SOLUTION OF TEAM BENCHMARK PROBLEM #10
(STEEL PLATES AROUND A COIL)

O. Biro
Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria

Abstract - Problem No. 10 of the TEAM Workshops is solved by three different finite-element formulations
using a magnetic vector potential with the Coulomb gauge and an eclectric scalar potential. Allowing the
normal component of the vector potential to jump at iren/air interfaces yields results in good agreement with
measurement data.

Problem definition

This three-dimensional, non-linear, transient eddy current problem has been proposed by
Prof. T. Nakata, N. Takahashi and K. Fujiwara as a benchmark problem for the TEAM
Workshops. For convenience, its definition is repeated here [1].
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Fig. 1: Steel plates around a coil (dimenstons in mm)

The model is shown in Fig. 1. An exciting coil is placed between two steel channels and a
steel plate is inserted between the channels. The material of the steel is nonlinear, the
magnetization curve is shown in Fig. 2. The curve can be approximated for high flux densities (B
>1.87)as
B=uH+(@H +bH+¢) (1.8T<Bx 2.22'1)}

1
B=uH+ M, (B=2227) M
where g, is the permeability of free space. The constants a, # and ¢ are -2.381x10-'°,2.327x10
and 1.590, respectively. M, is the saturation magnetization (2.16 7) of the steel. The conductivity
of the channels and of the center plate is 7.505x10¢ S/m. The number of turns in the coil is 162.
The exciting current varies with time as
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The amplitude is / =5.64 A and the time constant is 7=0.05 s,

20 | |
No.| B(T) |H(A/m) No.| B(T) |H(A/m)
1 0 0 15 0.90 313
Q 2 | 0.0025 16 16 | 1.00 342
~ 10 3 0.0050 30 171 110 I —
m . 4 0.0125 54 18 | 1.20 433
s | 0.025 93 19 | 130 509
6 | 0.05 143 20 | 1.40 648
7 | o.1o 191 21 | 1.50 933
g8 | 020 210 22 | 1.55 1228
9 | 030 222 23 | 1.60 1934
10 | 040 233 24 | 165 | 2913
05 11 0.50 247 25 1.70 4993 N
12 | 060 258 26 1 175 | 89
13 | 070 272 27 | 180 | 9423
14 | 0.80 289
0 2000 40(4) 6000 8000 10000
H (A/m)

Fig. 2: B-H curve of steel

It is required to find the time functions of the average flux density of the surfaces §,, S,
and S, shown in Fig. 3 and also the time functions of the current density at the points P, P, and
P.. These quantities have also been measured by the authors of [1].

The problem has been solved with the program package IGTEDDDY of the Institute for
Fundamentals and Theory in Electrical Engineering of the Graz University of Technology. Three
solutions have been obtained by formulations using a magnetic vector potential throughout and an
additional electric scalar potential in the eddy current region.
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Fig. 3: Measurement positions for flux densities and current densities

A,V-A formulation, A, continuous

This is the well-known A, V-A formulation [2] with the magnetic flux density and the
electric field intensity derived from the potentials as

B=VxA, 3)
o A @
a a

where A is the magnetic vector potential and v is the time integral of the electric scalar potential.
The governing differential equations are

Vx(vWxA)-V( VV'A)+O'£927+ O'V%'—'O in conductors, (5)
V. (—a%{:— - V%) =0 in conductors, {6)
Vx(vWWxA)-V(W-A)=1] in non-conductors. (7)

These equations enforce the Coulomb gauge on the vector potential. Using nodal finite elements
with one value for each component of A in each node, the vector potential is continuous.

The time functions of the average flux density and of the eddy current density in the
positions required are plotted in Fig. 4 and in Fig. 5, respectively along with the measured resuits
[1]. The numerical values are shown in Tables 1.1 and 1.2 whereas some further information on
the computation is summarized in Table 1.3
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Although the discretization is very fine, the average flux density is somewhat lower than
measured while the current density is too high.
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Fig. 4: Time functions of average flux densities, A,V-A formulation, A, continuous
0 0 0 0: measurement, ———: computation
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Fig. 5: Time functions of current densities, A,V-A formulation, A, continuous
0 0 0 0 measurement, ——— computation
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position (coordinates in mm) position {coordinates in mm)

