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Abstract: This review describes the historical origins
and the present stale of the finite element method in
electromagnetics. The foundation principles of finite
elements are briefly reviewed, Applications are
mainly to two and three dimensional problems of
microwave and oplical siructures. The major types
of scalar element are noled, and edge-interpolative
vector elements are reviewed, firstly for the
wavegutde problem and then in three dimensions. An
extensive bibliography is given, particularly siressing
Teview Papers.

1. The Beginnings

When Courant prepared the text of his winter
address to the American Mathematical Society for
publication in 1943, he added a two-page Appendix
to illustrate how the variational methods first
described by Lord Rayleigh could be put to wider
use in potential theory [1]. Choosing piecewise-linear
approximants on a set of triangles which he called
“elements®, he dashed off a couple of two-
dimensional examples and the finite element method
was born.

Finite element methods remained dormant,
perhaps waiting for computers to be invented, for
mote than a decade. They next appeared in the work
of Duffin [2,3] in a form similar to that given by
Courant but relying also on the mathematical ideas
of Synge [4]. A variational approach was retained in
this work, making it relatively hard of access to
engineers, for whom variational methods were not
then a part of the normal mathematical toolkit.
Where variational methods were used at all by
applied field analysts, they were viewed as ways of
generating finite difference formulae [5].

Finite element activity in electrical engineering
began in earnest about 1968-1969. A paper on
waveguide analysis [6] was published in Alla
Frequenza in early 1969, giving the details of a finite
element formulation of the classical hollow
waveguide problem. It was followed by a rapid
succession of papers on magnetic fields in saturable
materials [7], dielectric loaded waveguides [8], and
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other well-known boundary value problems of
electromagnetics. The method was quickly applied to
integral operators as well, both in electrostatics [9]
and wire antenna problems [10].

In the decade of the eighties, finite element
methods spread quickly. In several technical areas,
they assumed a dominant role in field problems. An
assessment of the finite element literature, and of its
growth rate, may be obtained by examining the
INSPEC bibliographic data base over the 1968-1992
period. In 1968 the number of extant finite element
papers with electrical engineering content amounted
to a mere handful. By 1993 the total had reached
about 6000, with 600 or more additional papers
published annually. The number of papers added to
the literature each year, as recorded by INSPEC, is
shown in Fig. 1.
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Fig. 1. Produclion of finile elemenl papers
in electrical engineering, 1968-1992.

Having initiated the method, mathematicians
at first failed to grasp the significance of finite
elements to practical analysis. Serious attention
began to be paid to this technique about the same
time as it gained a foothold in electrical engineering.
Zlamal [11] published the first mathematical paper



explicitly devoted to the finite element method
about the same time as electrical engineers began to
use it seriously. He and Whiteman [12] recognized
the value of this technique at an early date. Other
able mathematicians, such as Ciarlet [13], quickly
followed.

2. Theoretical Basis

QOver the past 30 years the mathematics of finite
elements has developed into a distinctive field of
study, mainly based on projective and variational
methods. This survey is directed to electromagnetics
so a detailed treatment of the mathematics would be
inappropriate. However, a brief overview may clarify
what is special about electromagnetics problems.

2.1. Strong and weak solutions

The finite element method as used in
electromagnetics is a special case of a general
mathematical method [14] in which the differential
or integral equation to be solved

Pu=wv (H

is first replaced by an equivalent weak form, and this
weak-form equation is subsequently solved by
numerical approximation. The operator P may
represent a boundary value problem (differential
equations plus boundary conditions) or an integral
operator, or a mixed (integrodifferential) operator.

The quantity u is said to be a strong solution
of the operator equation (1). A weak solution & is
obtained if the left and right sides of (1) have equal
inner product projections onto all functions w € W,
where W is some function space whose closure is the
range of the operator P,

(Ph,w) = (v,w), (all we W). (2)
The space W is open to choice so the weak
reformulation permits a variety of approximate
solutions. The general principle is to choose a finite-
dimensional subspace Wy CW and to solve the
finite-dimensional (subspace) version of (2) in Wy, a
subspace which actually cannot contain the range of
P, and might not even intersect it! Such approxi-
mations are particularly attractive if the inner
product {a,b} is an energy product [15] or a product
integral, as illustrated by the following example.

2.2. Boundary-value problems.

The finite element method was first applied to
boundary-value problems of differential equations, of
a class illustrated by the mixed boundary value
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problem of Fig. 2. Here

Viu=v inf, withu=0 on dp,

ou (3)
T 0 ondp.

