SOLUTION OF TEAM BENCHMARK PROBLEM #13
(3-D NONLINEAR MAGNETOSTATIC MODEL)

O. Biro, Ch. Magele, G. Vnisk
Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria

Abstract - Problem No. 13 of the TEAM Workshops is solved by two scalar potential and one vector potential
finite-element formulations. The results obtained by the different scalar potential methods are identical and
their agreement with those yiclded by the vector potential approach and also with measurement data is
satisfactory.

Problem definition

This three-dimensional, non-linear, magnetostatic problem has been proposed by Prof. T.
Nakata and K. Fujiwara as a benchmark problem for the TEAM Workshops. For convenience, its
definition is repeated here {1,6].

The model is shown in Fig. 1. An exciting coil is placed between two steel channels shifted
as shown and a steel plate is inserted between the channels. The matenal of the steel is nonlinear,
the magnetization curve is shown in Fig. 2. The curve can be approximated for high flux densities
(B>187)as

B=u,H+{(aH* +bH +¢) (1.8TsBsz.227)} "

B =u,H+ M, (B=2.22T)

where i, is the permeability of free space. The constants a, b and ¢ are -2.822x10-9,2.529x10°
and 1.591, respectively. M; is the saturation magnetization (2.16 7) of the steel. The coil is
excited by a d.c. current. The total current is 1000 AT in one case and 3000 AT in the other.
Presently the problem is only open for the 1000 AT case.
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Fig. 1: 3-D nonlinear magnetostatic model (dimensions in mm})
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Fig. 2: B-H curve of steel

It is required to obtain the average flux densities at several locations in the channels and in
the center plate as well as along a line and at some specified points in air (see e.g. Tables 1.1 to
1.3)

The problem has been solved with the program package IGTEMAG3D of the Institute for
Fundamentals and Theory in Electrical Engineering of the Graz University of Technology. Three
solutions have been obtained, two by formulations using a magnetic scalar potential and one by
employing a magnetic vector potential. The finite element meshes have been selected so that the
number of degrees of freedom is about 200,000,

DY formulation

This is the well known formulation in terms of a reduced and a total magnetic scalar
potential [2]. The magnetic field intensity in the free space region is written as
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H=H,-V® (2)

using the reduced scalar potential @ and the source field H; due to the coil in free space
computed by Biot-Savart integration. In the iron regions, the magnetic field intensity can be
derived from the total scalar potential ‘¥:

H=-VY¥. 3)

The two potentials are linked at the interface using the continuity condition of the
tangential component of H:

®="¥-[H, ds. )

The average flux density values in the three sections of the channel, along the specified
line in the air and at the specified points are shown in Tables 1.1, 1.2 and 1.3. Some further
information concerning the computation is summarized in Table 1.4.

T-® formulation

This is the well known T-£2 method [3] where the magnetic field intensity is written as
H=T-Vd. (5)
The function T is selected to satisfy
VxT=1J. ©)
In the present calculation T was chosen to have a single axial component assuming a constant
value in the air core of the racetrack coil, linearly decreasing to zero within the windings and zero
outside the coil. To avoid cancellation errors, T was represented with the aid of edge elements by
computing its integral along each edge in the finite element mesh [4].

The average flux density values in the three sections of the channel, along the specified

line in the air and at the specified points are shown in Tables 2.1, 2.2 and 2.3. Some further
information concerning the computation is summarized in Table 2.4.

The results are practically identical to those obtained by the ®-¥ formulation. The
computation time is somewhat lower since no Biot-Savart integration is necessary. In the
conjugate gradient iterations, it suffices to use a convergence criterion of 10”7 instead of 102 with
respect to the right hand side vector in order to attain the same precision in the solution.
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No. coordinates (mm) B(T) No coordinates (mm) B(T)
X y 2z X y z

1 0.0 1.420 26 10.0 00348
2 10.0 1.406 27 20.0 £.0209
3 20.0 1.373 28 30.0 0.0164
4 | 00<x<16 | -25.0<y<25.0 30.0 1.317 29 40.0 0.0143
s 40.0 1.232 30 50.0 0.0130
6 $0.0 1.072 31 60.0 20.0 55.0 0.0120
7 60.0 0.608 32 70.0 0.0109
3 71 0320 33 £0.0 0.00876
9 10.0 0.594 34 90.0 0.00569
10 20.0 0.678 38 100.0 0.00287
11 30.0 0.735 36 110.0 0.00140
12 40.0 0.785 . -

13 50.0 15.0<y<65.0 | 60.0<z<632 | 0.827 Table 1.2: Flux de"S“B_’ in air (T)

14 60.0 0.865 O-Y formulation

15 0.0 0.931 -

15 100.0 0.974 Ne - mrd’"aym (mim) - B
ig };g‘l’ g-;gg 37 22 151 0.1 1797

: : 38 2.0 14.9 50.9 0.0287

1% 60.0 0.885 39 15 0.0 55.0 0.517
20 50.0 0.988 40 1.5 0.0 25.0 1349
21 40.0 0.994 — . .