51 82 83 Pl P2 P3
time (s} 0.0<x< 1.6 x=41.8 122.1<x<125.3 time 1(s) x=1.6 x=41.8 x=12573
step 0.0<y<25.0 0.0<y<25.0 0.0<y<25.0 step y=6.25 y=6.25 y=6.25

z=0.0 60.0<2<63.2 z=0.0 z=0.0 2=63.2 z=0.0

1 0.0023 0.0211 0.0086 0.00%0 1 0.0025 1.0648 0.4366 0.4386

2 0.0050 0.0548 0.0229 0.0238 2 0.0050 1.7679 0.7297 0.7357

3 0.0075 0.1016 00431 0.0447 3 0.0075 2.5866 1.0506 1.0598

4 0.0100 0.1631 0.0708 0.0741 4 0.0100 3.5277 1.4662 1.5063

5 0.0125 0.2375 0.1068 0.1141 5 0.0125 4.3290 1.9602 2.0940

6 0.0150 0.3203 0.1479 0.1607 ] 0.0150 4.8750 2.2969 2.5105

7 0.0175 0.4056 0.1908 0.2098 7 0.0175 4.9736 2.4331 2.7090

g 0.0200 0.4894 0.2334 0.2590 8 0.0200 4.8281 2.4520 2.7450

9 0.0225 0.5694 0.2745 0.3068 9 0.0225 4.4601 2.3954 2.7396

10 | 0.0250 0.6448 03133 0.3521 10 | 0.0250 4.1797 2.3063 2.6564
i1 0.0275 0.7163 0.3501 0.3948 11 0.0275 3.9941 2.2157 2.5615
12 0.0300 0.7846 0.3848 0.4350 12 0.0300 3.8760 2.1009 2.3980
13 0.0325 0.8503 0.4181 0.4733 13 0.0325 38194 1.9982 2.2859
14 | 0.0350 0.9139 0.4502 0.5101 14 | 0.0350 3.7438 1.9240 22113
15 | 0.0375 0.9752 0.4811 0.5457 15 | 0.0375 3.5848 1.8598 2.1302
16 0.0400 1.0338 0.5108 0.5798 16 0.0400 3.3809 1.7875 2.0507
17 | 0.0425 1.0896 0.5392 0.6126 17 | 0.0425 3.1439 1.7260 2.0039
18 | 0.0450 1.1421 0.5662 0.6440 18 | 0.0450 2.8197 1.6526 1.9295
19 0.0475 1.1908 0.5916 0.6737 12 | 0.0475 2.4771 1.5668 1.8350
20 0.0500 1.2356 0.6153 07018 20 0.0500 2.137% 1.4761 1.7185
21 0.0550 13114 0.6566 0.7518 21 0.0550 1.5100 1.3081 1.5442
22 0.0600 1.3722 0.6914 0.7951 22 0.0600 0.9941 1.1196 1.3502
23 0.0650 1.4191 0.7198 0.8316 23 0.,0650 0.6422 0.9297 1.1525
24 | 0.0700 1.4541 0.7426 0.8618 24 | 0.0700 0.3874 0,7620 0.,9494
25 | 0.0750 1.4791 0.7605 0.8866 25 | 0.0750 0.2213 0.6091 0.7716
26 | 0.0800 1.4970 0.7744 0.9069 26 | 0.0800 0.1519 1.4821 0.6318
27 | 0.0850 1.5147 0.7876 0.9248 27 | 0.0850 02376 0.4290 0.5311
28 | 0.0200 1.5279 0.7981 0.9398 28 | 0.0900 0.1697 0.3426 0.4303
29 | 0.6950 1.5339 0.8054 09514 29 | 0.0950 -0.0041 0.2453 0.3208
30 | 0.1000 1.5397 0.8118 0.9615 30 | 0.1000 0.0295 0.2100 0.2670
31 | 0.1100 1.5598 0.8259 0.9807 31 | 01100 0.1796 0.2109 0.2507
32 | 01200 1.5713 0.8358 0.9952 32 | 61200 0.0873 0.1474 01882
33 0.0130 1.5834 0.8447 1.0077 33 0.0130 0.1158 0.1291 0.1597
34 0.0140 1.589% 0.8508 1.0168 34 0,0140 0.0493 0.0871 0.1086
35 0.0150 1.5928 0.8548 1.0234 35 0.0150 0.0128 (.0580 0.0737

Table 1.1: Average flux densities in steel (T)
A,V-A formulation, A_ continuous
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Table 1.2: Y-component of eddy current
densities on surface of steel (10° A/m?)
A V-A formulation, A continuous



