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Abstract This paper presents the formulation of the
impedance network method that allows computation of the
arbitrary injection currents on the boundary of a selected
sub-region for an analysis of induced electric current
distributions inside the human body exposed to extremely
low frequency magnetic fields. The obtained formulation
provides a high resolution modeling of a local region of
interest without using an excessively large number of
compultational ¢ells. The iterative equations for outer and
inner nodes are derived in detail. Solutions for a double-
layered sphere are then calculated to verify the derived
equations. The errors involved in the calculation are also
examined. To illustrate the method, its application to
computations of the induced currents in the human head is
described.

Introduction

Knowledge of the spatial distribution of the electric
currents and fields induced in the human body by
extremely low frequency (ELF) magnetic fields is
important in the assessment of potential health hazards 10
people [1,2). A high spatial resolution of these fields is
also very useful in some medical applications, e.£., neural
stimulation [3]. Although this problem for homogenecus
biological bodies is well understood, considerable work
remains to be done in the development of numerical
methods and algorithms for heterogencous systems,
Among the methods developed for electromagnetic (EM)
problems, two differential equation-based methods: the
time-domain finite difference method (FDTD) and the
impedance or admittance network method, have been found
effective for modeling of heterogeneous and complicated
3D bodies representing biological subjects [4]. At ELF,
the problem is a quasi-static one as the displacement
current is negligible compared to the conduction current.
This, together with the fact that a biological system does
not perturb an exposing magnetic field, makes the
impedance network method especially attractive for the
ELF calculation,
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As in any other numerical method for EM problems, the
impedance method starts with discretizing the space
analyzed into computational cells. With large memories
(16-64 Mbyles) increasingly available on computers today
up to 1 million cells can be routinely handled. A
reasonable representation of the human anatomy and its
surroundings can therefore be obtained. However, the
computing time increases almost exponentially with the
number of unknowns. As a result, an increasc in the
number of the computational cells leads to demands of a
computing speed not available in most computers. To
illustrate the problem, we evaluated the calculation of a
double-layered sphere on an HP 9000/700 workstation.
The computation using about 70,000 cubical cells takes
about 5 minutes of CPU time and 800 iterations before it
reaches convergence. When, to model the curved
interfaces more accurately, the ccli size is reduced by haif
in each dimension, resulting in 8 times more of
computational cells, i.e., 560,000 cells, convergence is
obtained after about 3,600 iterations and 160 minutes of
CPU time. Moreover, 1o model the detailed anatomy and
morphology of a whole human body, one needs much
more than 1 million computational ceils. This is a
formidable task in terms of both the memory and the
compating speed requirements.

There are many practical situations where high resolution
modeling is of interest for only a certain part of the body.
For cxample, such situations arise in case of the exposure
evaluation of the head to the magnetic field produced by a
hair-drier, or the arm from a hand-held drill. In these
sitnations and others, a finer mesh can be chosen without
leading to an excessively large number of cclls in any
single computation. In previous work, the sub-region
was detached from the wholc body and analyzed alone
[5,6]. Dependent on the exposure situation, the results
from such an analysis may be questionable due o the
neglect of the injection carrents on the boundary where the
sub-rcgion is detached,

In this paper, a new approach lor the sub-region analysis
with a high spatial resolution is presented. In this
approach, the injection currents on the sub-region
boundary are taken into account by using the previously



computed results for the whole-body as the sub-region
boundary values. The formulation involved in the
boundary condition is described and verified by modeling a
double-layered sphere. Finally, this approach is applied 10
the calculation of the induced currents in the human head
in uniform 60 Hz magnetic fieids.

Formulation of Sub-Region Analysis

In the impedance method, at ELF a biological body s
represented by a 3D resistance network in which each
parallelepiped volume shown in Fig.1(a} is equivalent to
three resistances RyxlJK, Ryld-k and Rz"J’k associated
with the network node (i,jk) as shown in Fig.1(b). The

Rk = Ap/(Smom!K)
(m=x.y.z)

{1

where A is the celi length in the m-th direction, Sy is
the area of the cell surface perpendicular to the m-th axis,
and Umld’k is the cell electrical conductivity in the m-th
direction. For each node, three line currents: ix, fy and
i, and three loop currents: Ix, Iy and I are defined in
Fig.1(c). Once the loop currents are known, the line
current through each resistance clement can be obtained by
summing up the four loop currenis which are common to
that resistance element. As illustrated in Fig.1(d),
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resistances are calculated as [T]:
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Figure 1. Cell impedance and current definition for the impedance network method.
(a) a parallelepiped tissue volume of the body forming a computation cell (i,j.k};
(b) the three directional impedances associated with node (ij.k)
(c) the three line currents and loop currents, i and Im (m=x,y.z), defined for node (i,j.k);