The solution « of (3) lies in a Hilbert space whose
inner product is conveniently defined by the simple
product integral

(a,b) = Jnab ds. (4)

Taking inner products on both sides with every
possible w € W in turn,

I wVludf = Inwvdﬂ, @lweW), (5
12

and applying Green’s second identity to the left-
hand member, there results

J grad w . grad udf2
2

(6)
+J wvd()—jg wgrad@-dS=10.
n an

(b)

connected two-

Fig. 2.
dimensional region 2. (b) One possible
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subdivision of £2 into triangular finile

elements.

A key point to note is that {Pu,w} is well defired by
(6) even if % is only once differentiable, while V2 is
not defined! This permits great freedom in choosing
approximations for 4. However, to ensure the
boundary conditions are satisfied it is still necessary
to restrict the space W by requiring the boundary
and bulk integrals in (6) to vanish independently,

I grad w-gradGd2 = —J‘ wodf2 (7N
iy 2

(for all w)



§anwgradﬁ-ds=0, 0N =385Udp. (8)

Nothing in Green’s second identity enforces the
Dirichlet boundary condition u =0; consequently,
this condition must be explicitly imposed on the
approximate solution. However, the surface integral
(8) corresponding to the Neumann boundary condi-
tion appears naturally in the weak formulation.
Consequently the Neumann boundary condition of
eqn. (3) is termed a natural boundary condition,
while the Dirichlet boundary condition is termed
principal or essential.

Reformulation through Green’s second identity
weakens the continuity requirements on @ but places
stronger demands on w than on »: w must be once
differentiable while v in the original boundary value
problem (3) need not even be continucus. In fact the
differentiability required by (6) is precisely equal for
% and w. This suggests the weak solution may be
sought in the space W itself. To summarize, W has
three key properties in this problem: (1) its member
functions are once differentiable, (2) they vanish on
0p, (3) the closure of W includes the range of P.
This weakened continuity requirement on u (which
incidentally accounts for the strange name weak
form) thus allows twice-differentiable solutions to be
approximated by functions which do not themselves
possess his property.

2.3. Finite element methods.

To obtain an approximate weak solution % ~ %, the
problem region {2 is partiticned intc nonoverlapping,
simply connected finile elements {2,

2=Ja (9)

A finite set {op |k =1, .., N} of approximating
functions is defined to span Wy, a finite subspace of
W. These functions must possess as high a degree of
continuity as the weak form requires, and must
satisfy all the principal boundary conditions. (In the
example, akECD, and a; =0 on Jdp, suffices). A
large part of the literature of finite elements deals
with systematic methods for partitioning f2 into
elements and generating approximating functions on
them. Omne popular method is to construct
interpolation functions on an element-by-element
basis so that the function values along the
boundaries of each element will match the function
values along the edges of its adjoining elements.
Ensuring function continuity turns out to be quite

easy, but it is surprisingly difficult to construct
approximating functions with continuous derivatives.

Once the finite element function space Wy has
been constructed, the weak solution is approximated
by the finite summation

N
ﬁ = Zukak.
k

Equation (7) then yields

(10)

N
- ; Jngradaj-gradakdﬂuk= [na:jvd!). (11)

Since the integrals can be evaluated immediately,
this may be regarded as a matrix equation and
solved by the usual methods of numerical linear
algebra. More generally, boundary-value problems in
the scalar Helmholtz equation

(Vi ku=v (12)
take the matrix form

(S+ETu=v (13)
where

Sik=— J-ngra,daj-gradakd!),

Ty = [najakdﬂ, (14)

vy = Invakdﬂ.

Most of the computing time is usually expended in
solving the matrix equation, so a good deal of effort
has been devoted to the development of methods
able to exploit the algebraic and topological
peculiarities of § and T. These depend both on the
physical problem class, and on the type of finite
elements used.

3. Element Types

Finite elements used for electromagnetics initially
resembled those used in structural mechanics, but
differences in the wunderlying physical problems
rapidly led to development of distinctive element
types. It is probably fair to say that almost all work
in electromagnetics has used distinctive elements
since about 1970. The basic differences between
scalar and vector problems, as well as between those
of spatially infinite or finite extent, have led to



several families of fundamentally different elements.

3.1. Scalar Lagrangian simplexes

Scalar potential or wave problems have traditionally
been solved using approximating functions based on
Lagrangian interpolation polynomials. A family of
interpolation polynomials 1; on some finite element
2 is associated with a point set P: {P;|P; € £,
i=1, .., K} such that ¢;(P,)=46] (Kronecker
delta). Aside from their computational advantages,
interpolation polynomials are esthetically pleasing
because all computed numbers represent physically
significant quantities, e.g., local potential values. On
the finite element §2 of Fig. 3(a), for example, the
function ¢ is modeled by

6= 4P, (15)

s0 the coefficient that accompanies 1, is the value of
* ¢ at point P;.