No Item Specification
1 Code name IGTEDDDY
2 Formulation FEM (Finite Element Method)
3 G 1 t
OVermng equations Vx(WxA)-V(W-A)+ a'% + OV% =0 in conductor
Vx{wVxA)-V(y,V-Al=1T in vacuum
4 Solution variables A v in conductor
A m vacuum

A

Gauge condition

imposed on governing equalions directly

6 Time difference method 8 method with 8=1 (backward difference)
7 Technique for non-linear problem Incremental method
Convergence criterion mean { Ay, /)< 1% over all Gaussian points
max ( Ay, /g4, )< 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic ficld taking into account exciting current in governing
produced by exciting current equations directly
i1 Property of coefficient matrix of linear equations symmelric, sparse
12 Solution method for linear equations 1CCG
Convergence criterion for iteration method " Ax + b"2 "Il bH2 < 161
13 Element type hexahedron
nodal element (20 nodes}
14 Number of elements 7.344
15 Number of nodes 32,986
16 Number of unknowns 88,079
17 Computer name:; DECstation 5000-200

speed: 24 MIPS

main memory: 264 MB
precision of data: 64 bits
CPU time total: 443,117 s

Table 1.3: Computational data, A,V-A formulation, A continuous
A,V-A formulation, A  discontinuous

The reason for the above behaviour is that once the Galerkin method is applied to the term
—V(vV-A) in the differential equations (5) and (7), the continuity of the quantity vV - A becomes
a natural interface condition [2]. Although +V-A is zero in the weak sense [2], it does in fact
have a nonzero value due to the numerical approximation. This results in a tough constraint on
V-A along interfaces where the reluctivity v changes abruptly: there must be a jump in the
divergence of the vector potential. Thus the accuracy is bound to be poor in the vicinity of such
iron/air interfaces. In the present problem with thin ferromagnetic channels, the solution in the
entire iron region is bound to be strongly influenced by this inaccuracy.

The problem can be overcome by refining the discretization, so that the condition
vW- A=0 is fulfilled with greater accuracy and the constraint on V- A has less effect. Indeed, the
experience of the author has shown that a coarser mesh yields much poorer results than those
shown above.

The constraint on the continuity of vV-A can be relaxed by allowing the normal
component of the vector potential to be discontinuous on the iron/air interfaces [3]. As a
consequence, the natural boundary condition vW-A=0 results on the interface and the constraint
on V-A is not present any more. At the application of finite element techniques, the normal
component A_ is allowed to be discontinuous by employing four nodal variables in the nodes on
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the interface: the two continuous tangential components and a normal component from the air
region as well as one from the iron domain.

The time functions of the average flux density and of the eddy current density obtained by
this method in the positions required are plotted in Fig. 6 and in Fig. 7, respectively with the
measured results also shown. The numerical values are given in Tables 2.1 and 2.2 whereas some
further information on the computation is summarized in Table 2.3

The agreement with the measured results is much better than for the case when A_ is
continuous, although the same mesh has been used. The computation time is somewhat longer,
due to the higher number of conjugate gradient iterations needed for the solution of the linear
equations systems. It is expected that good results can be obtained by substantially coarser
meshes, too.

A,V-A_formulation, A__ discontinuous

The finite element mesh used in the above computations does not exactly fit the curved
parts of the racetrack coil. This potentially leads to inaccuracies if the total vector potential
defined by eq. (3) and the differential equations (5) to (7) are used since the representation of the
current density may be inaccurate. To check whether this 1s the case, a reduced vector potential
formulation has also been tried [3]. In this method the magnetic field Hg and vector potential A
due to the coil in free space are split from the solution and it is therefore irrelevant whether the
coil is exactly modelled by the finite element mesh.

The potentials are defined by

B=p0§s+VxAr, (8)
A, A N

=8 e gy 2L 9
o 7 17 ®)

where A, is the reduced vector potential. The governing differential equations are

Vx(WxA )-V(VW-A )+ J(?g’ + O’V% = —cré;‘;s -V x(vu,Hg) in conductors, (10)
V. (—0‘921' -oV %) =V (O'é‘;S )} in conductors, (11)
Vx(v,VxA)-V(v,V-A)=0 in non-conductors.  (12)

In order to avoid the inaccuracies due to the continuity of A _ in the vicinity of the iron/air
interfaces, the normal component of the reduced vector potential has been allowed to be
discontinuous here.

