SOLUTION OF TEAM BENCHMARK PROBLEM #10 (STEEL PLATES AROUND A COIL)

O. Biro

Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria

Abstract - Problem No. 10 of the TEAM Workshops is solved by three different finite-element formulations using a magnetic vector potential with the Coulomb gauge and an electric scalar potential. Allowing the normal component of the vector potential to jump at iron/air interfaces yields results in good agreement with measurement data.

Problem definition

This three-dimensional, non-linear, transient eddy current problem has been proposed by Prof. T. Nakata, N. Takahashi and K. Fujiwara as a benchmark problem for the TEAM Workshops. For convenience, its definition is repeated here [1].

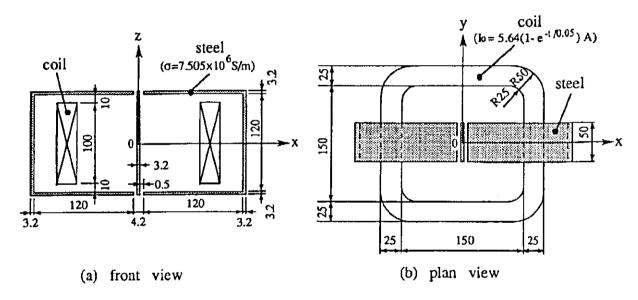


Fig. 1: Steel plates around a coil (dimensions in mm)

The model is shown in Fig. 1. An exciting coil is placed between two steel channels and a steel plate is inserted between the channels. The material of the steel is nonlinear, the magnetization curve is shown in Fig. 2. The curve can be approximated for high flux densities (B > 1.8 T) as

$$B = \mu_0 H + (aH^2 + bH + c) \qquad (1.8T \le B \le 2.22T)$$

$$B = \mu_0 H + M_S \qquad (B \ge 2.22T)$$
(1)

where μ_0 is the permeability of free space. The constants a, b and c are -2.381x10⁻¹⁰,2.327x10⁻⁵ and 1.590, respectively. M_s is the saturation magnetization (2.16 T) of the steel. The conductivity of the channels and of the center plate is 7.505x10⁶ S/m. The number of turns in the coil is 162. The exciting current varies with time as

$$I = \begin{cases} 0 & (t < 0) \\ I_m(1 - e^{-t/\tau}) & (t \ge 0) \end{cases}$$
 (2)

The amplitude is I_m =5.64 A and the time constant is τ =0.05 s.

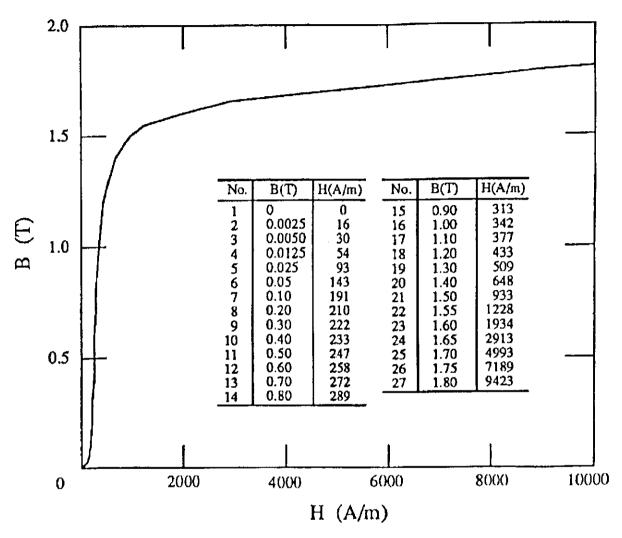


Fig. 2: B-H curve of steel

It is required to find the time functions of the average flux density of the surfaces S_1 , S_2 and S_3 shown in Fig. 3 and also the time functions of the current density at the points P_1 , P_2 and P_3 . These quantities have also been measured by the authors of [1].

The problem has been solved with the program package IGTEDDDY of the Institute for Fundamentals and Theory in Electrical Engineering of the Graz University of Technology. Three solutions have been obtained by formulations using a magnetic vector potential throughout and an additional electric scalar potential in the eddy current region.