Interpolative finite element approximating
functions are defined on an element-by-element basis
so as to satisfy the principal continuity requirements
at element boundaries. Suppose an interelement
boundary is shared by two distinct elements §2; and
Qj used to model some scalar function ¢. Function
continuity is assured if the function value at every
interface point is determined entirely by the nodal
values on that interface. For example, along the
(one-dimensional) edge between two-dimensional
elements of Fig. 3(b), the approximated function ¢ is
a cubic polynomial in the distance s along the edge;
the four coefficients of this cubic function are
determined by the four nodal potential values
associated with the edge.

(a)

Fig. 3. (a) Triangular finite element with
cubic interpolation node set. (b) Shared
nodes of two cubic elements allow cubic
interpolation on the interelement boundary.

Interpolation functions for simplex elements
(lines, triangles, and tetrahcdra) are readily derived
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by an extension into d dimensions of the classical
Lagrangian interpolation theory [16]. Interpolation
nodes are placed on the element in a regular array,
as in Fig. 3(a). This procedure is best carried out in
homogeneous coordinates ¢, (g, .., {4, attached
to the simplex. These span the range 0 <(; <1 in
any simplex and allow producing “universal”
matrices that only need to be multiplied by a few
geometric properties to produce the complete matrix
representation of any simplicial finite element.

Establishing finite element matrices involves
extensive algebraic manipulation of polynomials, an
almost embarrassingly obvious application of
computer algebra, which has indeed been used since
the days of the Formac language [17]. By the late
1980s MACSYMA was routinely used for element
generation in applied mechanics but electrical
engineers rarely took any interest in this approach.
Early developments in mechanics were reviewed by
Noor and Andersen [18], and the state of the art in
electromagnetics is covered by a more recent review
paper [19]. Symbolic algebra will probably have a
major impact on finite elements for electrical
engineering applications in years to come.

3.2, Flexible elements

Although simplicial elements permit modeling of
quite complicated geometric shapes, they are
necessarily restricted to rectilinear interfaces and do
not represent curved surfaces very well. The
conventional solution to this problem, due to
Ergatoudis, Irons and Zienkiewicz [20], is based on
the simple observation that any Cartesian space
coordinate, or indeed any linear measure of distance
s, is (trivially} a linear function of the Cartesian
coordinates r,y,z. It may therefore be expressed in
terms of the finite element interpolation functions,

s(P)= Y o(P) v(zpypi2p), (16)

1
where zp, ¥p, zp are the coordinates of the point P.
If the functions ¢; are quadratic or higher
polynomials, then (16) can express coordinate trans-
formations which allow derivation of curvilinear
elements from rectilinear ones. For example, the
triangular element of Fig. 4(a) is mapped into the
curved triangle of Fig. 4(b) by such a transfor-
mation. These elements are known as isoparametric
because the same approximating functions are used
to model the geometric shape and the fields to be
determined. Isoparametric elements were used in
magnetic field problems at an early date [21], and
have remained in use by several working groups.



Their element matrices are obtained by the same
process as previously. However, their evaluation is
computationally more demanding because the
integrations must be carried out numerically.

(a)

Fig. {. Isoparametric element generation.
(a) Rectilinear (simplicial) parent element.

(b) Isoparametric triangle derived by
coordinate mapping.
Accuracy improvement in finite element

analysis may be sought by refining the mesh.
Alternatively, the analysis may be repeated using
elements of higher order. In this hierarchal elements
are valuable. Their approximating functions ¥; are
constructed in nested families, so that the functions
of polynomial order n are a proper subset of the
functions of order n+ 1. Such functions were first
pioneered by Rossow and Katz {22] and have
developed considerably since [23]. Because the
‘approximating functions form nested families, pro-
grams can be organized to compute only the projec-
tion of the weak solution onto the newly added
functions, not to repeat the entire calculation, when
moving to a higher-order approximation.

3.3. Geometrically infinite elements

Electromagnetic fields often extend over infinite
geometric regions. Even static field problems often
lack clearly defined finite boundaries, while an infi-
nite region is the very essence of radiation and pro-
pagation problems. Several methods have according-
ly been developed for handling what might be called
“infinite finite elements®, i.e., elements that
encompass finite energy or power in a geometrically
infinite space. These, and related methods from civil
engineering practice, were reviewed by Emson [24].

Consider the ribbon transmission line of Fig.
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5(a). To find the fields surrounding it, all the
infinite-element methods encase the line in an
artificial delimiting surface that subdivides all space
into a finite interior and an infinite exterior region.
The interior is handled by conventional finite
element techniques. For the exterior region several
techniques are available, of which at least four are
properly convergent: (1) hybrid representations, (2)
recursive growth, (3) inversion mapping, (4) special
boundary conditions. All may be viewed as ways to
find boundary elements which correctly {but
implicitly) represent the effect of the exterior field on
values in the interior region.

