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Abstract- In this paper a method for the analysis of
non-linear three dimensional electromagnetic field is
presented.

The conductive and magnetic regions of the examined
system are subdivided in elementary volume elements in
which a uniform current density J and magnetization M is
assumed. By integrating Ohm's law inside the conductive
reglons, a set of equations representing the equilibrium
equations of an equivalent electric network is obtained.

The knowledge of the currents in the conductive regions
allows the evaluation of the electromagnetic fields and the
determination of the forces among different bodies.

Applications of the method to the solution of
benchmark problems of time varying linear systems, and
non-linear static cases are presented,

I. INTRODUCTION

The historical concepts of the electromagnetic theory,
characterized by the ficlds as the quantities that are
physically significant, have been recently discussed by
John Carpenter in a series of papers [1-3], where he
investigated the consequences of a change of approach o
electromagnetism. In his view the clectric potential V
and the magnetic vector potential A become the principal
quantities respectively defining a measure of the
potential and kinetic energy of a system of charges, while
the field vectors E and B are no more than symbols
denoting derivatives. Therefore, in this charge based
approach, the energy density w = (pV + J-A)/2 represents
the kinetic energy and potential energy of the source
charges, while in field theory it is considered as a
mathematical equivalent. Even though the wo
approaches to electromagnetism lead to the same
equations in terms of the potentials V and A, they differ
substantially from the physical viewpoint. The essence of
the V, A treatment is that there is no concern about how
the actions are conveyed through space, since V and A
quantify all possible interactions between any groups of
charges. The potentials V and A at the considered
frequencies, can be obtained from the source q's and J's
V(r)zij—pﬂ daQ(r ) A(r)=LJ'ﬂ aQ(r'y (1)
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where the charge density p and current density J in the
integrals are due to the actual charge and current density
distributions plus the a priori unknown distributions of
the equivalent charges and currents due to the presence
of dielectric and magnetic materials.

The approach makes no direct use of the concept of
flux, although it provides convenient means of
introducing it, therefore for several purposes the field-
based and charge-based approaches are equivalent
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Hence most of the numerical methods in terms of the
potentials V and A can use the same basic equations.
Nevertheless the integral formulation presented here can
be considered as the logical outcome of the charge-based
view of electromagnetism, and its inherent logic differs
from other differential and integral methods relating to
low frequency electromagnetic fields [4-7].

Since the sources are limited to the g's and T's, the
proposed scheme makes no use of magnetic poles, thus
the concept of magnetic circuit has no part in this model
and the field equations are modelled by electric circuits
only. Therefore the presented model has the advantage of
a natural and easy linkage of circuit and field equations.
Furthermore, it is not affected by numerical instabilities
when it takes into account the relative motion among
conducting bodies. As an integral formulation, it needs
the modelling of conductive regions only, and do not
require the specification of boundary conditions.
Furthermore the proposed procedure has the
characteristic of an easy data input for the definition of
the arrangement of the ferromagnetic and
non-ferromagnetic regions. By utilizing the symmetries
of the examined system it is possible to reduce both the
computational time and the required memory workspace.

II. MODEL

The whole volume Q of conductive and magnetic
regions is subdivided in N elementary volume elements,
that can have several shapes ( tetrahedrons, bricks,
cylinder sectors ), as shown in the 2-D decomposition of
figure 1. Consequently, the vector potential A can be
evaluated from the eq. (1), considering instantaneous
propagation for the application of interest, adding the
integrais relating to every ¢lementary volume.

