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ABSTRACT. Different surface integral equations are
presented for two-dimensional composite objects. The objects
consist of impedance bodies partially coated with dielectric
materials. In all of the formulations, the impedance
boundary condition is applied on the impedance surface to
reduce the matrix size in the numerical solution. The
integral equations are reduced to a system of linear
equations via the point matching technigue. Application of
the point matching technique is straight forward for two
dimensional objects. Because of this surface discontinuities
can be treated easily without the problems encountered when
using triangle basis functions as a result, consideration of
two-dimensional objects gives a clear picture of the accuracy
that can be obtained using these formulations. Two of the
formulations discussed herein overcome the problem of
internal resonance. The numerical solutions are verified
either by comparison with the analytical solutions for
cylindrical objects or by applying self consistency tests for
targets without analytical solutions.

1 INTRODUCTION

Recently, interest has been renewed in using the impedance
boundary conditions (IBC) in the solution of electromagnetic
scattering problems. Use of the IBC can simplify the
solution of the many complex electromagnetic problems for
which it is valid. However, composite objects of complex
structure, in terms of both material type and geometry, are
difficult to treat using the IBC because the IBC is often not
valid or all object surfaces. Using the exact boundary
conditions to solve these problems is uneconomical and
requires complicated programming when compared to a
method incorporating the IBC.

The IBC is a valid approximation under certain conditions
[1-4]. The problem of extending the IBC for use on
surfaces where use of the standard IBC would usually be
considered questionable has been investigated to some
extent. Generalized impedance boundary conditions were
proposed in [5] and [6] for this purpose. Unfortunately, use
of these generalized impedance boundary conditions comes
at the expense of considerable analytical complications and
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requires specialized researchers to treat each new geometry.

An alternative to using generalized impedance boundary
conditions is to use the usual IBC only on surfaces where it
is valid. Since IBC is a localized approximation, it can be
used on surfaces where it is valid and the exact boundary
conditions can be used on the rest of the object [7]. In a
practical sense, the IBC can be used for any surface type for
which the surface impedance can be determined. In cases
of rapid spatial variation of the surface impedance,
knowledge of the derivative of the surface impedance is also
required. In numerical solutions the surface impedance must
be slowly varying to allow for proper piecewise
approximation on the surface segmentation. The idea of
using both the impedance boundary condition and the exact
boundary conditions in a single formulation leads to a
technique that is both accurate and efficient.

In this paper such a technique is implemented for two-
dimensional (2D) scatterers. Here, four different surface
integral formulations are implemented for two-dimensional
problems. The method of moments using the point matching
technique is then used to reduce the integral equations to
matrix equations. The separation of the two transverse
polarizations in the 2D problem and the ability to easily
implement point matching in the numerical solution of the
2D problem (and s0 to treat surface discontinuities) will
lead to a more complete understanding of the limitations
imposed on this technique than is possible with three-
dimensional implementations.

2 FORMULATION

Consider the general geometry of a two-dimensional
scatterer consisting of an impedance body that is partially
coated with dielectric as illustrated in Fig. 1. The impedance
body has known surface impedance and the diclectric
coating is linear, isotropic, and homogeneous. TFor this
geometry, there are three distinct regions: V, constituting
the impedance body, characterized by surface impedance 7,;
V,, the exterior of the scatterer, characterized by the
permittivity and permeability of the free space (g, jo); and



V,, the dielectric region, characterized by the permittivity
and permeability (g, p,). The excitation is an

Eq=Ei+E8, Ho=Hi+H? v
0
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Original Problem

Fig. 1 Geometry of the Original Problem

electromagnetic plane wave of incident fields F and H'. The
total electric and magnetic fields in region V, are denoted by
E, and H,, respectively. In V, the total fields are not of
interest and have therefore been assumed to be zero for
convenience. The region V| is bounded by §, the boundary
surface between V, and V,, and 5, the boundary surface
between V, and V,. The region V, is bounded by §*, the
boundary surface between V,and V, , and §°. The normal
unit vector A on the surface S points into the region V,

and out of the region V,. On the surfaces S* and §%, 4
points into region V, and out of regions V, and V,.