Fig. 5. (a) An artificial boundary encases
the region of interest. (b) Space exterior to
the artificial boundary is represented as an
mnfintlely-extending element,

The hybrid technique describes the field by
differential equations in the interior portion, integral
equations in the exterior. This means choosing a set
of approximating functions {B;1i=1, ..., M} to
satisfy the field equations exactly in the exterior and
to match the interior element functions o ; along the
exterior-interior interface. This procedure [25] was
introduced and implemented around 1970 and has
been extended varicusly since. For example, the
exterior functions may be chosen to satisfy the field
equations exactly, but match the interior elements
only at the element nodes, not everywhere on the
interface [26]; in this case, they may be expressed as
orthogonal series expansions [27] or (in two
dimensions) circular harmonics. The major difficulty
in element formation is the evaluation of integrals
containing Green’s function singularities. These may
be dealt with by geometric transformations [28] or
by generating special weighted quadrature formulae
[29]; or alternatively, by an ingenious scheme of
using double boundaries [30].



Recursive growth algorithms model the exterior
as a nested sequence of convex shells or annuli. They
alternately add a shell and eliminate unwanted
exterior variables, so that the memory required
during construction of the exterior element with N,
boundary nodes never exceeds 9N % The result is an
extremely large, though still finite, exterior region
[31]. Its growth rate in recursion can be doubly
exponential, so that only a few recursion steps suffice
to achieve immensely large exterior regions. The
method is applicable to propagating-wave problems,
provided an approximate radiation condition is
attached to the outermost boundary and the growth
of element size is controlled according to certain
stability rules [32]. It has been used to solve
waveguide problems [33,34] as well as two or three
dimensional propagation.

Inversion mappings first appeared in Maxweil’s
Treatise. A circular or spherical boundary of radius
R is drawn around the interior region and the
exterior is mapped into a finite region by inverting
all radial distances r with respect to this radius:

o= B2 (17)
The differential equation governing the exterior
region is transformed accordingly, and finite
elements are constructed for this transformed
equation. Two coupled boundary-value problems of
the interior type thus result [35]. The restriction on
boundary shape can be removed; non-circular
boundary shapes have been proposed by Imhoff ef al.
[36], and a fairly complete theory of alternative
shapes was developed by Stochniol [37].

In propagating-wave problems, the method of
absorbing boundary conditions has recently gained
great popularity. This method was initially
developed by Bayliss and his associates [38,39], and
augmented by other workers [40]. A review of the
available variants of this method was given by
Cooray and Costache [41]. Here a boundary element
is created on which the wave function and its first
derivatives are so related as to minimize the local
reflection coefficient. A normally-directed outgoing
wave is then absorbed by the borudary, much as a
wave is absorbed by dissipative material in an
anechoic room.

3.4. Vector operators and elements

A difficulty encountered with weak-form equivalents
to boundary-value problems, and apparently peculiar
to electromagnetic field problems, is the existence of
spurtous modes. 'These physically impossible
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solutions arise because weak solutions of the
Helmbholtz equation need not satisfy all four Maxwell
equations even though the corresponding strong
solutions do. Koshiba, Hayata and Suzuki [42]
reviewed the literature and methodology of this
problem in the context of waveguides, where this
problem was first observed in the 1960s. It has heen
pointed out more recently that deterministic
problems can suffer from the non-physical modes
equally well [43]. This should not be surprising,
given that the matrix representations of the eigen-
value problem of guided waves, and the
deterministic problem of forced fields, invelve the
same finite element matrices and therefore have the
same eigenfunction spectra. The spurious mede
problem and its solutions will be dealt with in detail
further below.

4. Applications to Magnetics

Finite elements have been applied to problems of
applied magnetics, to waveguides and resonators, to
antennas and scatterers; there is also a substantial
literature in the area of semiconductor process
modeling. This review concentrates mainly on the
popular area of microwave and optical devices, but it
must include certain parts of magnetics — most
notably the eddy current problem — because they
involve the same mathematical difficulties.

The early papers of Chari and Silvester [9,44]
that dealt with finite element applications to
magnetic field analysis were followed up by other
workers fairly quickly, By 1990 this had become the
dominant numerical method for magnetics problems,
and now accounts for nearly half the finite element
literature in electromagnetics. The central problem
here is to solve the magnetic vector potential
equation

curl (—,‘—}:curlA) - pog%—‘? = pigd, (18)
subject to appropriate boundary conditions. Konrad
[45] has reviewed this field well, though in view of

recent rapid growth, that review has now become
dated.