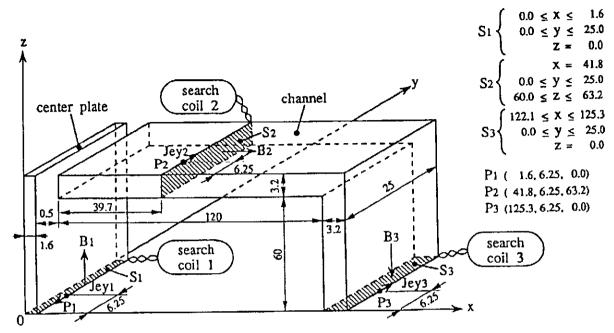


Fig. 3: Measurement positions for flux densities and current densities

A,V-A formulation, A, continuous

This is the well-known A,V-A formulation [2] with the magnetic flux density and the electric field intensity derived from the potentials as

$$\mathbf{B} = \nabla \times \mathbf{A},\tag{3}$$

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \frac{\partial \mathbf{v}}{\partial t} \tag{4}$$

where A is the magnetic vector potential and v is the time integral of the electric scalar potential. The governing differential equations are

$$\nabla \times (\nu \nabla \times \mathbf{A}) - \nabla (\nu \nabla \cdot \mathbf{A}) + \sigma \frac{\partial \mathbf{A}}{\partial t} + \sigma \nabla \frac{\partial \mathbf{v}}{\partial t} = \mathbf{0} \quad \text{in conductors,}$$
 (5)

$$\nabla \cdot \left(-\sigma \frac{\partial \mathbf{A}}{\partial t} - \sigma \nabla \frac{\partial \mathbf{V}}{\partial t}\right) = 0 \qquad \text{in conductors,} \tag{6}$$

$$\nabla \times (\nu \nabla \times \mathbf{A}) - \nabla (\nu \nabla \cdot \mathbf{A}) = \mathbf{J}$$
 in non-conductors. (7)

These equations enforce the Coulomb gauge on the vector potential. Using nodal finite elements with one value for each component of A in each node, the vector potential is continuous.

The time functions of the average flux density and of the eddy current density in the positions required are plotted in Fig. 4 and in Fig. 5, respectively along with the measured results [1]. The numerical values are shown in Tables 1.1 and 1.2 whereas some further information on the computation is summarized in Table 1.3

Although the discretization is very fine, the average flux density is somewhat lower than measured while the current density is too high.

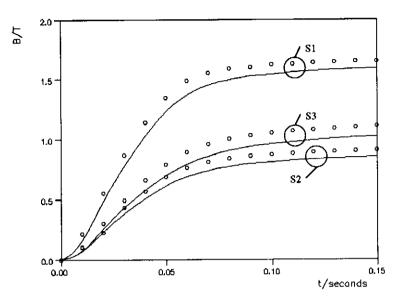


Fig. 4: Time functions of average flux densities, A,V-A formulation, A_n continuous o o o o: measurement, ——: computation

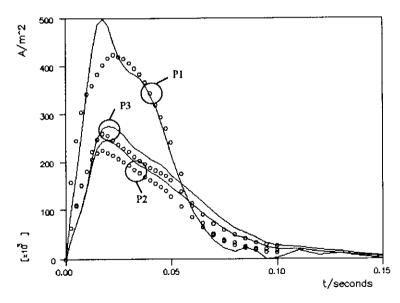


Fig. 5: Time functions of current densities, A,V-A formulation, A_n continuous o o o o: measurement, —: computation

