 1 : The times taken to simulate structures of
varying electrical size.

Graph 2 gives the efficiency of the transputer networks
and graph 3 gives the speedup of the simulations.

56

=

700 800 900

Efficlency (%)
3

400 500 OO0
Number of Sagments
+ 12 Processors + B Procossors
B 18 Processors 4 4 Processors

Graph 2 : The efficiency of the transputer network.

18
15 1
14 1

100 200 300

Speedup

7 9
8
5
FE

34—

2
1 4

] v T ¥ T v v v

100 200 300 400 S00 @O0 700 800 900
Number of Segments

+ 12 Processors + 8 Proceasors

s 18 Processors & 4 Processors

Graph 3 ; The speedup of various transputer networks
for structures of varying electrical size.

5.1 Radiation Pattern Performance

Analysis of the performance of the transputer network
when calculating radiation patterns is difficult since
there are many factors influencing the performance.
These factors include :

the number of radiation pattern points requested.
the number of segments in the structure.

the number of in the network.

the number of points returned to the host at a time.
the speed of the disk.

When computing a large number of radiation pattern

ints for a structure consisting of a few segments there
1s a bottle-neck at the disk since the network calculates
the points faster than they can be output to disk.

* ¢ &+ 2+ @

The performance of the far field algorithms are illus-
trated in graphs 1 and 5. Graph 4 shows the time required
to find a number of radiated fields on structures of
varying dimension on 16 processors. Graph 5 gives the
efficiency of the process.

B &% 88 8 35

500 1000 1500 2000
Number of Radiation Points
+ 400 Segments = 800 Ssgments
e 200 Sagments 4 800 Sepmants

Graph 4 : The time required to find a radiation
pattern on a 16 processor network.

100
B
m-w‘/—-ﬁ o
m-
£ o]
g m-‘
g5 e
u-
“-
u-
80 T T
600 1000 1500 2000
Number of Radiation Poirts
+ 400 Segments + 600 Sagments

8 200 Segments & BOO Segments

Graph 5 : The efficiency of the radiation pattern
calculation on a 16 processor network.

6 CONCLUSION

The speedup attained by the transputer network indicate
that it is possible to significantly reduce the executiontime
of NEC by distributing the program onto a network of
processor and executing the code in parallel. Full use of
the distributed memory was made by careful consideration
of the operations to be performed on the largest data
structure (the interaction matrix).

7 REFERENCES

Burke G.I., Poggio A.J. (1981a) "Numerical Electro-
magnetics Code (NEC2) - Method of Moments; Part I :
Program Description - Theory”, San Diego : Naval
Oceans Systems Center, Tech Doc 116.

Burke GJ., Poggio AJ. 5'1!981b) "Numerical Electro-
magnetics Code (NEC2) - Method of Moments; Part I :
Program Description - Code”, San Diego : Naval Oceans
Systems Center, Tech Doc 116.

Burke G.J., Poggio AJ. (1981c) "Numerical Electro-
magnetics Code (NEC2) - Method of Moments; Part 11l :
Program Description - User Guide”, San Diego : Naval

Oceans Systems Center, Tech Doc 116.

Giest G.A., Romine C.H. (1988) "Parallel LU Factoriz-
ation”, SIAM J. Sci. Statist. Comput, Vol9, Nod,
pp.639-649.

Guangye L., Coleman T.F. (1988) " A Parallel Triangular
Solver for a Distributed Memory Multiprocessot”, SIAM
J. Sci. Statist. Comput., Vol.9, No.3, pp.485-502.

Le Roux 1J. (1988) "Numerical Electromagnetics
Computation using the INMOS T800 Transputer on an
Olivetti M24 Personal Computer”, Applied Computa-
tional Electromagnetics Society Journal and Newsietter,
Vol3, No.2, pp.88-94.

Heath M.T., Romine C.H. (1988) "Parallel Solution of
Triangular Systems on Distributed Memory M\ﬂﬁxo—
cessors", SIAM J. Sci Statist. Comput, Vol9, No.3,
pp.589-600.

Nitch D.C, Foure AP.C. (1990) "Adapting the
Numerical Electromagnetics Code to Run in Parallel on
a Network of Transputers™ ACES Journal, VolS, No.2,
pp-76-86.