Although the magnetic flux density B due to a
given set of currents is clearly unique, the
accompanying vector potential A is open to choice of
gauge and  therefore not unigque. Gauge
transformations are introduced by specifying the
divergence of A. Because the curl of A must always
equal the flux density B, these two specifications
define A unequivocally. A typical choice is



divA = — pugV — pe%—‘:, (19)

where V' is the electric scalar potential. Numerous
other choices are possible. However, they all have the

same form in classical two-dimensional
magnetostatics, where A is time-invariant and
possesses only one component. This situation

characterizes a large class of useful problems in
electromechanics and the electric  machines
community in particular adopted the finite element
method at an early date. It was widely assumed that
three-dimensional problems would be solvable by
straightforward extensions of the techniques that
worked so well in two dimensions, and that it was
merely a matter of waiting for computing machines
to grow large and powerful enough to handle three-
dimensional problems. This supposition, however,
proved false. Initial attempts to solve three-
dimensional problems largely ignored the question of
gauge [46]; in other words, they allowed the
computer to choose the gauge through arithmetic
chance and roundoff error. The resulting values of A,
of course, are irreproducible, though B is well
defined. The gauge problem and the associated
choice of potential formulation may now be regarded
as solved [47,48] — so far as any problem in
technology is ever solved — but it has taken almost
a decade to establish what methods are actually
useful and correct.

This area has produced a large number of soft-
ware packages for general use by design engineers
and analysts, experts in magnetics with little know-
ledge of finite elernent methods. A recent survey of
the available techniques was given by Tsukerman,
Konrad, Bedrosian and Chari [49] while both the
methods and the available software packages were
comprehensively reviewed by Tseng [50).

5. Microwave and QOptical Components

Optical and microwave applications of finite
elements are now considered in detail. Microwave
devices were indeed the first class of electromagnetic
field problem solved by finite element methods [6].
Daly [51] analyzed wave propagation in microstrip
lines at an early date, and the hollow waveguide
problem attracted sufficient analysis to merit a
review paper [52] shortly thereafter. Stone [53]
extended the methodology to acoustic guided waves
and Konrad determined the fields in cavity
resonators [54]. Antenna analysis by finite elernents
lay dormant after an early start [55], but has
recently blossomed. The review by Glisson [56)
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indicates much  valuable material, though
unfortunately it is already becoming dated. More
recently, finite elements have had particularly strong
impact in the analysis of optical waveguides [57] and
related devices. Recent texts on finite elements
applied to microwave and optical frequencies are by
Davies [58] and a comprehensive treatment by
Koshiba [59].

The microwave and optical component
problems [60] addressed here include (a) waveguide
that is uniform in 2z, where a modal approach is
appropriate, () resonators and (c) closed scattering
problems (e.g., finding the scattering matrix for a
transmission filter). Problem (a) is quasi-two-
dimensional while (8) and (¢} are very closely related
and genuinely 3-D in nature,

5.1. Uniform waveguide
To consider item {a) of the list above, the following
four examples will be examined:

(i) hollow conducting waveguide (e.g. hollow ridged
waveguide)

(ii) conductors coexisting with  ¢(z,y)
microstrip and coplanar waveguide)

(iii) optical waveguide e(z,y) (e.g. rib or channel
waveguide)

(iv) nonlinear optical guide ¢(z,y,|E|]) where
permittivity ¢ depends on optical power level,

(e.g.

Firstly to clarify the problem being considered
[61,62]: it is a uniform optical or microwave guide,
where the structure is strictly uniform in z (as
declared in (i) to (iv) above), and modes are being
looked for, defined by

E(z,y,7,1) = e(z,y) exp j(wl— Bz)

H(z,y,5t) = h{z,y) expjwi— fz)

(20)

Finite elements have been applied mostly by using a
variational approach and many formulations have
been used [61], generally in terms of one of the six:
H; E; H and E; H, and E,; H; E; or H, and E,.
There is no best choice, but the most common is the
following variational form (with s.v. denoting
“stationary value of”) [63]:

I J I(curlH)*llcll-l(curIH) 40

[TTwvmanas

W= 8.

(21)



A feature of this formula for optics is that, although
¢ is inhomogeneous, u is invariably constant, so that
physically H is continuous everywhere. This eases the
finite element representation, as all three
components of H are now continuous. As the
permittivity enters as a simple multiplying factor in
the numerator, quite arbitrary e(z,y) can be
included with negligible additional computing cost.
Anisotropic dielectric has commonly to be modeled
in optics, and this gives no problem with
formulation (21) providing only that the material is
everywhere lossless. To use formulation (21) one
chooses a propagation constant § which gives the z-
dependence of all fields. Applying finite elements
across the waveguide cross-section with the Rayleigh-
Ritz method gives the following matrix equation:

Av = wBv (22)
B is real, symmetric and positive-definite, while A is
Hermitian but can usually be reduced to real,
symmetric. One then has a range of quite excellent
matrix algorithms for numerical solution.

