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Abstract

The finite difference time domain (FDTD) method
has found very wide applications in the analysis of
electromagnetic scattering and radiation. The first
and most important issue of the FDTD modeling
is to decompose a computation space, containing a
given geometry, into FDTD unit cells. There are
a few dedicated mesh generators which could dis-
cretize the space into cells for general analysis. How-
ever, among FDTD applications, a large portion of
them deal with objects structured primarily with
conducting and/or thin-dielectric plates, such as a
conducting sphere or cube, a cavity, an airplane, etc..
The mesh data necessary to input are those of node
indices and material parameters on the object sur-
face. Consequently geometry modeling is essentially
to generate FDTD cells on the surfaces. For this
purpose, a simple and effective algorithm capable
of on-surface FDTD mesh generation is introduced
based on a ray-tracing method. The algorithm pre-
sumes that the input geometry is described in poly-
gons and lines which are often approximations of
smooth surfaces and thin wires. In output, the al-
gorithm decomposes automatically the polygons and
lines into on-surface cells compatible with, and read-
able by, an FDTD solver. The algorithm has been
coded in programs allowing effective and automatic
generation of surface cells on various high- or low-
end computer platforms.

*This work was sponscred by the Advanced Helicopter
Electromagnetics (AHE)} Program and NASA Grant NAG-
1-1082.
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1 Introduction

The finite difference time domain (FD'TD) method
has been demonstrated to be both powerful and ver-
satile for modeling complex electromagnetic prob-
lems [1]. However, a complex geometry has to be
discretized first to apply the method. While there
are many mesh generators developed primarily for
a finite element method, relatively few automatic
mesh generators are dedicated to the FDTD method.
Though an FDTD mesh is simpler and easier to gen-
erate, it has unique lattice-like features and needs
some special consideration. Especially when the sur-
face of a geometry cannot be represented by simple
analytic formulas, an automatic mesh generator is
necessary and desirable.

In most publications reporting FDTD applica-
tions, Yee’s offset cube cell model {2} has been over-
whelmingly used. Based on the model, a compu-
tation domain is decomposed into a lattice of cube
cells in Cartesian coordinates. As shown in Figure
1, for each umit cell, the electric and magnetic field
components are positioned so that not only central
differences in space can be applied, but alsc the fun-
damental physical laws are naturally obeyed. Ge-
ometry modeling or mesh generation of a complex
object is thus to establish an FD'TD lattice of Yee’s
cells and provide the position and medium param-
eters for each cell. At the same time, the object
volume is best body-fitted with unit cells.

In an FDTD lattice, cells filling non-occupied
space always have medium parameters of free space;
only their cell positions are important. Moreover, if
a cell in the lattice is indexed by three indices which
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Figure 1: FDTD unit cell — Yee's model

are proportional to coordinates of the cell, its posi-
tion is then determined solely by the origin and the
lattice constant (cell size). The burden of geome-
try modeling lies in the provision of cell indices and
medivm parameters of cells occupying object vol-
ume. In general, the cell data are generated from a
3D volume space and need large storage space.

In a large portion of electromagnetic scatter-
ing and radiation problems a complex object is
structured with shells of conducting and/or thin-
dielectric materials. Now the necessary input is
the indices and medium parameters of the cells dis-
tributed on the object surface. Thus it is appropri-
ate to generate only on-surface mesh cells. Conse-
quently, very efficient algorithms can be developed
and implemented even on a very low-end personal
computer,

Thie paper presents a program developed at Ari-
zona State University to generate automatically
three-dimensional surface FDTD meshes for com-
plex objects. The program is based on an efficient
ray-tracing method [3), and has been tested in vari-
ous numerical simulations [4].

2 Algorithm Development

As a starting point, the algorithm assumes that a
given surface geometry can be approximated by a
cluster of polygons and lines. More accurate gecome-
try modeling usually requires larger amount of poly-
gons. Their mesh generation is actually to embed
these polygons and lines into an FDTD lattice of
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Yee’s cells. The word ”embed” means that a polygon
is approximated into stair-cased unit squares, each
of which is aligned with a cell face. These squares
are best fit to the original polygon. To do so, we
project respectively the polygon onto three Carte-
sian coordinate planes. In each projection, the unit
squares shaded by the projected polygon are identi-
fied. The distance of each shaded unit square to the
polygon in the projection direction is evaluated and
then the unit square is displaced the same distance
in the projection direction. How to judiciously iden-
tify a unit square, which is covered by the projection
of a polygon, is the focus of the algorithm, which can
resort to a ray-tracing method and the rules set in

the following sections.