(d) the line current i,idK composed of the superposition of four loop currents flowing through the

resistance Rzi’j’k.

the line current through Rzi’j K can be expressed by the
loop currents as

ik = gk 4 Ly bk ik @)

Similarly, 1% and iyl can be found to be
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ixiJ,k = _Iyi,j,k + [yiJ,k-l + Izi,j,k . Izi,j-],k (3)

and

iyi,j,k - _Izi,j,k + Izi-l,j,k ¥ 1xi,j,k . Ixi‘j’k'] (@)



respectively. Applying Kirchhoff's voltage equation to
each loop associated with node (i,j,k), say the z-loop in
Fig.1(c), the following relationship is obtained

in,:i,.i(i-xi,‘j,-k+Ryi+ lq,giyn Ljk g, Lj+Lki ij+1k
_Ryl,_],ki‘yl,_],k = emf,lJ:K 5

where emfzixj’k is the electromotive force generated by a
magnetic field perpendicular to the loop

emfzi’j’k = mBzi’j’kSz (6)

and @ = 2 7f , where f is the frequency and B is the
magnetic flux density. N
Substituting Egs.(3) and (4) into Eq.(5), Ik can be
solved as

Izi,j,k = [emfzij,k - RXIJ,k(IyiJ,k-l_lyi,j,k_lzl,j-l,k)
SRy Lk LK i+1k-1p 1+ 1k
Ry Lk
..Ryl+1.,_],k(le+l,_],k_le+1,],k-l_l.zl-P]-,j,k)]
/[in,j,k+in,j+l,k+Ryi,j,k+Ry1+1 ,_],k] (D
Similar equations can be derived for le._l.k and Iylxl»k.
More details can be found elsewhere [7]. It should be
pointed out that the (i,j,k) referred to so far is an inner
node, that is, a node surrounded by non-boundary nodes.
For outer nodes, some of the line currents in Eq.(5) are the
boundary values and should not be converted into the loop
currents. Eq.(5) is still valid for outer nodes, however,
their final loop current equations differ from those for
inner nodes.

Let's consider the generic parallelepiped region shown in
Fig.2a. This region can representi either a biological
body and its surrounding space or a sub-region identified
from the whole body for the purpose of a high spatial
resolution analysis. On its six surfaces: left (i=1), right
(i=nx), bottom (j=1), top (J=ny), rear (k=1) and front
(k=ng), line currents are assumed to be known. In the
sub-region analysis, the line current density on the
boundary can be obtained by interpolating the results from
the whole region analysis. The line currents on the
boundary are sometimes called injection currents,
however, they may also flow outward or parallel to the
boundary as shown in Fig.2(a).

All the outer nodes at which the loop eguations are
formulated differentty from those for inner nodes are
classified in Table 1. They do not cover all the outer
nodes because the loop currents at some outer nodes are
not needed for inner node calculations, such as those loop
currents parallel to the boundary surface. According to the
number of the boundary line currents employed, the outer
nodes in Table 1 fall into three categories: those on the

upper surfaces, those along the cdges and those on the
lower surfaces. The corner node (nx—l,ny-l,nz-l) it
included in the case of the edge nodes.
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Figurc 2 Model for the derivation of iterative loop

current equations for the outer nodes of a
paraliclepiped sub-region.

(a) Line currents on the sub-region
boundaries, i.e., lefl, right, bottom, top, rear
and {ront surfaces;

(b} Three outer nodes: A(i,j.nz-1), B{ny-1 Ay~
1k} and C(i,j.l) and the boundary line
currents involved in their loop current
equations.

In Fig.2(b), the y-loop at A(i,j,nz-1), the z-loop at B(nx-
L.ny-1,k) and the x-loop at C(i,j,1) are shown as
representative of each category. The boundary line



cwrrents involved around the loop are indicated by atrrows;
the unmarked line currents need to be decomposed into the
loop currents. To illustrate the formulation of the
method, the z-loop current equation at node B is derived in
detail.