The equivalence principle is applied to create the two
auxiliary problems shown in Fig. 2 [7]. The first (Fig. 2a)
is the exterior equivalent problem that is electromagnetically
equivalent to the original problem in region V. The second
(Fig. 2b} is equivalent to the original problem in region V,.

In the TM case the equivalent electric currents J, J*, and

Exterior Bquivalence
® ®

Fig.2 The equivalence problems
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J are all axially directed and the equivalent magnetic
currents M?, M*, and M are circumferentially directed.
Using this fact the equivalent currents can be written in the
following form:

on 57 (1)

J‘l =qu£

Me=M*tF onS* 2

where g represents +, -, or d, £ is the unit vector in the

z direction and # is the unit tangent. The unit tangent is

defined by the equation

“tx A ®

In the zero field regions, the constitutive parameters are
taken to be the same as in the non zero field region, so that
the equivalent currents in Figs. 2a and 2b radiate into an
unbound|ed homogeneous medium.

To formulate integral equations, the impedance boundary
condition is applied on the surfaces § and S* and the
continuity of the tangential components of the electric and
magnetic fields on §* is enforced. These boundary
conditions are expressed as

E|l_ =7_n,(&8 X H) onS§ )
E|_ =19 1m (A X H) onS* ®
E|, =E[}, on §° (6)
and
AxH =axH, on 8¢ M

The quantities 5y, %. and %, are the intrinsic impedance of
the free space, the normalized surface impedance on §* and
the normalized surface impedance on §* respectively (. and
3, are normalized by 4,). Equations (4) and (5) imply that
the tangential components of the electrical field can be
expressed in terms of the tangential components of the
magnetic field. In terms of the corresponding equivalent
magnetic and electric surface currents,



M =y J, X R =nJ; ¢ ®

and

M =g J. X A=t} L)

To account for different formulations, the integral tions
obtained from (4) and (5) may be rewritten as follows [7]:

2 E|l.=8 12 (AXH) ons (10)

To

2 E|, =8 17 AX%XH) ons* (11)
%

where o and 3 are, respectively, the combination parameters
weighing the EFIE and MFIE just inside the surfaces S* and
S. Thus different field formulations can be obtained by
using (10) and (11), with different selections of o and £,
together with (6) and (7). Equations (6) and (7) represent
the PMCHW boundary condition on §*. These formulations
can be obtained according to Table 1.

Table I

Generation of different formulations

Formulation type a i}
1. IBCE-PMCHW 1 0.
2. IBCH-PMCHW 0. -1./q¢c
3. IBCC-PMCHW <1 -l./n
4, IBC-PMCHW 1. 1.

In Table 1, 5, stands for either n, or y.. In the first two
formulations, IBCE and IBCH imply that E- and H-field
boundary conditions are applied, respectively, just inside the
impedance surface with the implementation of the IBC
approximation for the magnetic current, whereas PMCHW
implies that the continuity of the tangential field components
is enforced on the dielectric surface §°. In the third
formulation IBCC denotes the combination of IBCE and
IBCH on the impedance surface. In the fourth formulation,
IBC implies that the IBC is applied on the impedance
surface. Indeed, still other formulations may be obtained
when the Muller formulation is applied on §” instead of the
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PMCHW formulation [8].

The currents of (1), (2), (8) and (9) give rise to TM fields
only. Using this fact equations (10), (11), (6), and (7) can
be reduced to scalar integral equations and written as

%{EH D) +n.m E,, UTDE, (JH+E M5]
1]

-Bn.[H,U) +n.1,H, ;1) + H, JH+H, M)
12
=0 on S az)

—qE[Eu, U010 Ey, U1 +Eo (U +E(M5]

L]

+ @0, [H, J) +n,.H, G D+H, (J+H, M)
(13)

= ﬂg Ez‘ -BﬂJ»H:i on §*

o

ni[Eﬂz UD +n.meEy, U E, U) *nnE 0D
e

(14
+E_(JH+E, (J) + E,, (MY+E,_ (M)
=1 E; on §°
Mo

H, () +9.m Hy, 0D +H ) +pnH D)
TH,J5+H, JH+H, MH+H, M5 19

= H/ on S§°
where
H=H-+1 (16)
and
E =E -2 an

The operators E, (J), E (M), H(J), and H (M) are
determined using the following equations:

E, UD=kn, [ I76) 8,60.0") I (18)



E, (MD=-2-Vx [ MIG) g ) dl! 9

H Jp=is vx [ JIG") 8.0 dl (20)

B, (M0 =i+ 9 XV [ M G)8,06.0) I BD

» iy

where
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' 1 o ’
, = — Hy" (k, |p- ,
g, p’) v s (%, le—p"|)

k = w‘/u,e, , and = ypfe, . In the expressions above
g, and €, are the permeability and permittivity of regionV,
and H? is the Hankel function of second type and zero
order. In Equations 18 through 21 the contour integral is
evatuated on the contour that results from the intersection of
$*, § or § with the x-y plane. These contours are referred
to as S*, § or & in the context of a two-dimensional body.

The contour integrals proceed in the 7 direction. The
vector p is a vector in the x-y plane that identifies the field

point. The vector p’ identifies the source point.

Equations (12) to (15) are specific to the TM incident wave
case. In the TE case the equivalent electric currents J¥*, J*,
and J* are all circumferentially directed and the equivalent
magnetic currents MY, M, and M’ are axially directed. The
TE polarized case is completely dual to the TM case.

The scattered field can be calculated in the exterior
equivalent situation from the currents J*, J¥, and M®, In
equation form this is expressed as

EXp.d)=n.n EQ(D+EJ)+E(JH+EMYy @)

3 NUMERICAL SOLUTION

To solve the surface integral equations, the contours of the
scattering body are divided into a number of linear zones.
The end points of the zones lie on the actual contours of the
body. The length of the zones is taken to be less than one
tenth of a wavelength. The currents are expanded in pulses
basis functions multiplied by to-be-determined coefficients.
The point matching technique is employed to reduce the
integral equations to a system of linear equations following

a5

the procedure given in [9]. Using point matching and pulses
basis functions allows for accurate representation of the
currents at surface of the discontinuities. Accurate
representation of the currents is particularly important at the
junction [10] between the dielectric surface and conducting
or impedance surface. Equations (18) to (22) are reduced
to a standard matrix element form and are placed in the
proper location in equations (12) to (15) to obtain the
moment method matrix. The solution of the matrix
determines the current coefficients on all of the surfaces of
the scattering body. These coefficients are then used to
obtain the far scattered fields. The expressions used to
calculate the matrix elements and the scattered fields are
given in [9].

4 RESULTS AND DISCUSSION

The numerical solutions of the four formulations defined in
Table [ are verified in this section. First, circular
cylindrical bodies are considered. The series solution of an
impedance cylinder coated with a linear and homogeneous
dielectric layer of uniform thickness is used to verify the
numerical results. Fig. 3 shows the normalized bistatic
scattering width (¢/\) from an impedance cylinder of 4.=0.5
and ka=3 coated with a dielectric layer of ¢,=4.0 and
#,=1.0, from ka=3 to kb=4, The agreement between the
numerical solution of all the formulations and the series
solution is satisfactory for both TM and TE polarizations.
The IBCE-PMCHW and IBCH-PMCHW formulations will

¢ Exact
10§ -—--= IBCE-FPMCHW
—-— [BCH-PMCHW
5F -« = IRCC-PMCHW
— — I[BC-PMCHW

60 ‘ 120
QO
Fig. 3Bistatic scattering width of a coated impedance
circular cylinder, ka=3, kb=4, ¢,=4, p,=1, and n.=0.5.
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fail when the impedance core is at resonance. To illustrate
this failure, one specific example is presented. The case of



a circular impedance cylinder coated with a uniform
dielectric layer, with ka=2.71, kb=3, ¢ =2, i, =1, and 7.

25 ¢
; o+15dB —— Exscl

20 £ -~~~ IBCE-PMCHW
] —-——- IBCH-PMCHW

15 E - - —~ IBCC-PMCHW
! ~- - IBC-PMCHW
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Fig. 4 Bistatic scattering width of a coated circular
cylinder, ka=2.71, kb=3, ¢,=2, u,=1, and 1.=0.5.