By far the most serious difficulty with a finite
element (or almost any other) procedure based on
(21) is the occurrence of many spurious modes which
come from the numerical procedure. These have
already been referred to, and we will return later to
this difficulty, but the chief trouble is with non-
physical solutions which do not satisfy the
divergence condition [64]. (Another class of ‘spurious
modes’ cluster around zero frequency, but these are
less troublesome, and again will be referred to later.)
Unfortunately the number of spurious modes
increases with finite element mesh density and
matrix order, so that any desire for high accuracy is
accompanied by persistent difficulties. For many
years this failure has been rectified by adding a
penalty term [65] to give [66,67]

(23)

= { IJ_[(C“rlﬂ)*”fll“l(cur]H)dQ

[ [ [mymmae
e IJ J J(div H)*(div H) dn}

JHH“uﬂquﬂ

The penalty parameter p shifts the spectrum of all
modes, but most strongly the spurious modes. The

+
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user can therefore ‘filter out’ the unwanted modes.
Theoretically all now seems respectable — the
required constraint has been added in a classic least-
squares sense, with little additional computational
effort. Although the penalty function is widely used
in finite element work, in this context the whole
procedure is neither numerically robust nor
mathematically elegant.

Much effort has gone into the proper removal
of spurious modes from the accurate approaches over
the last decade. One method that retains sparsity,
maintains reasonable computational economy and
preserves a canonical matrix form such as eqn. (22)
is to accept the original variational form of eqn. (21)
but apply a more appropriate choice of basis vector
functions from the armory of finite elements. This is
by taking advantage of the recent introduction of
edge elements [68], tangential vector finite elements
(TVFE’s) [69,70,71] and Whitney forms in general
[72,73,74], which have transformed many
applications of finite elements.

The method seems to have more relevance, and
to be more comfortable, in three dimensions, as
treated in section 6, rather than in two. Briefly,
tangential vector finite elements (of which edge
elements are the simplest subset) are a radical
alternative to the nodal shape functions commonly
used in finite elements. They represent the vector,
not via three separate components, but as a vector
which is arranged to have prescribed tangential, but
not normal, values at the edges of the elements. Lee
[72], Koshiba [75] and Hano [76) have in fact nsed
tangential vector elements, a family of vector basis
functions of which edge elements are the simplest
and lowest order. It can be seen that their choice
results in much more involved algebra and calculus
(for evaluation of the usual element matrices) than
nodal elements. Also a considerably more
complicated matrix ecigenvalue equation emerges,
which arises from their introduction of a field
transformation to obtain a canonical eigenvalue form
in #2. Some of these complications arise because of
the disparity between fhree-dimensional vectors and
two-dimensional fields.

In 1984 Hano [76] introduced a special set of
finite elements. By wusing simple Cartesian
rectangular elements, he was able to choose separate
shape functions for the z, y and z components that
achieved the basic aim of tangential vector elements.
This was, in essence, a precursor of the edge element
approach, but limited strictly to rectangular
elements. Covariant projection elements were applied



to 3-D problems in 1988 [77] and applied to the
waveguide problem in 1991 [78]. All eliminate the
troublesome spurious modes, but leave a countable
cluster of (strictly) spurious modes around zero
frequency.

5.2. Uniform waveguide with nonlinear material

To illustrate the almost limitless versatility of finite
elements, a more complicated problem is now taken
up. In all of the above, it has been presumed that
there can be a transversely varying permittivity
¢(x,y). But nonlinear material, as described by
e(z,y, | E|), is of considerable interest [79] and can
similarly be solved [80,81] by using the above
methods within an iterative loop, which seeks
consistency between the linear solver and the
specified nonlinear law for ¢. A typical structure
would have constant (with respect to field) ¢ over
part of the cross-section, but a finite region would
have a law such as [82]

E 2
€= €, + Aemt{l —exD( _aAlful't )}

Clearly for any two specified values of w, # and total
power in the mode, the third parameter is an
unknown eigenvalue, necessitating some iterative
scheme for its solution. Finite element solutions are
now being routinely produced for fairly arbitrary
nonlinear laws as well as two-dimensional profiles of
permittivity.

(24)

6. Three-Dimensional Structures

We now consider resonators and closed scattering
problems. If we focus discussion here on the
resonator, it is with the understanding that most of
the aspects of finite element implementation are
identical for the two classes of problem [60,83]. For
any solution approach to the resonator, an analogous
approach exists for the scattering problem. The main
difference is that part of the resonator walls have to
be removed and replaced by resistive boundary
conditions (simulating a matched port) and/or by
reactive impedances and/or by stipulating at the
removed walls (say) the magnetic field and
evaluating the consistent electric field — and so
evaluating the scattering matrix. Though these
considerations are not trivial, we by-pass them to
consider the more fundamental issues of the finite
element formulation and choice of basis functions.