		position (coordinates in mm)				position (coordinates in mm)			
		S 1	S2	S3			P1	P2	P3
time	t(s)	0.0 <x< 1.6<="" td=""><td>x=41.8</td><td>122.1<x<125.3< td=""><td>time</td><td>t(s)</td><td>x=1.6</td><td>x=41.8</td><td>x=125.3</td></x<125.3<></td></x<>	x=41.8	122.1 <x<125.3< td=""><td>time</td><td>t(s)</td><td>x=1.6</td><td>x=41.8</td><td>x=125.3</td></x<125.3<>	time	t(s)	x=1.6	x=41.8	x=125.3
step		0.0 <y<25.0< td=""><td>0.0<y<25.0< td=""><td>0.0<y<25.0< td=""><td>step</td><td>,,,</td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<></td></y<25.0<></td></y<25.0<>	0.0 <y<25.0< td=""><td>0.0<y<25.0< td=""><td>step</td><td>,,,</td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<></td></y<25.0<>	0.0 <y<25.0< td=""><td>step</td><td>,,,</td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<>	step	,,,	y=6.25	y=6.25	y=6.25
•		z=0.0	60.0 <z<63.2< td=""><td>z=0.0</td><td>Ť</td><td></td><td>z=0.0</td><td>z=63.2</td><td>z=0.0</td></z<63.2<>	z=0.0	Ť		z=0.0	z=63.2	z=0.0
1	0.0025	0.0211	0.0086	0.0090	1	0.0025	1.0648	0.4366	0.4386
2	0.0050	0.0548	0.0229	0.0238	2	0.0050	1.7679	0.7297	0.7357
3	0.0075	0.1016	0.0431	0.0447	3	0.0075	2.5866	1.0506	1.0598
4	0.0100	0.1631	0.0708	0.0741	4	0.0100	3.5277	1.4662	1.5063
5	0.0125	0.2375	0.1068	0.1141	5	0.0125	4.3290	1.9602	2.0940
6	0.0150	0.3203	0.1479	0.1607	6	0.0150	4.8750	2.2969	2.5105
7	0.0175	0.4056	0.1908	0.2098	7	0.0175	4.9736	2.4331	2.7090
8	0.0200	0.4894	0.2334	0.2590	8	0.0200	4.8281	2.4520	2.7450
9	0.0225	0.5694	0.2745	0.3068	9	0.0225	4.4601	2.3954	2.7396
10	0.0250	0.6448	0.3133	0.3521	10	0.0250	4.1797	2.3063	2.6564
11	0.0275	0.7163	0.3501	0.3948	11	0.0275	3.9941	2.2157	2.5615
12	0.0300	0.7846	0.3848	0.4350	12	0.0300	3.8760	2.1009	2.3980
13	0.0325	0.8503	0.4181	0.4733	13	0.0325	3.8194	1.9982	2.2859
14	0.0350	0.9139	0.4502	0.5101	14	0.0350	3.7438	1.9240	2.2113
15	0.0375	0.9752	0.4811	0.5457	15	0.0375	3.5848	1.8598	2.1302
16	0.0400	1.0338	0.5108	0.5798	16	0.0400	3.3809	1.7875	2.0507
17	0.0425	1.0896	0.5392	0.6126	17	0.0425	3.1439	1.7260	2.0039
18	0.0450	1.1421	0.5662	0.6440	18	0.0450	2.8197	1.6526	1.9295
19	0.0475	1.1908	0.5916	0.6737	19	0.0475	2.4771	1.5668	1.8350
20	0.0500	1.2356	0.6153	0.7018	20	0.0500	2.1379	1.4761	1.7185
21	0.0550	1.3114	0.6566	0.7518	21	0.0550	1.5100	1.3081	1.5442
22	0.0600	1.3722	0.6914	0.7951	22	0.0600	0.9941	1.1196	1.3502
23	0.0650	1.4191	0.7198	0.8316	23	0.0650	0.6422	0.9297	1.1525
24	0.0700	1.4541	0.7426	0.8618	24	0.0700	0.3874	0.7620	0.9494
25	0.0750	1.4791	0.7605	0.8866	25	0.0750	0.2213	0.6091	0.7716
26	0.0800	1.4970	0.7744	0.9069	26	0.0800	0.1519	0.4821	0.6318
27	0.0850	1.5147	0.7876	0.9248	27	0.0850	0.2376	0.4290	0.5311
28	0.0900	1.5279	0.7981	0.9398	28	0.0900	0.1697	0.3426	0.4303
29	0.0950	1.5339	0.8054	0.9514	29	0.0950	-0.0041	0.2453	0.3208
30	0.1000	1.5397	0.8118	0.9615	30	0.1000	0.0295	0.2100	0.2670
31	0.1100	1.5598	0.8259	0.9807	31	0.1100	0.1796	0.2109	0.2507
32	0.1200	1.5713	0.8358	0.9952	32	0.1200	0.0873	0.1474	0.1882
33	0.0130	1.5834	0.8447	1.0077	33	0.0130	0.1158	0.1291	0.1597
34	0.0140	1.5899	0.8508	1.0168	34	0.0140	0.0493	0.0871	0.1086
35	0.0150	1.5928	0.8548	1.0234	35	0.0150	0.0128	0.0580	0.0737