22 | 122.1x<1253 | 15.0<y<65.0 30.0 0.999 Table 1.3: Flux densities in special points (T)
23 20.0 1.003 .

4 100 1006 O-Y¥ formulation

25 0.0 1.007

Table 1.1: Average flux densities in steel (T)

&-¥ formulation

No Item Specification
1 Code name IGTEMAG3D
2 Formulation FEM (Finite Element Method)
Goveming equati
’ B et V-(4¥0) = V-(u,)
V- (uv¥)=0
4 Solution variables D, ¥
5 Gauge condition not applicable
6 Fraction of geometry 1/4
7 Technigue for non-linear problem Incremental method
Convergence criterion mean ( Ag, / g1,} < 1% over all Gaussian points
max ( Ag, /g, )< 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field Biot-Savart law (analytical)
produced by exciting current Biot-Savart law (numerical)
11 Property of coefficient matrix of linear equations symmelric, sparse
12 Solution method for linear equations ICCG
Convergence criterion for iteration method 24 2
o o] A" <10
13 Element type hexahedron
nodal element (20 nodes)
14 Number of elements 48,384
15 Number of nodes 206,991
16 Number of unknowns 182,517
17 Computer name; [YECstation 5000-240
speed: 40 MIPS
main memory: 264 MB
precision of data; 64 bits
CPU time total: 17,89% s

Table 1.4: Computational data,
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Table 2.1: Average flux densities in steel (T)

T-® formulation

No. coordinates (mm) B(T) No coordinates (mm} B(T)
X y p X y z
] 0.0 1.415 26 10.0 0.0348
2 10.0 1.406 27 20.0 0.0209
3 20.0 1.377 28 30.0 0.0163
4 | o0o0<wx<16 | -25.0<y<25.0 30.0 1322 29 40.0 0.0142
5 40,0 1237 30 50.0 0.0130
6 50.0 1.076 31 60.0 200 55.0 0.0120
7 60.0 0.610 32 70.0 0.0108
g 2.1 0.320 33 80.0 0.00873
9 10.0 0.594 34 90.0 0.00568
10 20.0 0.678 35 100.0 0.00296
11 0.0 0.736 3% 110.0 0.00141
12 40.0 0.786 . i At
13 50.0 15.0<y<65.0 | 60.0<z<632 0.828 Table 2.2: Flux densny in air (T)
14 60.0 0.866 T-® formulation
15 80.0 0.931 No coordinates (mm) B(T)
15 100.0 0.9;4 - Y -
17 110.0 0.980
7 22 151 60.1 1797
ii 122.1 o g-gig 38 2.0 149 509 0.0227
. : 39 1.5 0.0 55.0 0.517
20 50.0 0.988 40 1.5 0.0 250 1.349
21 40.0 0.994 s - .
22 | 122.1<x<128.3 | 15.0<y<65.0 30.0 0.999 Table 2.3: Flux densities in special points (T)
23 20,0 1.003 .
4 100 1006 T-® formulation
25 0.0 1.007

No Item Specification
1 Code name IGTEMAG3D
2 Formulation FEM (Finite Element Method)
3 Goveming equations V()= V- {4T)
T represented by edge elements
4 Solution variables 1)
5 Gauge condition not applicable
[ Fraction of geometry 1/4
7 ‘Technique for non-linear problem Incremental method
Convergence criterion mean { Ag, /42,3 < 1% over all Gaussian points
max { Ay, / i, )< 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
Technique for open boundary problem truncation
9
10 Calculation method of magnetic field taking into account exciting current in governing
produced by exciting current equations directly
11 Property of coefficient matrix of linear equations symmelric, sparse
12 Solution method for linear equations ICCG
Convergence criterion for iteration method 2 Wz
flax +of ] <107
13 Element type hexahedron
nodal element (20 nodes)
edge element (36 edpes)
14 Number of elements 48,384
15 Number of nodes 206,991
16 Numbert of unknowns 182,517
17 Computer name: DECstation 5000-240
speed: 40 MIPS
main memory: 264 MB
precision of data: 64 bits
CPU time total; 13,907 5

Table 2.4: Computational data,
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A-edge formulation

This is a vector potential formulation without a gauge condition, using edge elements to
represent A [5]. The magnetic flux density is written as

B=VxA (N

and the vector potential satisfies the differential equation

Vx{wWxA)=1J . (8)

The vector potential is approximated with the aid of edge elements and, in order to make the
current density exactly divergence free, it is written in the form (6) with the same function T
represented by edge elements used as in the T-® formulation.