The other major between the
resonator and the evaluation of a scattering matrix

difference
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is that the former leads inevitably to an eigenvalue
problem — best couched into a canonical matrix
equation with relevant eigenvalues. The scattering
problem is essentially a deterministic, rather than
eigenvalue, problem and so inevitably leads, instead
of eqn. {22), to a matrix for solution of the usual
deterministic form Ax=1y. This is, of course, a
fundamentally easier matrix equation to solve than
the eigenvalue equation (22).

We therefore concentrate on solution of the
typical resonator which consists of an enclosing
conducting wall, with an interior of permittivity
lleiz,y,2) and possibly (most likely at microwaves)
permeability || g|(<,y,z). Optical resonators can
similarly be studied without metal walls, but some
mathematical artifact (such as a magnetic or electric
wall, if physically realistic, or an ‘evanescent’ infinite
element [57]), is best used to avoid treatment of a
lossy resonator, which loses the Hermitian
formulation. As with the waveguide problem of
seciion 5.1, finite elements have been implemented
by generalized Galerkin [84,85] and variational
[86,87] approaches. Unless some special requirement
forces the issue, it is generally pessible and advisable
to use a variational approach. The same variational
form of eqn. (21) can be used, or its dual form, with
H replaced by E, and ¢ and g exchanged.

Again if inhomogeneity of material is purely
dielectric, then the form in terms of H is easier by
orthodox nodal elements, as the 3-vector H is
continuous everywhere. By contrast any form using
E would need extra care for continuity of
appropriate fields and flux densities between
elements However, separate use of each formulation
has the advantage of bounding the true solution
[70,87) and/or providing information for error
signatures, relevant to the important matter of
adaptive mesh generation [70].

Resonators have been studied for many years
using 3-D versions of the traditional nodal elements.
Just as in 2-D, where the simplest first degree
elements are popular for their ultimate simplicity
and ultimate sparsity of resulting matrix, so can first
degree tetrahedral elements be used. Again, whether
in 2-D or 3-D, first order elements fit very
conveniently into a Delaunay-generated mesh of
elements, especially with adaptive mesh-generators
[70]. Higher order elements are also used [88],
including their attractive subset, hierarchal elements,
where extra nodes are added to elements, as one
proceeds to higher order, without abandoning any
nodes from the low orders.



Spurious modes have commonly been reported
[64,89,80] with 3-D resonators just as with {quasi-)2-
D problems. Clearly less work has been reported on
3-D numerical work than on 2-D, because of the
heavier computing demands of the former. Spurious
solutions can be avoided or alleviated by the use of
edge elements, which will be briefly described next.

6.1. Edge and tangential vs. nodal elements

So far in the vast majority of finite element work,
nodal or scalar shape functions have been used [85],
as already described. For a vector field, whether H,
E, B, D, A or J, the conventional scheme has been
to represent the vector as three separate scalars in
the standard nodal manner. Analytically exact and
conventional as this procedure is, it grates — it is
uneasy in this context. In contrast, there are
alternative schemes for directly expanding vectors in
terms of vector forms.

Whitney forms [70,74,75] span the relevant
possibilities of continuity between elements related
to the grad, curl and div operators. WP forms are
spaces of scalar basis functions that are continuous,
without continuous derivatives, between elements.
W1 forms are spaces of vector functions that have
continuity of tangential components, but not normal
components, between elements. W? forms are vector
functions having continuity of their normal
components only between elements. W3 forms are of
scalar functions without continuity between
elements. Working with tetrahedral elements, as we
progress through the forms we, wl, Wz, W3 we go
through W° which is nodal-based, W1 which is edge-
based, W? which is facet-based, and W3 which is
volume-based. Their intimate connection also comes
from the fact that the gradient of a 0-Whitney form
is a (combination of) 1-Whitney forms, the curl of a
W form is a W2 form, and the divergence of a W?
form is a W3 form.

We illustrate with just one particular Whitney
form W1 called the edge element. It is a first degree
polynomial form. The objective is to develop a
vector representation that assures that across any
face between adjacent finite elements, the tangential
part (only) of the vector is continuous., This will be
perfectly appropriate for representing H or E.