Table 1.1: Average flux densities in steel (T) A,V-A formulation, A_n continuous

Table 1.2: Y-component of eddy current densities on surface of steel (10⁵ A/m²)

A,V-A formulation, A_n continuous

No	Item	Specification
1	Code name	IGTEDDDY
2	Formulation	FEM (Finite Element Method)
3	Governing equations	$\nabla \times (\nu \nabla \times \mathbf{A}) - \nabla (\nu \nabla \cdot \mathbf{A}) + \sigma \frac{\partial \mathbf{A}}{\partial t} + \sigma \nabla \frac{\partial \mathbf{v}}{\partial t} = 0 \text{ in conductor}$ $\nabla \times (\nu_0 \nabla \times \mathbf{A}) - \nabla (\nu_0 \nabla \cdot \mathbf{A}) = \mathbf{J} \text{ in vacuum}$
4	Solution variables	A, v in conductor
		A in vacuum
5	Gauge condition	imposed on governing equations directly
6	Time difference method	θ method with θ =1 (backward difference)
7	Technique for non-linear problem	Incremental method
	Convergence criterion	mean ($\Delta \mu_r / \mu_r$) < 1% over all Gaussian points max ($\Delta \mu_r / \mu_r$) < 5% over all Gaussian points
8	Approximation method of B-H curve	straight lines
9	Technique for open boundary problem	truncation
10	Calculation method of magnetic field produced by exciting current	taking into account exciting current in governing equations directly
11	Property of coefficient matrix of linear equations	symmetric, sparse
12	Solution method for linear equations	ICCG
	Convergence criterion for iteration method	$ Ax + b ^2 / b ^2 < 10^{-10}$
13	Element type	hexahedron nodal element (20 nodes)
14	Number of elements	7.344
15	Number of nodes	32,986
16	Number of unknowns	88,079
17	Computer	name: DECstation 5000-200
	·	speed: 24 MIPS
		main memory: 264 MB
		precision of data: 64 bits
		CPU time total: 443,117 s

Table 1.3: Computational data, A,V-A formulation, A_n continuous

A,V-A formulation, A, discontinuous

The reason for the above behaviour is that once the Galerkin method is applied to the term $-\nabla(\nu\nabla\cdot\mathbf{A})$ in the differential equations (5) and (7), the continuity of the quantity $\nu\nabla\cdot\mathbf{A}$ becomes a natural interface condition [2]. Although $\nu\nabla\cdot\mathbf{A}$ is zero in the weak sense [2], it does in fact have a nonzero value due to the numerical approximation. This results in a tough constraint on $\nabla\cdot\mathbf{A}$ along interfaces where the reluctivity ν changes abruptly: there must be a jump in the divergence of the vector potential. Thus the accuracy is bound to be poor in the vicinity of such iron/air interfaces. In the present problem with thin ferromagnetic channels, the solution in the entire iron region is bound to be strongly influenced by this inaccuracy.

The problem can be overcome by refining the discretization, so that the condition $v\nabla \cdot \mathbf{A} = 0$ is fulfilled with greater accuracy and the constraint on $\nabla \cdot \mathbf{A}$ has less effect. Indeed, the experience of the author has shown that a coarser mesh yields much poorer results than those shown above.