From Eq.(5), the z-loop equation at B(nx-1,ny-1,k) can be
written as

Rxnx-l ny-1 ,kixnx-l,ny- 1 ,k_,_Rynx,ny-l ,kiynx,ny- 1.k
RyMX- 1 ,ny,k-ixnx—l Jqy .k
_Rynx—l,ny- 1 ,kiynx—l ay-1k emf,NX- l.ny-1k (8)
where line currents Tx0%-1.nY.K and i nx,ny-Lk pave
known values, and TxP%-1.0¥-1k ang iyn"'l'“Y‘l’k are
unknown. Using Eqs.(3) and (4), the unknown currents
ixnx-l,ny-l,k and iynx-l,ny-l K can be expressed as

ixnx-l,ny-l,k =] nx-1.ny-1k Iynx-l,ny-l,k—l +
Iznx-l,ny-l,k -1 an-l,ny—2,k %)

and

j,ox-1ny-1k - [ nx-1ny-1k 4 1 nx-2,ny-1k ,. 1, nx-
1,ny-1k _ Ixnx-l,ny—l,k-l (10}

respectively. After substituting Eqs.(9) and (10) into
Eq.(8) and rearranging it, [,0X-Lny-LK can be readily
found as

|an-1,ny-1,k = [emfznx—l,ny-l,k+Rxnx-1,ny,kixnx-
1,ny.k _ Rynx,ny-l,kiynx,ny-l,k
+ Rxnx-l,ny-l,k(Iznx-l,ny-2,k+Iynx-] ny-1.k 1 nx-1,ny-
Lk-1y 4 Rynx-l,ny-l,kaznx-lny-l,k +Iix-1.ny-1 k.
1xnx—1,ny-1,k-1)} JR xnx—l,ny-l,k+Rynx-1,ny-1,k) (11)

Using a similar procedure, other loop current equations at
the outer nodes listed in Table 1 can be derived.

What complicates the loop current derivation at the outer
nodes is the fact that loop currents are the iterative
variables in the impedance network method whereas line
currents are used as the boundary values. The reason for
this is that a loop current is not a physical but an
imaginary parameter which only facilitates the iterative
calculation. Consequently, the loop currents obtained
from the whole region analysis are not directly usable for
the boundary formulation of the sub-region analysis.
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Table 1 Summary of outer nodes and the boundary
line currents invelved in the loop current
equations.

Verification

A solution for a double-layered sphere is used to verify the
formulation and accuracy of the sub-region analysis. The
sphere has radii of 0.15 m and 0.25 m, and electric
conductivities of 1 §/m and 0.5 §/m for its inner and
outer layers, respectively, and is placed in a uniform 60
Hz magnetic field in free space. An analytical solution is
elementary for this problem and hence can be used to
check the numerical results. The computation accuracy is
¢valuated by an average relative error defined as (8]:

P I CHRSERN(BEY
Fo 8 _ Lk _
i NT,

(12)

in which the summation is performed over all the non-air
cells and N is the number of cells. Jy* and J¢ are the
numerical and analytical magnitudes of the current density
(the only component is in the ¢ direction), and a bar
denotes the average value.

The verification is conducted in three steps. In the first
step, computations are performed for the whole sphere. In
the second step, one eighth of the sphere is considered for
a sub-region analysis where the boundary values in the
planes of x=0, y=0 and z=0 as shown in Fig.3 need to be
assigned. The computational cell size is halved in each
dimension, resulting in roughly the same number of cells
as for the whole sphere. To examine the effect due to the
error in boundary values, the computation of this eighth
sphere is performed for two cases. For the first case, the
numerical results from the whole sphere, and for the



second case the analytical results, are used as the boundary
values. In the final step, a cubical region partially
embeded in one eighth of the sphere (see Fig.4) is chosen
for another stage of sub-region analysis and the cell size is
again halved. The boundary values on the six surfaces of
this cube are taken from the numerical results from case
one and two, and from the analytical solution.

Whole Sphere 4% N 3.5%
Computation ] One Eighth S [ 3%
A=1em N=T0000 Computation 2% [Cubic Su Pregion
. v =Bt A —0.5cm N=T0000 fr-==-=" #=1Computation - 1.5%
l— A =0 25cm N =54000,

Analytical r—-> - (5%
Solution 0%

Figure 3  Eighth of a double-layered sphere with a
partially embeded cubical sub-region (the mid-
horizontal cross-section of the cube shaded.

Y

Figure 4  The relative errors in the computations of a
double-layered sphere.