The average flux density values in the three sections of the channel, along the specified
line in the air and at the specified points are shown in Tables 3.1, 3.2 and 3.3, Some further
information concerning the computation is summarized in Table 3 4.

No. coordinates (mm) B(T) No coordinates (mm) B(T)
X y z X y z
1 0.0 1344 26 10.0 0.0344
2 10.0 1333 27 20.0 0.0202
3 20.0 1.299 28 30.0 0.0162
4 0.0<x<1.6 -25.0<y<25.0 30.0 1.241 29 40.0 0.0143
5 40.0 1.152 30 50.0 0.0130
6 50.0 L0LS 31 60.0 200 55.0 0.0121
7 60.0 0.677 32 70.0 0.0108
g 21 0.270 3 80.0 0.00872
9 100 0.556 34 90.0 0.00573
10 200 0.640 35 100.0 0.00285
1 300 0,700 36 110.0 0.00144
12 40.0 0.749 - T T A
13 50.0 15.0<y<65.0 | 60.0<z<63.2 | 0.792 Table 3.2: Flux densny_m air (T)
14 60.0 0.830 A-edge formulation
15 80.0 0.895 No coordinates (mm
15 100.0 0.939 " ~ e} . .
17 110.0 0.945 37 22 151 60.1 1.524
13 122.1 0.950 38 2.0 149 50.9 0.0339
19 60.0 0.931 39 1.5 0.0 55.0 0.467
20 50.0 0.954 40 1.5 0.0 25.0 1.267
21 400 0.959 s - .
22 | 122.0ex<125.3 | 15.0<y<65.0 300 0.964 Table 3.3: Flux densities in special points (T)
23 20,0 0.968 - ;
z 2o ooes A-edge formulation
25 0.0 0.972

Table 3.1: Average flux densities in steel (T)
A-edge formulation
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No ltem Specification
1 Code name IGTEMAG3D
2 Formulation FEM (Finite Element Method)
3 Goveming equations Vx ( WxA)=d
4 Solution variables A
] Gauge condition not imposed
6 Fraction of geometry 1/4
7 Technique for non-linear problem Incremental method
Convergence criterion mean ( Ay, / 4,) < 1% over all Gaussian points
max { Ay, /g, )< 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technigue for open boundary problem truncation
10 Calculation method of magnetic field taking into account exciting current in governing
produced by exciting current equations directly
11 Property of coefficient matrix of linear equations symmetric, sparse
12 Solution method for linear equations 1ICCG
Convergence eriterion for iteration method 3 a2
ez + o < 107
13 Elemnent type hexahedron
edge element (36 edges)
14 Number of elements 19,200
15 Number of nodes 84,083
16 Number of unknowns 225,728
17 Computer name: DECstation 5000-240
speed: 40 MIPS
main memory: 264 MB
precision of data: 64 bits
CPU time total: 50,412 5
Table 3.4: Computational data, A-edge formulation
Results

The computed average flux densities in the steel channels and the flux density in the air are
compared in Figs. 3 to 6 with the measured results [6]. Since the two scalar potential methods
yield practically identical results, only a single curve is shown for this case in each plot. It seems
that the values obtained by the vector potential formulation are somewhat nearer to the
measurements in the steel but the deviation between the scalar potential and measured results is
much less than it was reported in previous workshops for meshes with lower degrees of

refinement [7-10].
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Fig. 3: Average flux density against z, 0 <x < 1.6 mm, -25 <y <25 mm
0 0 0 0: measurement, —+—+—: scalar potential, —*—*—: vector potential
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Fig. 4: Average flux density against x, 15 <y <65 mm, 60 <z < 63.2 mm
0 0 0 0: measurement, —+—+—: scalar potential , —*—*—: vector potential
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Fig. 5: Average flux density against z, 122.1 <x <1253 mm, 15 <y <65 mm
0 0 0 0: measurement, —+—+—: scalar potential, —*—*— vector potential
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Fig. 6: Flux density against x along the line y =20 mm, z = 55 mm

0 0 0 0; measurement, —+—+— scalar potential, —*—*—: vector potential
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