=0.5, is considered. This example was selected because it
has the same resonance frequency for both polarizations.
Fig. 4 shows the comparison between the bistatic patterns
computed numerically using the present method and the
bistatic pattern determined using the series solution. Clearly
the solution due to the IBCE-PMCHW and IBCH-PMCHW
formulations fails to give the correct solution. The results
from the other two formulations, the IBCC-PMCHW and
IBC-PMCHW, are in good agreement with the exact
solution, indicating that they are not affected by the internal
resonance problem. If in the previous example the surface
impedance is zero, the perfect conducting core case, the
IBC-PMCHW formulation will fail to give the correct
solution because it reduces to the E-PMCHW formulation.

In the previous examples we have considered completely
coated objects. In the following examples we will consider
partially coated objects. The bistatic scattering width of a
half-dielectric/half-impedance cylinder of ka = 3, . = 1,
= 0.5, ¢=1, and pu, = 1 ("phantom” dielectric) is
computed for all formulations. Results for the object with
the "phantom” dielectric half must be the same as those for
an impedance half-cylinder. In Fig. 5 a comparison is made
between the numerical solution of the impedance body with
the "phantom” dielectric half and the numerical solution of
the impedance half-cylinder with 5, = 0.5. Excellent
agreement is observed. The same geometry is considered
with €,=4 and the mumerical results are compared with the
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numerical solution of the same object where the impedance
half is replaced by a lossy dielectric half cylinder {¢,, =8-j16

10 ™
half cyl.
5| TE ---« IBCE-PMCHW
—-—-- IBCH-FPMCHW
- = - IBCC-PMCHW
ol e «=  BC-PMCHW
a -5t
—
-15 r
20 F
-25 L L
60 120 180
9° '

Fig. 5 Comparison between the bistatic scattering width of
a half impedance cylinder and half impedance/half
dielectric cylinder, ka=3, n.=9,=0.5,¢,=1, and p, =1.

and p,=2-4), which has an equivalent normalized surface
impedance of 0.5. For the lossy materials the exact
boundary conditions are enforced on all the object
boundaries. Fig. 6 and 7 show a comparison between the
electric and magnetic surface currents, respectively, on the
outer surfaces of the object using the numerical solution

I7/H phase (deg.)
0.005 180 =
[ — Exact [
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1
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Fig. 6 (TM) Electric outer surface current on a half lossy
/half dielectric cylinder and half impedance/half dielectric
cylinder, ka=3, ¢.=4, and pu =1
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Fig. 7 (TM) Magnetic surface currents on a hatf lossy
/half dielectric cylinder and half impedance/half dielectric
cylinder, ka=3, ¢,=4, and u,=1
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with exact boundary conditions and the approximate solution
of the E-PMCHW formulation for the TM polarization.
Good agreement between both results is obtained in the
currents magnitudes, but a large difference is observed in
the phase of the electric current on the pure dielectric
surface. If more accurate estimate of the surface impedance
were used, better accuracy could be achieved. A significant
observation is the excellent accuracy of the surface currents
around the junction. The junction between three or more
dielectric regions can be treated accurately even when
triangle basis functions are used [10]. However, the
treatments of junctions between dielectric and conductor or
impedance surfaces with triangle basis functions requires an
approximations which neglects the contributions due to the
magnetic currents on half the triangle basis functions around
the junctions. This problem does not exist when point
matching and pulses basis functions are uwsed. Fig. 8
illustrated that the exact solution and the approximate
solutions for the scattering width are in excellent agreement
with each other. It seems that the current error has
insignificant effect on the far scattered field calculations. If
the lossy material is changed so that ¢, =6-j4 and p =1,
the equivalent surface impedance is . =%, =0.3564 +j0.108.
For this example, results for the solution incorporating the
exact boundary conditions and the approximate solutions (the
present method) are compared in Fig. 9. The agreement in
this case is not as good as in the previous example. This
result is expected because the surface impedance is
calculated assuming that there is no wave transmitted
through the dielectric. These results indicate that the fields
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Fig. 8 Bistatic scattering width of the case in Fig. 6 and 7

within the lossy material in the latter example are much
larger than in the former example.