The constraint on the continuity of $\nu\nabla\cdot\mathbf{A}$ can be relaxed by allowing the normal component of the vector potential to be discontinuous on the iron/air interfaces [3]. As a consequence, the natural boundary condition $\nu\nabla\cdot\mathbf{A}=0$ results on the interface and the constraint on $\nabla\cdot\mathbf{A}$ is not present any more. At the application of finite element techniques, the normal component \mathbf{A}_n is allowed to be discontinuous by employing four nodal variables in the nodes on

the interface: the two continuous tangential components and a normal component from the air region as well as one from the iron domain.

The time functions of the average flux density and of the eddy current density obtained by this method in the positions required are plotted in Fig. 6 and in Fig. 7, respectively with the measured results also shown. The numerical values are given in Tables 2.1 and 2.2 whereas some further information on the computation is summarized in Table 2.3

The agreement with the measured results is much better than for the case when A_n is continuous, although the same mesh has been used. The computation time is somewhat longer, due to the higher number of conjugate gradient iterations needed for the solution of the linear equations systems. It is expected that good results can be obtained by substantially coarser meshes, too.

A, V-A, formulation, A, discontinuous

The finite element mesh used in the above computations does not exactly fit the curved parts of the racetrack coil. This potentially leads to inaccuracies if the total vector potential defined by eq. (3) and the differential equations (5) to (7) are used since the representation of the current density may be inaccurate. To check whether this is the case, a reduced vector potential formulation has also been tried [3]. In this method the magnetic field \mathbf{H}_s and vector potential \mathbf{A}_s due to the coil in free space are split from the solution and it is therefore irrelevant whether the coil is exactly modelled by the finite element mesh.

The potentials are defined by

$$\mathbf{B} = \mu_0 \mathbf{H_s} + \nabla \times \mathbf{A_r},\tag{8}$$

$$\mathbf{E} = -\frac{\partial \mathbf{A}_{s}}{\partial t} - \frac{\partial \mathbf{A}_{r}}{\partial t} - \nabla \frac{\partial \mathbf{v}}{\partial t}$$

$$\tag{9}$$

where A_r is the reduced vector potential. The governing differential equations are

$$\nabla \times (\nu \nabla \times \mathbf{A}_r) - \nabla (\nu \nabla \cdot \mathbf{A}_r) + \sigma \frac{\partial \mathbf{A}_r}{\partial t} + \sigma \nabla \frac{\partial v}{\partial t} = -\sigma \frac{\partial \mathbf{A}_s}{\partial t} - \nabla \times (\nu \mu_0 \mathbf{H}_s) \text{ in conductors,}$$
(10)

$$\nabla \cdot (-\sigma \frac{\partial \mathbf{A_r}}{\partial t} - \sigma \nabla \frac{\partial \mathbf{v}}{\partial t}) = \nabla \cdot (\sigma \frac{\partial \mathbf{A_s}}{\partial t})$$
 in conductors, (11)

$$\nabla \times (\nu_0 \nabla \times \mathbf{A_r}) - \nabla (\nu_0 \nabla \cdot \mathbf{A_r}) = \mathbf{0}$$
 in non-conductors. (12)

In order to avoid the inaccuracies due to the continuity of A_m in the vicinity of the iron/air interfaces, the normal component of the reduced vector potential has been allowed to be discontinuous here.

The time functions of the average flux density and of the eddy current density obtained by this method in the positions required are plotted in Fig. 8 and in Fig. 9, respectively with the measured results also shown. The numerical values are given in Tables 3.1 and 3.2 whereas some further information on the computation is summarized in Table 3.3.

The results are practically identical with those obtained by the total vector potential, i.e. the inaccurate modelling of the coils has caused no loss of precision in the A,V-A version.