The error for each case is illustrated in Fig.4. The average
error in the numerical results after each stage of sub-region
cell size halving is reduced to at least half of the larger cell
value, provided the boundary values used are accurate.
This is, understandably, due to the use of finer meshes
which model the interface better. The distributions of the
induced current densities computed with cells of 1 ¢cm, 0.5
cm and 0.25 cm on the mid-cross section of the cubical
sub-region are shown in Fig.5, illustrating a higher
spatial resolution with a finer cell modeling. On the other
hand, the computational error is much larger when the
numerical results are used as the boundary than when the
analytical values are used. For instance, the error in the
computation for one eighth of the sphere is 3.5% in the
case of using the numerical boundary values as compared
to 2% when using analytical boundary values. This
indicates that the improvement in computation accuracy
obtained from one or multi-stage sub-region analysis will
be limited unless the whole region analysis is reasonably
accurate.
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Figure 5
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Distribution of the induced electric current
density on the surface corresponding to the
shaded cross-section in Fig.4, from the
computations of

(a) whole sphere using 1 cm cell size;

(b) one eighth of the sphere using 0.5 cm cell
size;

(c) cubical sub-region one eighth of the sphere
using 0.25 cm cell size.
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Sub-Region Analysis of Human Head

To illustrate the application of the above-described
approach to sub-region analysis, electric currents and fields
induced in the human head by a uniform 60 Hz magnetic
field of 1 T directed from the back to the front are
computed. The anatomically based man models developed
at the University of Utah [4] are used in this computation.
The data base of the man models was constructed from a
cross-section anatomy book [9]. In creating this data
base, a roughly quarter-inch grid (0.665cm) was first
divided on each of the transverse body cross-sections
which are equally spaced by the grid size. An electric
conductivity was assigned to each of such cunbical cells,
according to the tissue type. Isotropic properties of
muscle were used. The conductivity matrix for the body
volume and its surrounding space has 90X48X268, ie.,
about 1.16 million elements. Since this requires a
memory too large for most readily accessible computers,
the data for 2X2X2 = 8 cells are combined to form a
smaller matrix of 45X24X134 with 144 720 elements.
This half-inch model is used in the whole body
computation, while the quarter-inch model is used in the
computation of the head-region starting from the neck.
The boundary values on the neck cross-section are
obtained by interpolating (proportionally to the grid
surface) the line current densities from the whole body
computation.

The average and maximum values of the calculated electric
currents and fields induced in the head are listed in Table 2
for three computation cases. The electric field strength is
calculated by multiplying the current density by the
corresponding conductivity for each cell. First, as case 1
the whole body response of the man model is used with
the coarse grid (1/2-inch cell size}. A head region is then
separated from the neck up and calculations using the finer
model (1/4-inch cell size) are performed for two cases
which differ by the boundary values assumed on the neck
cross-section, The results obtained from case 1 are used in
case 2 and null values are used in case 3. Therefore, case 2
takes into account the effects of the whole body, whereas
case 3 neglects current flowing between the head and the
rest and thus only models an isolated detached head.

From Table 2, it can be seen that the maximum current
density and field intensity for smaller computational cells
are 2-3 times higher than those of case 1, though the
average values are very close to those obtained with the
coarser grid. It is expected that the ratio of the maximum
to the average for both the current and field in the head
would be even larger if the head were modeled with finer
computational cells. Secondly, the differences in the
average and the maximum values between case 2 and 3 are
significant, indicating that the current flow between the
head and the rest of the body should not be neglected. It is
found that the densities of the current flow through the

neck are of the order of 1,000 uA/cmz, that is, about hatf
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of the maximum or 5 times the average value in the head
region. Understandably, for an exposure {g a field directed
from the back to the front, much smaller electric currents
and fields are induced in a detached head than in the head
attached to the body because of the smaller coronal cross-
sections. If the magnetic field is applied along the body
vertical axis (head o toe), the difference between these two
cases would be smaller.

The spatial distribution of induced current density on two
cross-sections are presented in Fig.6 and Fig.7 for case 2
and 1, respectively. The cross-sections chosen are the
frontal passing through the cars and the transverse through
the nose. The distribution obtained with the smaller
computational cells reflects more anatomical details than
with the coarse grid. For instance, a realistic shape of the
nose and a distinctive air cavity of the pharynx can be seen
in Fig.6a. The difference between the current density in
the facial bones (low conductivity) and the facial muscles
(high conductivity} is also exhibited in Fig.6. Within the
cranial cavity (brain), a relatively uniform current density
is shown in both Fig.6 and Fig.7.