Fig. 1 First decomposition

Connecting the centres of nearby elements by means
of segments parallel to the coordinate System unit
vectors, we obtain a 3-D grid as shown in the figure 2.
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Fig. 2 Grid (solid lines)

Then we associate 1o every segment of the grid a new
elementary volume element having four edges parallel w0
the segment, and the faces normal 1o the segment with
their centres placed at nodes of the grid, see fig. 3. We
assume that, inside every volume element, only the
current density and magnetization component parallel to
the segment associated to the volume element exists.
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Fig. 3 Association between volume elements (solid lines)
and segments (dashed lines)

The vector potential in the generic k-th element is:
_ e Js (i, x") Jij (2, )
: m-z;[w'xk_zw St
ni'xMj () Jmj (2, x)
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where V; is the j-th elementary volume, Jg are the
current sources, J;; the induced currents, Jp,: the volume
magnetization curfents, M. the magnetization of the j-th
volume element and n, is the normal 1o the j-th element
surface.

Assuming an uniform distribotion of the
magnetization M; inside each volume, we have no
volume current densities Jy, = curl(M } = 0. Furthermore
assuming an uniform distribution of [he current density
5 (t x) = Jj;(® and Js(tx) = Jy(t) we obtain that the
magneue vector potential A, and consequently the flux
density B are proportional to the currents Ij; ij and I and
to the magnetizations M:. In this way, we can derwe the
coefficients o, f and A {’eq (2a), (2b}, (2¢) by means of
analytical expressions [8,9] developed in previous works,
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thus obtaining a quick and accurate evaluation of the
electric parameters of the equivalent circuit. The flux
density B(P,t) = VxA(P,t) or By = VxAy is equal to:

By= B + By +By (2 By =0 M; (2a)

j=1
R N
By =Y B;ly @b); By =X Al (20
j=t j=1

The By, field, due to the current sources, is obtained
by subdividing the current sources in R clementary
elements (slabs or rings). The Bj;; field ,due to the
induced currents, is obtained by adding the contributions
of all volume eiements, while the By ficld, due to the
magnetizing currents, is obtained by taking the curl of
the surface integrals, shown in eq. (la), on the
boundaries among every volume element. Considering
isotropic materials, we can write the relations between
the magnetic field H, the magnetic flix B and the
magnetization M inside the material as:

=B""‘-Mk

Hy =Hpy +Hy +Hy (3), Hp (3a);
g]

H,, =B Gby; Hy =2k Ge).
0 0

Then, substituting the equation groups (2) and (3) in
the characteristic of the material Hy=H(By) we obtain
the equation:

M, = F[B ] = F{My,..Map Ty, .. Jan dsts-s ] (4)
Then we write Ohm's law inside cvery volume
element:

d A1)

J () =-VV () ————

Piti(t) (10)] 3 -
where Ay is the magnetic vector potential in the k-th
elementary parallelepiped, VVy is the irrotational
component of the electric field Ey and Ji is the current
density in the k-th volume.

We combine equations (la) and (4) in order to
express the derivative of the vector potential with respect
to time as a function of the currents inside volume
¢lements.
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dMy/dt can be expressed as a function of dl;/di and dIg/dt
in the volume elements by differentiating the constitutive
eq. (4) inside every volume element:

j=1
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dF/dl and dF/dM constitute the elements of the matrix
Dy that gives the relation between dM/dt and dl/dt.
These terms are functions of the currents Ij; and I and of
the magnetizations M, that are known at every time
instant. Integrating eq. (5) in each volume element T
and meaning the result on the surface Sy we obtain:

R %V;L i{i_ 3Na_114.i+if E_I_SL t7
“+j_1 FY] ; = Y TR @)

where Uy is the electric potential difference between the
centres of two nearby parallelepipeds, Ry, is the electric
resistance of the volume Iy, Iy is the current in I , the
Ly are the mutual induciances between T and Ij and
Lysj are the mutual inductances between the volume Iy
and the current sources volumes st- Substituting (7) in

(8) we obtain the equation :
3

N al;, & ol
Rka+Z(Ly+DM1j)——LaI +2Lkgj—'Lat =U,
j=1 j= 9)

where Dyg; is the element of position k j in the matrix
Dyy. This eéquation represents the electric equilibrium
equation of a branch of a network where resistive and
inductive elements, corresponding to the physical
resistances, self and mutual inductances of the
elementary volume clements are present,