Ray tracing method

Since any polygon with more than three vertices
can always be tessellated into triangles, it is suffi-
cient only to implement ray tracing on a triangle.
Ray tracing is a well developed method to determine
whether a ray intersects with a triangle in the 3D
space. As shown in Figure 2, a ray originates from
point s on the yz plane with coordinates of (0,j,k).
A given triangle has three vertices represented by
the three vectors o, p, and q. Its normal direction
is given by

n=(o-p)x(q-p) (1)

If an intersect point is represented by vector r, then
vector r must satisfy

n-r+ec=70 (2)

where c is the distance of the triangle to the origin
which can be obtained from -n - p. In Figure 2, one
can see that

r—p = a(lq—p) + flo-p) ©)
and the intersection distance d is given by
d=—(c+n-s)/n-d (4)

with d being a unit vector in the ray direction.
The sole condition which guarantees that the in-
tersect point r is inside the triangle is [3]
a>0, 820, anda+ <1 (5)

Thus a ray that intersects with a triangle can be
identified from the solution of @ and 8 in (3). To



Figure 2: Hlustration of a ray-trace algorithm

solve a and @ from (3), only two component equa-
tions are required. By referring to Figure 2, the y
and z components of (3) can be utilized as

a(¢: = p) + Blo: —p:)  (6)
a(gy —py) + Bloy —py)  (7)
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All vector component coordinates in (6) and (7) are
known, therefore a and B can be directly solved.
Subsequently it can be determined whether the ray,
originating from (0, j, k), intersects with the trian-
gle.

Rounding off a triangle

From the established ray tracing method, it can
be determined whether a ray hits a triangle, or in
other words, whether the point s is covered by the
projection of the triangle on the yz plane, as shown
in Figure 2. To approximate a triangle by stair-cased
square cell faces, we need to find all squares, which
are displaced cell faces in the projection direction,
covered by the projection of the triangle. However,
to determine whether a unit square is covered by
a triangle, some rules need to be established. The
rules used in this algorithm include:

o if the center of the square is covered by the pro-
jection, then the square is displaced. Otherwise,

o if a center of one of the edges of the square is hit
by the triangle, the edge (short line segment) is
displaced. The edge will be used to force tan-
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gential boundary condition in the FDTD solu-
tion procedure. Otherwise,

e no squares and edges are displaced

The output of a square is different from that of
a short segment. A square output will inform an
FDTD solver to force boundary conditions at all four
edges, while a short segment will inform the solver
to force boundary conditions only at the segment.

The second problem in rounding off a triangle to
FDTD cells is to round off the triangle vertices to
the nearest cell nodes. It is considered necessary
for the rules established above to be implemented
without complication. Otherwise, more possibilities,
concerning how a unit square is covered by a trian-
gle, need to be considered in the algorithm. It should
be noted that before rounding off its vertices, the tri-
angle has to be displaced to yield a least rounding-off
error. This fact is best illustrated in Figure 3 where
a triangle is rounded off to unit squares and edge
segments. Figure 3(a) is an original triangle. Its ver-
tices are rounded off to nearest nodes in Figure 3(b},
and applying the above rules results in an FDTD
lattice compatible triangle as shown in Figure 3(c).
However, if the triangle in Figure 3(a) is displaced
first as shown in Figure 3(d) and then rounded off
as in Figure 3(e), the resulting approximate triangle
in Figure 3(f) is substantially different from that in
Figure 3(c).

A complex structure consists of a cluster of poly-
gons and lines. Any displacement should be applied
to all polygons and lines. The criterion governing
the displacement is to minimize the overall vertex
rounding-off error. Minimization of the global vertex
rounding-off error is a least square problem the solu-
tion of which could be very time consuming. When
one is concerned about development of an efficient
algorithm, it is only necessary to minimize the global
rounding-off error in subdomains. For example, the
absolute global error in rounding vertices to their
nearest cell nodes can be considered in one dimen-
sion at a time and defined as

N
€ = n}in E I‘I',',, - Ouz - Round[riz - d‘;]l (8)

i=1

where N is the total number of vertices of all poly-
gons, r;; is the = coordinate of the ith vertex, and
& is a displacement in z direction which is the x-
distance needed to round off the jth vertex to its
nearest node. The Round operator in (8) rounds an
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Figure 3: Algorithm illustration for rounding off a
triangle. a) A triangle projected onto a coordinate
plane; b) Round off the vertices of the triangle; c)
Round off the triangle (in light shadow) to FDTD
cell compatible squares (in dark shadow); d) Dis-
place the triangle first; ¢) Then round off the vertices
of the triangle; f) After that round off the triangle.
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Figure 4: Digitizing a line in 2D space.

non-integer number into an integer. By choosing di
to be the z distance of the jth vertex to its nearest
node each time with a j for N times, the minimal
global error ¢, and thus the d. can be identified.
This procedure is then repeated for both the § di-
rection and Z direction. The resulting d:, dy, and
d; define the global displacement of the object.
Digitizing a line

At low frequencies, thin wire antennas are very
often employed. The geometry of a thin wire can be
modeled by a line. For tangential boundary condi-
tions to be applied on the wires, their representative
lines have to be compatible with the FDTD lattice
in which they are embedded. A line in an FDTD
lattice is only allowed to run through cell edges due
to the fact that electric field components in a cell
are positioned at, and aligned with, cell edges.