Current E-Field
1
Computations (“Ncmg) (VM)
Cases Aver- | Maxi- | Aver- | Maxi-
age mum | age mum

Case 1: Whole Body Analysis| 191 | 1440 | 14.0 | 105
(A = 1/2-inch, N = 144,700)
Case 2: Head Sub-Region| 206 | 2000 | 13.7 | 296
Analysis

(A = 1/4-inch, N = 35,900)
Case 3: Detached Head| 161 | 1050 )] 11.3 | 65.2
Analysis ‘

(A = 1/4-inch, N = 35,900)

Tabie 2 Comparison of various compautation cases of
modeling the electric current and field induced
in the human head by a 60 Hz uniform
magnetic field of 1 T directed from the back to

the front,
Conclusions

It is demonstrated that in calculations of the induced
¢lectric current distribution in a 3D - model of the
heterogeneous human body, the impedance network
method coupled with the sub-region analysis approach is a
practicle way of dealing with theconflicting requirements
of modeling resolution and computation manageability.
Using one or multiple stages of sub-region analysis, a
body region of interest can be dealt with in a "zoom"
manner without resulting in an excessively large number
of computation cells. Of course, a correspondingly fine
model of man is required for this purpose. Our examplc




of the head analysis shows that the 1/4-inch man model can be significantly improved if accurate values of curents
results in spatial current distribution with a much higher at boundaries of the sub-region are known and used in the
resolution than those with the 1/2-inch model. However, analysis.

to properly model some organs, such as eyes, an even

finer anatomical model is needed. Computational accuracy

1172 pAfem? 522 pA/cm?

Figure 6 Spatial distribution of the current density induced in the human head on

(a) the frontal cross-section passing the ears and
(b) the transverse cross-section passing through the nose, obtained from the whole body analysis using 1/2-inch

man model.

969 LA/cm? 842 A/cm?

Figure 7 Spatial distribution of the current density induced in the human head on

(a) the frontal and
(b) the transverse cross-sectionpassing through the nose, obtained from the head subregion analysis using 1/4-inch

man model.

133



Acknowledgement

This work is supported by a strategic grant from the
Natural Sciences and Engineering Research Council of
Canada and a grant from the U.S. National Institutes of
Health through a contractual agreement with the

University of California, Riverside.

The authors also

wish to thank Dr. O.P. Gandhi and Ms. C. Furse of the
University of Utah for their generous assistance.

References

(11

(2]

(3]

f4]

G. Therianlt, "Cancer risks due to exposure 1o
electromagnetic fields”, Recent Results in Cancer
Res., Vol.120, pp.166-180, 1990.

S.F. Cleary, "In vitro studies; low frequency
electromagnetic ficlds", Proc. Sci. Workshop on the
Healith Effects of Electromagnetic Radiation on
Workers, U.5.Dept. of Health and Human Scrvices,
Cincinnati, QH, Publ. No.91-111, pp.47-89, 1991,

M.A. Stuchly, "Applications of time-varying
magnetic fields in medicine”, CRC Crit. Rev.
Biomed. Eng., vol.18, pp.89-124, 1990.

O.P. Gandhi and J.Y. Chen, "Numerical dosimetry at
power-line frequencies using anatomically based

134

(5}

(6]

(71

8

9]

models”, Bivelectromagn., Supplement No.1, pp.43-
60, 1992,

P.J. Dimbylow, "The calculation of induced currents
and absorbed power in a realistic, heterogeneous
model of the lower leg for applied eleciric fields from
60 Hz to 30 MHz", Phys. Med. Biol., Vol33,
No.12, pp.1453-1468, 1988.

P.J. Dimbylow, "Finitc-difference time-domain
calculations of SAR in a realistic heterogeneous
model of the head for plane-wave exposure from 600
MHz 10 3 GHz", Phys. Med. Biol, Vol.36, No.8,
Pp-1075-1089, 1991.

N.Orcutt and O.P. Gandhi, "A 3-D impedance method
to calculate. power deposition in biological bodies
subjected to time varying magnetic ficlds, JEEE
Trans.Biomed. Eng., vol. BME-35, pp.577-587,
1988.

W. Xi, M.A. Stwuchly and O.P. Gandhi, "Induced
electric currents in models of man and rodents from
60 Hz Magnetic fields", Accepted to /EEE Trans.
Biomed, Eng., 1994,

A.C. Eycleshymer and D.M. Schoemaker, A Cross-
Section Anatomy, New York: Appieton, 1911.