3

Fig. 4 Branches of the equivalent network

Each of the NO nodes of the network is the center of
a star of six branches. Every branch is inductively
coupled with all the other branches of the network.
Therefore we can consider the segments composing the
grid obtained in fig. 1 as branches of an equivalent
electric network, and we can write the mesh equations
for the loop currents in the network, then obtaining a
system of 3N-NO+1 equations. Minimum path meshes
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arc selected in order to have a diagonally dominant
matrix. If external voltage generators, capacitor banks,
inductances or resistances are electically connected to
the conductive regions, their circuital branches are
connected to nodes of the grid. These nodes correspond
to the volume ¢lements that are physically in contact
with the electrical cables that connect the external
elements to the conductive regions. Then their electrical
branches are added to the equivalent network of the
conductive regions, and the equilibrium of the network is
examined.

The solution of the equilibrium equations of the
equivalent network, by means of a single-siep time-
marching method [10], allows the evaluation of the
currents in the elementary volumes, and therefore the
evaluation of the eddy current distribution in the
conductive regions. In order to reduce the computational
times the matrix Dy and the magnetizations M are
considered constant during every step, being updated
only at the beginning of each time interval integration
The complete procedure is constituted by the following
steps:

Initialise the currents in the branches of the network;
=0

for i := 1 to n (last instant) repeat

1 Find the M(y;) by solving (4)

2e¢ Update the matrix Dy (that express dM/dt as a

function of dl/dt at the instant t; } by means of (7)
3= Make the time marching step by solving (9)
de t:=t+ AL
end for

The computational cost of the method, due to the
presence of dense matrixes, is similar to other integral
formulations [11]. Nevertheless, the presence of a
diagonally dominant matrix and the analytical evaluation
of its elements, can significantly reduce the
computational times. Furthermore, the impact of parallel
processing and the use of iterative algorithms [12]
should significantly enhance the numerically efficiency
of the method.

IT]. MOVING ELEMENTS,

We consider a system with a fixed body and a moving
one having a velocity v(t). In order to take into account
the presence of a moving element, we have 10 modify eq.
(6), that becomes:

QA _ o 3, “)I‘]:.hxkl—x'IW”

ot 4l ot

N ST
+J, a)'[‘j":[-g;m—};,-lm +z‘: i O I\{Jlxkl—x'l av;

=

W 3.
+J; (I)I‘{I%mm +Z A;]t(t) IS'[J|xk1—1'|de

i=1

+M; (z)j!JJ%ﬁdsj (10)



‘When the point xi belongs to the fixed body eq. (10)
is equal 0 eq. (6), when the point xi belongs to the
moving body, we have that

v(i)
e - xf

_@_ 1 - 1 axk -
dtf|m—x|] |x-xf ¢

and
al 1
;g(z)j‘{,[a[m]dw =J; (O J.\‘!Im_—le-dv
Mj(:)jgfjaﬂ;[r;"f_—x,l]dsj -M; (r)v(t)jyl:k—j;-gds
i j

then we can obtain analytical expressions for the volume
and surface integrals, These terms modify eq. (9) which
becom‘es

(11)

of;
Rklk +Z(Lb +DM§ ) a: +VK1]J- +VK2Mj

j=1

J= (12)

Therefore we can repeat the procedure described in
the previous paragraph, substituting eq. (9) witheq. (12)
in the step 4.

IV. LINEAR SYSTEMS

When we deal with lincar characteristics, eq. (4)
becomes:

M= [1——-) ZBJ Isj +27g I +Zﬂ.j M;

J=1 (13)

therefore we obtain a linear relation between the
magnetizations inside the elementary volumes, and the
source and induced currents I and I;.

Consequently dF/dI and dF/dM in the eq.(7) are no
more functions of the currents I;, I; and of the
magnetization M, but are constant values. Therefore the
relation between dM/dt and dI/dt is constant in time and
the matrix Dyy does not have to be updated during the
time stepping. Then we can substitute these expressions
in the eq. (9) and eliminate the step 3.