Consider a tetrahedron as in Fig. 6 with
vertices 1 to 4 and edges 1 to 6. For node i, we first
use the so-called barycentric coordinate ¢; which has
value 1 at node i, is gero over all tetrahedra not
containing node ¢, and varies linearly over tetrahedra
that contain node . These are the local or ‘volume’
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coordinates within the tetrahedron, so that {; has
unit value at node i, and varies linearly to zero at
the three other vertices. To introduce the edge
elements, we focus on edge 1, denoted as ¢;, which
joins vertices 1 and 2; associated with e; we
introduce the vector basis function w, defined over
the tetrahedron by:

Wy = (ygrad {, — (ygrad (25)
W,, Wy, W,, W; and wg, are similarly defined, each
associated with one of the other five edges. Although
w, is a first degree polynomial vector field, it turns
out that at all points along edge 1, the projection
onto edge e, of vector w has constant value. The
projections onto ¢; of vectors w,, w,, w,, w; and w,
are all zero. Equation (25) therefore gives a vector
substitute for the interpolatory shape functions of
nodal elements,

V(Cl,(gng,C,;) = Zviwi

L]

(26)

3:00,0,1,0)
~

1:(1,0,0,0) 2:(0,1,0,0)

Fig. 6. Tetrahedron vertices {with local
coordinales {,{;,{3,(,) and direcied edges.

On any edge ¢; V will assume a value that varies;
but the component (or projection) along e; will
remain constant and equal to vu,, where u; is the
unit vector directed along edge ¢ with the sense of
the arrow in Fig. 6. Clearly if we use the same
specifications of the v; (called the edge values) of
egn. (26) for different tetrahedra sharing the same
edge, the overall vector field will have a continuous
tangential component of vector across edges, and
similarly across faces. The normal components will



have no such enforced continuity. A special property
of edge elements is that their divergence is
identically zero within the tetrahedra, though not
across inter-element faces,

In this section we have concentrated on edge
elements in 3-D. Their extension to 2-D is
straightforward, although the fact that the physical
quantities are fundamentally 3-vectors makes the
situation less comfortable in 2-D than 3-D. For
instance it is commonly found necessary [77] to use
both edge and nodal elements because of the lack of
parity between transverse and longitudinal
components of field. Readers are referred to the
literature [71,73,77,89,90,91] for details of these
Whitney and related forms.

6.2. Tangential, edge and nodal elements for
resonators

A number of workers have reported successful use of
edge elements for the solution of resonators [84-89].
Motives have included belief in their superiority to
nodal elements because of their lack of divergence-
free related spurious modes, and their more effictent
representation, via their fewer free variables and/or
sparsity of global matrices. If one compares edge
elements {with their built-in divergence-free vector)
with nodal representation of the three Cartesian
components of field, there can surely, be no arguing
that the component version has a fundamental
redundancy and therefore inefficiency. If they also
give solutions free of a serious class of spurious
modes, then the edge elements have very much in
their favor. Recent evidence supports their
fundamental advantage.

In electromagnetics, the use of edge elements

was firstly with low frequency applications,
especially concerning eddy currents [92]. With
resonators, use with magnetic vector field

formulations, eqn. (21) or its dual form in terms of
E, has recently led to more satisfactory results [84-
89]. Universally it is reported that the spurious
modes associated with non-zero divergence are
totally removed. However, as mentioned earlier with
the waveguide problem, when the formulation used
has frequency as the resulting spectrum (as in eqn.
(21) and its matrix version (22)), other spurious
modes appear clustered around zero frequency.
Curiously, these non-physical solutions are ignored
by many workers as not being serious — as not
being worthy of the title of “spurious™ They are
indeed less troublesome, as their location in the
spectrum is very confined and away from the usual
region of interest.
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7. Conclusions

Finite elements in electrical engineering have had a
varied and interesting history. At an early stage of
development, several difficult problems were
encountered, such as the determination of gauge in
vector potential problems and the appearance of
spurious modes in solutions of the Helmholtz
equation. It has taken nearly twenty years to master
these difficulties, and their solutions point the way
for other, still more valuable, methods.

Incompletely solved problems of considerable
importance now include general methods for (1)
orthospectral elements, (2} field singularities, (3)
boundary integrals, including absorbing boundaries.
Several particular element types free of spurious
modes are known and used, but the generation of
families of such elements has still eluded analysts.
Much the same can be said for singular elements. In
the formation of boundary integrals, similar
difficulties of integration are encountered as with
field singularities. All three areas should prove fertile
ground for the application of symbolic algebra.
Given the current near-ubiquity of computer algebra
systems, there appears to be every reason for
optimism for their further development for finite
element methods in electromagnetics.

In the use of finite elements for computation of
high-frequency waveguides and 3-D structures there
have been both major achievements and serious
difficulties. As computing power has increased it has
made more important the robusiness of methods
used, so that human intervention is eliminated from
the inner shells of the computation. In this context it
is believed that the introduction of vector finite
element forms (or allied forms) will improve the
performance of many codes when, as in elec-
tromagnetics, vector fields are inevitably involved.
The case is more powerful in three dimensions than
in two-dimensiona! problems. There are eloguent
arguments for Whitney or equivalent vector forms
with their basis in differential forms. Computational
results have only appeared in the last three years or
so, but hopefully the practical impact will scon be
assessed, then these issues will be clarified or
simplified, as were similar issues with nodal finite
elements when they first appeared.
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