The time functions of the average flux density and of the eddy current density obtained by
this method in the positions required are plotted in Fig. 8 and in Fig. 9, respectively with the
measured results also shown. The numerical values are given in Tables 3.1 and 3.2 whereas some
further information on the computation is summarized in Table 3.3.
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The results are practically identical with those obtained by the total vector potential, 1.¢.
the inaccurate modelling of the coils has caused no loss of precision in the A, V-A version.
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Fig. 6: Time functions of average flux densities, A,V-A formulation, A  discontinuous
0 0 0 O: measurement, ———: computation
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Fig. 7: Time functions of current densities, A,V-A formulation, A, discontinuous
0 0 0 0 measurement, ————: computation
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position (coordinates in mm) ] position (coordinates in mm)

51 S2 83 P1 P2 P3
time 1(s) 0.0<x< 1.6 x=41.8 122,1<x<125.3 time t(s) x=1.6 x—41.8 x=125.3
step 0.0<y<25.0 0.0<y<25.0 0.0<y<25.0 step y=6.25 y=6.25 y=6.25

z=0.0 60.0<z<63.2 z=0.0 z=0.0 2=63.2 z=0.0

1 0.0025 0.0222 0.0093 0.0098 1 0.0025 1.0263 0.4403 0.4458

2 | 0.0050 0.0582 0.0247 0.0259 2 { 0.0050 1.6489 0.7311 0.7440
3 0.0075 0.1090 0.0469 0.0491 3 0.0075 2.2837 1.0457 1.0698

4 0.0100 0.1753 0.0774 0.0818 4 0.0100 2.9981 1.4119 1.4821

5 0.0i25 0.2564 0.1172 0.1266 5 0.0125 3.6971 1.8179 1.9900

6 | 0.0150 0.3465 0.1624 0.1783 6 | 0.0150 4.1405 2.0703 2.3193%

7 0.0175 0.4394 0.2095 0.2325 7 0.0175 43106 2.1641 2.4631

g8 | 0.0200 0.5300 0.2557 0.2861 g | 0.0200 4.2053 2.1471 2.4638

9 0.0225 0.6170 0.3004 0.3381 9 0.0225 4.0380 2.0731 2.4047

10 | 0.0250 0.6991 0.3429 0.3878 10 | 0.0250 31,7800 1.9908 2.3406
11 0.0275 0.7765 0.3829 0.4345 11 0.0275 3.5729 1.8946 2.2397
12 | 0.0300 0.8501 0.4206 0.4783 12 | 0.0300 34316 1.7901 21117
i3 | 0.0325 0.9204 0.4565 0.5198 13 | 0.0323 33226 1.7002 1.9825
14 | 0.0350 0.9879 0.4909 0.5595 14 | 0.0350 3.2144 1.6262 1.9017
15 | 0.0375 1.0528 0.5239 0.5976 15 | 0.0375 3.1307 1.5610 1.8203
16 | 0.0400 1.1153 0.5557 0.6343 16 | 0.0400 3.0437 1.5029 1.7528
17 | 0.0425 1.1751 0.5862 0.6696 17 | 0.0425 29261 1.4455 1.6955
18 | 0.0450 1.2319 0.6153 0.7034 18 | 0.0450 2.7909 1.3803 1.6219
19 | 0.0475 1.2854 0.6429 0.7356 19 | 0.0475 2.6483 1.3144 1.5519
20 | 0.0500 1.3355 0.6689 0.7662 20 | 0.0500 2.5040 1.2477 1.484]
21 | 0.0550 1.4217 0.7150 0.8212 21 | 0.0550 21577 1.1114 1.3464
22 | 0.0600 1.4918 0.7540 0.8687 22 | 0.0600 1.74%7 0.9513 1.1735
23 0.0650 1.5457 0.7857 G.9088 23 | 0.0650 13192 0.7846 0.9991
24 | 0.0700 1.5842 0.8105 0.9416 24 | 0.0700 0.9306 0.6234 0.8244
25 | 0.0750 1.6094 0.8292 0.9677 25 | 0.0750 0.6056 0.480% 0.6653
26 | 0.08G0 1.6298 (.8448 0.9896 26 | 0.0800 0.4867 0.4056 0.5626
27 | 0.0850 1.6412 0.8562 1.0069 27 | 0.0850 0.2718 0.3037 0.4467
28 | 0.0900 1.6465 0.8644 1.0203 28 | 0.0900 0.1198 02248 0.3503
29 | 0.0950 1.6488 0.8706 1.0310 29 | 0.0950 0.0586 0.1741 0.2815
30 | 0.1000 1.6565 0.8778 1.0417 30 | 0.1000 0.1824 0.1934 0.2735
31 | 0.1100 1.6768 0.8927 1.0620 31 | 0.1100 0.2435 0.1931 0.2564
32 | 0.1200 1.6858 0.9022 1.0763 32 | 0.1200 0.1078 0.1252 0.1790
33 0.0130 1.6872 0.9075 1.0856 33 0.0130 0.0112 0.0738 0.1192
34 } 0.0140 1.6852 0.9105 1.0916 34 | 0.0140 -0.0316 0.0429 0.0774
35 | 0.0150 1.6826 0.9123 1.0955 35 | o.0150 -0.0252 0.0275 0.0506