Only bistatic radar cross section has been considered to this
point. The effect of different angles of incident can be
investigated by computing the monostatic scattering width.
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Fig. 9 Bistatic scattering width of a half lossy/half
dielectric cylinder and half impedance/half dielectric
cylinder, ka=3, ¢,=4, and g,=1.
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Fig. 10 Monostatic scattering width of half
impedance/half dielectric cylinder, ka=3, n.=9,=0.5,
e,=4, and u =1,

The monostatic scattering width of the object considered in
Fig. 8 is given in Fig. 10. The agreement between the
numerical solution of the different formulations is within
0.75 dB for the TM polarization and 0.25 dB for the TE
polarization,

It is known that if the surface impedance of an object equal
to the intrinsic impedance of free space, the object will
have zero back scattering width. This suggest that a
reduction of the scattering width for an object can be
obtained by manipulating the material parameters of the
object. To illustrate this technique, the dielectric-coated
rounded impedance cylinder shown in insert of Fig. 11a is
considered. For the original scattering object, consider the
core to be perfect electric conductor (3, =0.0) coated with a
uniform dielectric layer of thickness t=0.1)\; and ¢,=4.0-
11.7. If the transmission line model is used to calculate the
equivalent surface impedance on the outer dielectric surface,
the surface impedance is %, =(0.6828 +j1.0247) (neglecting
the curvature of the surface). To reduce the scattering
width, the core is selected to be an impedance surface and
its surface impedance value is manipulated to make the
equivalent outer surface impedance resistive and equal to the
characteristic impedance of free space. It is found, using
the transmission line model, that with n. =(0.092+j0.215)an
outer surface impedance of %, =(1.0026+j0.0058} results.
The scattering width which is calculated for the original
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Fig. 11a Monostatic scattering width of a coated rounded
impedance cylinder when =0 and 7. =0.092+j0.215,
€,=4-j1.7, and p =1 (TM).

object and for the reduced scattering width body is shown in
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Fig. 11b Monostatic scattering width of a coated rounded
impedance cylinder when »_ =0 and % =0.092+j0.215,
¢,=4-j1.7, and y =1 (TE).

Fig. 11. In Fig 11, two models are used for each of the
bodies to calculate the scattering width. The first model is
the two surface model. The two surface model considers



both the inner impedance surface and the outer dielectric
surface. The second model is a one surface model. The one
surface model treats the outer dielectric surface as an
impedance surface with equivalent surface impedance 7,.
Results of the one surface model are denoted as IBC results
in Fig. 11. For the body consisting of a dielectric coated
core, significant reduction of the scattering width is achieved
using an impedance core instead of a perfect electric
conductor (PEC) core.  The scattering width solution
obtained using the one surface model is less accurate than
that obtained using the two surface model. For the one
surface model, the solution error is more pronounce in the
TE case than in the TM case. This example illustrates that
proper selection of the core material results in low back
scattering width and that the present method can be used to
accurately predict the reduced scattering width.

5 CONCLUSION

Four surface integral equation formulations are developed
for two-dimensional objects composed of impedance surfaces
partially coated with dielectric material. These formulations
are useful in obtaining accurate and economical numerical
solutions for bodies that can be modeled as coated
impedance surfaces. Both TE and TM polarizations are
considered. The point matching technique is used to solve
the surface integral equations. The numerical solutions are
verified either by comparison with the series solution for
circular cylinders or by comparison with exact solutions
(exact boundary conditions on all surface boundaries) for
other objects. The internal resonance problem is investigated
and a form of the combined field integral equation is
proposed to overcome this problem. The solution accuracy
is shown to be independent of the polarization. It is also
shown that accurate evaluation of the surface impedance is
very important to achieve good accuracy. One example is
given to show that low back-scattering width can be
achieved by seclecting the material properties so that the
outer surface impedance is equal to the characteristic

impedance of free space.
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