The energy of a conductor can be obtained from the
equation:

vl

(14)
then the force on the conductor can be obtained by:
_ oW
—= A-J dQ
oox ax 2 -” (15)

Substituting eq. (2} for A in eq. (15) we have:

70

-2l [III,;_‘Zﬂé[{Jﬁ:‘;—’m
SNEE

j=l1 S; |xk Xl

then carrying out the integral with respect to the volume
€2, summing the contribution of every volume element V;
and taking the derivative with respect to x similarly as in
the eq. (10) we have:

3N
F=§_§§JE(:)P‘{IF{:%'IM
J‘.” (t) ZII X M; (‘)

i=1s;

(16)
that can be evaluated by means of ana]ytical expressions
[13]. The evaluation of the electromagnetic force on the
moving body allows the determination of its law of
motion by means of the mechanical equilibrium
equation:

o*x F

a* m

Ty dQ

V. RESULTS

The method has been tested against benchmarks for
linear and non-linear ferromagnetic systems.

The first one is a magnetostatic problem proposed by
the Institute of Electrical Engineers of Japan [14,15].
The geometry is shown in fig. 5, where the permeability
of the iron core is 1000 and the coil was energised with
3000 AT.

3 -»".; 90 100
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Fig.5. Geometry of the standard IEEJ problem

Fig. 6 displays the z component of the magnetic
tnduction along the x direction at a distance of 10mm
from the top of the iron element with y = 45mm.

One eighth of the system was discretized in 250
elementary cubes with good agreement between
calculated and experimental results.
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Fig.6. Magnetic induction on the line B-B’

The second problem also proposed by the Institute of
Electrical Engineers of Japan [16], featured a time-
varying sinusoidal excitation relating to linear
ferromagnetic  characteristic.  The  experimental
arrangement shown in fig. 7, is composed by a coil
energised with 1000 AT, two aluminium plates and a
ferrite block, the relative permeability of the ferrite is
assumed to be 3000 and the frequency is 50 Hz.
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Fig.7. Geometry of the standard IEET problem

Figures 8 and 9 show that a good agreement between

calculated and experimental results was obtained with
370 clements.
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Fig.8. Magnetic flux density at z=57.5mm, y=0.0
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Fig. 9. Magnetic flux density a1 z=57.5mm, x=0.0

Experimental measurcments are given also when a
hole in the aluminium block is present. Figures 10 and
11 show a good agreement between calculated and
experimental results with the same discretization.
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Fig. 10. Magnetic fiux density at z=57.5mm, y=0.0
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Fig. 11. Magneiic flux density at z=57.5mm, x=0.0



Furthermore, the method was tested by comparing
calculated and experimental results relating to the
TEAM problem 13 [17] as shown in fig. 12.
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Fig.12. TEAM Problem 13 geometry.

The calculated results shown in the figures 13 and 14
agree with the experimental results and with resulis
obtained with other models,
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Fig.13. Comparison of average flux densities in iron

Only one fourth of the system was discretized, by
using 430 elements. A modified Newton-Raphson
algorithm [17] with a relaxation factor r = 0.5 was used
for the solution of the non-linear system, the linear
solution was taken as starting value for the calculation,
and convergence was reached in 10 steps .
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Fig.14. Comparison of flux densitics in air
VI. CONCLUSIONS

An integral formulation for 3-D non-linear
electromagnetic fields analysis has been presented. The
method was formulated for the analysis of non-linear
systems including the presence of moving bodies.

The method allows an easy modeling of homogenous
and inhomogenous materials, can simply take into
account the relative motion and the electromagnetic
forces among conducting bodies, and allows an easy
linkage between circuit and field equations.

The method has been tested on standard problems
both for linear time varying systems and non-linear static
systems and has given a good agreement with
experimental results. Work is in progress for the
implementation and validation of the non-linear time-
varying case, and for the inclusion of the motion of
bodies.
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