Figure 4 illustrates the rule used to digitize a line
in a two-dimensional space. A line is in the direction
1. If the inner product of 1-# is greater than 1.4, a unit
line segment in # direction is chopped off. The line is
terminated at a new end. Repeating the procedure
leads to a zig-zag line which is a digitized line with all
its segments aligned with either the Z or § direction.
The same line digitizing rule has been applied to
the three-dimensional space and implemented in the
algorithm.



Algorithm

To sumrnarize, the algorithm proposed for an on-
surface FDTD mesh generation can be presented as:

1. Divide the surface of a given object into a clus-
ter of polygons and use different colors to iden-
tify different media. The shape and the number
of utilized polygons determine the accuracy of
geometry modeling.

9. Round off the vertices of each triangle to nearest
mesh nodes (represented in integer indices) with
a minimal global rounding-off error respectively
in #, § and 2 directions.

3. Tessellate each polygon into triangles. If the
vertices of the polygon are numbered clockwise
from 1 to N, then the tessellation is done by
connecting vertices i and j with

le: — x| < | - i
fork,j € (1,2, .., N)and k, j # i—1,4,i+1.

4. Project each triangle, respectively, onto three
principal coordinate planes and scan the trian-
gle by using the ray-tracing method, as shown
in Figure 2. When a ray in a normal direction
originates from a node and hits the triangle, the
node indices i and j are collected and the dis-
tance d between the ray intersection point and
the node is evalnated. Whether a ray hits the
triangle can be determined via the criterion of

(5).

5. The intersection distance d is rounded off to the
nearest integer. The three integer indices (two
from the coordinate plane and one from the dis-
tance), and the color of the intersection point
are output as a surface cell or a short segment.

6. Repeat the above procedure for every triangle
and every polygon.

7. Digitize a line into short FDTD cell compatible
segments, and output the indices and direction
of each individual segment.

3 Numerical Example

The above algorithm has been coded in both C and
FORTRAN, and tested in various numerical simula-
tions. For brevity, we only illustrate a few examples
here.

166

The first example is a perfectly conducting cube.
The edges of the cube are aligned with rectangular
coordinate axes. The incident wave is in the -2 di-
rection. The geometry was originally presented in
six squares as shown in Fig. 5(a). Its FDTD surface
mesh is simple to generate since the FDTD cells can
be naturally fitted to the cube surfaces. The bistatic
RCS of the cube has been obtained via an FDTD
solver, and compared with the solution by the Nu-
merical Electromagnetics Code (NEC) [5]. In the
NEC solution, the cube surface was modeled by a
wire frame mesh. It is seen from Fig. 5(b) that the
FDTD solution agrees very well with the NEC re-
sults on both the E-plane (¢ = 0°) and the H-plane
(¢ = 90°).

The second example is a perfectly conducting
sphere. Its geometry was originally represented as a
cluster of polygons as shown in Fig. 6(a). Its FDTD
surface mesh was generated and subsequently input
into an FDTD solver. The bistatic RCS of the sphere
has also been obtained via the FDTD method and
compared in Fig. 6(b) with the exact Mie theory.
The FDTD solution agrees well with the exact solu-
tion on both the E-plane (¢ = 0°) and the H-plane
(¢ = 90°), though the stair-case approximation is
not smoothly body-fitted.

Figure 7 shows the mesh generation for a scale
model helicopter. The helicopter geometry was
modeled in polygons, and then discretized into a sur-
face mesh, as illustrated in Fig. 7(a). The radiation
patterns of a dipole mounted at the bottom center of
the helicopter fuselage have been simulated and mea-
sured at 880 MHz. The FDTD simulation was con-
ducted with two different cell sizes (A/16 and A/20),
and the measurements were performed at NASA
Langley Research Center. The co-polarization pat-
terns in roll and yaw planes are shown in Fig. 7(b)
and 7(c), respectively. The cross-polarization pat-
tern in yaw plane is shown in Fig. 7(d). It is suf-
ficient to see that all of the FDTD predictions are
consistent with the measurements.

4 Conclusion

Based on a ray-tracing method, an efficient surface
FDTD mesh generator has been developed. The
mesh generator can be used for a complex object
enclosed by conducting and thin-dielectric surfaces.
The high efficiency of the algorithm aliows the mesh
generation to be performed on a personal computer.
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Figure 5: Mesh generation for a conducting cube

and its bistatic RCS solution. (a) A cube modeled
in six squares and its FDTD mesh; b) Bistatic RCS
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