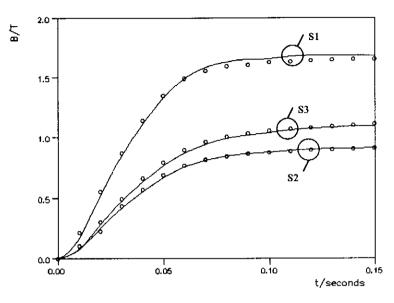


Fig. 6: Time functions of average flux densities, A, V-A formulation, A_n discontinuous o o o o: measurement, ———: computation

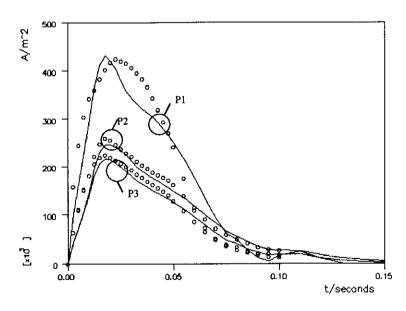


Fig. 7: Time functions of current densities, A,V-A formulation, A_n discontinuous o o o o: measurement, ——: computation

	- · · · · · · · · · · · · · · · · · · ·	position (coordinates in mm)				position (coordinates in mm)			
	ľ	S1	S2	S3			P1	P2	P3
time	t(s)	0.0 <x< 1.6<="" td=""><td>x=41.8</td><td>122.1<x<125.3< td=""><td>time</td><td>t(s)</td><td>x=1.6</td><td>x=41.8</td><td>x=125.3</td></x<125.3<></td></x<>	x=41.8	122.1 <x<125.3< td=""><td>time</td><td>t(s)</td><td>x=1.6</td><td>x=41.8</td><td>x=125.3</td></x<125.3<>	time	t(s)	x=1.6	x=41.8	x=125.3
step	40)	0.0 <y<25.0< td=""><td>0.0<y<25.0< td=""><td>0.0<y<25.0< td=""><td>step</td><td>(7)</td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<></td></y<25.0<></td></y<25.0<>	0.0 <y<25.0< td=""><td>0.0<y<25.0< td=""><td>step</td><td>(7)</td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<></td></y<25.0<>	0.0 <y<25.0< td=""><td>step</td><td>(7)</td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<>	step	(7)	y=6.25	y=6.25	y=6.25
жр		z=0.0	60.0 <z<63.2< td=""><td>z=0.0</td><td>•</td><td></td><td>z=0.0</td><td>z=63.2</td><td>z=0.0</td></z<63.2<>	z=0.0	•		z=0.0	z=63.2	z=0.0
$\overline{}$	0.0025	0.0222	0.0093	0.0098	1	0.0025	1.0263	0.4403	0.4458
2	0.0050	0.0582	0.0247	0.0259	2	0.0050	1.6489	0.7311	0.7440
3	0.0075	0.1090	0.0469	0.0491	3	0.0075	2.2837	1.0457	1.0698
4	0.0100	0.1753	0.0774	0.0818	4	0.0100	2.9981	1.4119	1.4821
5	0.0125	0.2564	0.1172	0.1266	5	0.0125	3.6971	1.8179	1.9900
6	0.0150	0.3465	0.1624	0.1783	6	0.0150	4.1405	2.0703	2.3195
7	0.0175	0.4394	0.2095	0.2325	7	0.0175	4.3106	2.1641	2.4631
8	0.0200	0.5300	0.2557	0.2861	8	0.0200	4.2053	2.1471	2.4638
9	0.0225	0.6170	0.3004	0.3381	9	0.0225	4.0380	2.0731	2.4047
10	0.0250	0.6991	0.3429	0.3878	10	0.0250	3.7800	1.9908	2.3406
11	0.0275	0.7765	0.3829	0.4345	11	0.0275	3.5729	1.8946	2.2397
12	0.0300	0.8501	0.4206	0.4783	12	0.0300	3.4316	1.7901	2.1117
13	0.0325	0.9204	0.4565	0.5198	13	0.0325	3.3226	1.7002	1.9825
14	0.0350	0.9879	0.4909	0.5595	14	0.0350	3.2144	1.6262	1.9017
15	0.0375	1.0528	0.5239	0.5976	15	0.0375	3.1307	1.5610	1.8203
16	0.0400	1.1153	0.5557	0.6343	16	0.0400	3.0437	1.5029	1.7528
17	0.0425	1.1751	0.5862	0.6696	17	0.0425	2.9261	1.4455	1.6955
18	0,0450	1.2319	0.6153	0.7034	18	0.0450	2.7909	1.3803	1.6219
19	0.0475	1.2854	0.6429	0.7356	19	0.0475	2.6483	1.3144	1.5519
20	0.0500	1.3355	0.6689	0.7662	20	0.0500	2.5040	1.2477	1.4841
21	0.0550	1.4217	0.7150	0.8212	21	0.0550	2.1577	1.1114	1.3464
22	0.0600	1.4918	0.7540	0.8687	22	0.0600	1.7497	0.9513	1.1735
23	0.0650	1.5457	0.7857	0.9088	23	0.0650	1.3192	0.7846	0.9991
24	0.0700	1.5842	0.8105	0.9416	24	0.0700	0.9306	0.6234	0.8244
25	0.0750	1.6094	0.8292	0.9677	25	0.0750	0.6056	0.4805	0.6653
26	0.0800	1.6298	0.8448	0.9896	26	0.0800	0.4867	0.4056	0.5626
27	0.0850	1.6412	0.8562	1.0069	27	0.0850	0.2718	0.3037	0.4467
28	0.0900	1.6465	0.8644	1.0203	28	0.0900	0.1198	0.2248	0.3503
29	0.0950	1.6488	0.8706	1.0310	29	0.0950	0.0586	0.1741	0.2815
30	0.1000	1.6565	0.8778	1.0417	30	0.1000	0.1824	0.1934	0.2735
31	0.1100	1.6768	0.8927	1.0620	31	0.1100	0.2435	0.1931	0.2564
32	0.1200	1.6858	0.9022	1.0763	32	0.1200	0.1078	0.1252	0.1790
33	0.0130	1.6872	0.9075	1.0856	33	0.0130	0.0112	0.0738	0.1192
34	0.0140	1.6852	0.9105	1.0916	34	0.0140	-0.0316	0.0429	0.0774
35	0.0150	1.6826	0.9123	1.0955	35	0.0150	-0.0252	0.0275	0.0506