Table 2.1: Average flux densities in steel (T)
A V-A formulation, A discontinuous
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Table 2.2: Y-component of eddy current
densities on surface of steel (105 A/m?)
A,V-A formulation, A discontinuous



No Item Specification
1 Code name IGTEDDDY
2 Formulation FEM (Finite Element Method)
3 Goveming equations Vx(WxA)-V(W-A)+ J%Jr av% =0 in conductor
Vx(mVxA)-V(v,V-A)=] in vacuum
4 Solution variables A v in conductor
A in vacuum
5 Gauge condition imposed on goveming equations directly, A, discontinuous on
iron/air interface
& Time difference method 8 method with 8=1 (backward difference)
7 Technigue for non-linear problem Incremental method
Convergence criterion mean ( Ay, / 41,)< 1% over all Gaussian points
max { Ay, /i, ) < 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncationy
10 Calculation method of magnetic ficld taking into account exciting current in governing
produced by exciting current equations directly
11 Property of coefficient matrix of linear equations symmetric, sparse
12 Solution method for linear equations ICCG
Convergence critenon for iteration method | Ax + bul /ubui < 1070
13 Element type hexahedron
nodal element (20 nodes)
14 Number of elements 7.344
15 Number of nodes 32,986
16 Number of unknowns 89,278
17 Computer name: DECstation 5000-200

speed: 24 MIPS

main memory: 264 MB
precision of data: 64 bits
CPU time total: 663,663 s

Table 2.3: Computational data, A, V-A formulation, A discontinuous
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Fig. 8: Time functions of average flux densities, A_,V-A, formulation, A_, discontinuous
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Fig. 9: Time functions of current densities, A, V-A, formulation, A_ discontinuous
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position {coordinates in mm) position (coordinates in mm)

§1 82 83 P1 2 P3
time 1(s) 0.0<x< 1.6 x=41.8 122.1<x<125.3 time t(s) x=1.6 x=41.8 x=1253
step 0.0<y<25.0 0.0<y<25.0 0.0<y<25.0 step y=6.25 y=6.25 y=6.25

z=0.0 60.0<z<63.2 z=0.0 z=0.0 z=63.2 7=0.0

1 0.0025 0.0234 0.0093 0.0092 1 0.0025 1.0805 0.4390 0.4155
2 0.0050 0.0612 0.0249 0.0246 2 0.0050 1.7310 0.7360 0.7099
3 0.0075 0.1142 0.0474 0.047¢ 3 0.0075 2.3863 1.0575 £.0303
4 0.0100 0.1824 0.0731 0.0787 4 0.0100 3.0836 1.4188 1.4316
5 0.0125 0.2651 01179 0.1223 5 0.0125 3.7678 1.8206 1.9378
6 0.0150 0.3566 0.1632 0.1731 6 0.0150 4.2121 20724 22730
7 0.0175 0.4508 0.2103 0.2265 7 0.0175 43720 2.1633 24171
2 0.0200 0.5425 0.2565 0.2793 8 0.0200 4.2573 2.1450 2.4245
9 0.0225 0.6305 0.3011 0.3304 9 0.0225 4.0869 2.0678 23598
10 | ¢.0250 0.7134 0.3435 0.3794 10 | 0.0250 3.8132 1.9864 2.3002
11 0.0275 0.7917 0.3836 0.4255 11 | 0.0275 36167 1.8924 22074
12 | 0.0300 0.8664 0.4214 0.4688 12 | 0.0300 3.4921 1.7916 2.0755
13 | 0.0325 0.9377 0.4574 0.5098 13 | 0.0325 3.3717 1.7007 1.9641
14 § 0.035¢ 1.0062 0.4918 0.5489 14 | 0.0350 3.2707 1.6273 1.8719
15 | 0.0375 1.0721 0.5249 0.5865 15 | 0.0375 3.1866 1.5630 1.8011
16 | 0.0400 1.1354 0.5567 0.6227 16 | 0.0400 3.0944 1.5038 1.7303
17 | 0.0425 1.1960 0.5872 0.6576 17 0.0425 2.9617 1.4444 1.6672
18 | 0.0450 1.2533 0.6163 0.6909 18 | 0.0450 2.8246 1.3779 1.598%
19 | 0.0475 1.3071 0.6438 0.7225 19 1 0.0475 2.6758 1.3089 1.5261
20 | 0.0500 1.3571 0.6696 0.752% 20 | 0.0500 2.5130 1.2350 1.4533
21 0.0550¢ 1.4425 0.7150 0.8061 21 0.0550 2.1364 1.0942 1.3093
22 | 0.0600 15110 0.7530 0.8522 22 | 0.0600 1.69935 0.9275 1.1349
23 | 0.0650 1.5625 0.7835 0.8906 23 | 0.0650 1.2626 0.7554 0.9568
24 | 0.0700 1.5982 0.8070 0.9216 24 | 0.0700 0.8532 0.5922 0.782%
25 0.0750 1.6200 0.8242 0.9459 25 | 0.0750 0.5265 0.4450 0.6216
26 | 0.0800 1.6311 0.8364 0.9646 26 | 0.0800 0.2665 03246 0.4855
27 1 0.0850 1.6367 0.8453 0.9794 27 | 0.0850 0.1252 0.2455 0.3863
28 | 0.0900 1.6453 0.8542 0.9929 28 | 0.0500 0.2064 0.2399 0.3515
29 0.0950 1.6574 0.8636 1.0061 29 0.0950 0.2913 0.2474 0.3375%
30 | 0.1000 1.6653 0.8711 1.0171 30 0.1000 0.1912 0.1981 0.2834
31 | 0.1100 1.6842 0.8854 1.0370 31 | 0.1100 0.2247 0.1855 0.2504
32 | 0.1200 1.6916 0.8942 1.0508 32 | 0.1200 0.0862 0.1171 0.1758
33 0.0130 1.6812 0.8952 1.0568 33 0.0130 -0.1320 0.0236 0.0809
34 | 0.0140 1.6826 0.8993 1.0640 34 | 0.0140 0.0220 0.0546 0.0907
353 § 0.0150 1.6829 0.9024 1.0698 35 | 0.0150 0.0108 0.0423 0.0730

Table 3.1: Average flux densities in steel (T)
A_V-A_formulation, A discontinuous
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Table 3.2: Y-component of eddy current
densities on surface of steel (10° A/m?)
A V-A_formulation, A discontinuous



No Item Specification
1 Code name IGTEDDDY
2 Formulation FEM (Finite Element Method)
3 Governing equations Vx(VVxA,)-V(vV-Ar)+a&’+o'Vé/-=
¥ § &
—o'égi— Vx (v Hg) in conductor
Vx{v,VxA )=V(»w,V-A)=0 in vacuum
4 Solution variables Av in conductor
A in vacuum
5 Gauge condition imposed on governing equations directly, A, discontinuous
on iron/air interface
[ Time difference method 8 method with 8=1 (backward difference)
7 Technique for non-linear problem Incremental method
Convergence criterion mean ( Ay, / u,) < 1%  over all Gaussian points
max { A, / g, Y< 5% over all Gaussian points
8 Approximation method of B-H curve straight lines
9 Technique for open boundary problem truncation
10 Calculation method of magnetic field Biot-Savart law (analytical)
produced by exciting current Biot-Savart law (numerical)
11 Property of coefficient matrix of linear equations symmetric, sparse
12 Solution method for linear equations 1ICCG
Convergence criterion for ileration method “Ax + bu2 ,lsbllz < 1071?
13 Element type hexahedron
nodal element (20 nodes)
14 Number of elements 7.344
15 Number of nodes 32,986
16 Number of unknowns £9,278
17 Computer name: DECstation 5000-200
speed: 24 MIPS
main memory: 264 MB
precision of data: 64 bits
CPU time total: 685,377 s
Table 3.3: Computational data, A ,V-A_formulation, A discontinuous
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