Table 2.1: Average flux densities in steel (T) A,V-A formulation, A, discontinuous

Table 2.2: Y-component of eddy current densities on surface of steel (10⁵ A/m²)

A,V-A formulation, A_n discontinuous

No	ltem	Specification
1	Code name	IGTEDDDY
2	Formulation	FEM (Finite Element Method)
3	Governing equations	$\nabla \times (\nu \nabla \times \mathbf{A}) - \nabla (\nu \nabla \cdot \mathbf{A}) + \sigma \frac{\partial \mathbf{A}}{\partial t} + \sigma \nabla \frac{\partial \nu}{\partial t} = 0 \text{ in conductor}$ $\nabla \times (\nu_0 \nabla \times \mathbf{A}) - \nabla (\nu_0 \nabla \cdot \mathbf{A}) = \mathbf{J} \qquad \text{in vacuum}$
4	Solution variables	A, v in conductor A in vacuum
5	Gauge condition	imposed on governing equations directly, A_n discontinuous on iron/air interface
6	Time difference method	θ method with $\theta=1$ (backward difference)
7	Technique for non-linear problem	Incremental method
	Convergence criterion	mean ($\Delta \mu_r / \mu_r$) < 1% over all Gaussian points max ($\Delta \mu_r / \mu_r$) < 5% over all Gaussian points
8	Approximation method of B-H curve	straight lines
9	Technique for open boundary problem	truncation
10	Calculation method of magnetic field produced by exciting current	taking into account exciting current in governing equations directly
11	Property of coefficient matrix of linear equations	symmetric, sparse
12	Solution method for linear equations	ICCG
	Convergence criterion for iteration method	$ Ax + b ^2 / b ^2 < 10^{-10}$
13	Element type	hexahedron nodal element (20 nodes)
14	Number of elements	7,344
15	Number of nodes	32,986
16	Number of unknowns	89,278
17	Computer	name: DECstation 5000-200 speed: 24 MIPS main memory: 264 MB precision of data: 64 bits CPU time total: 663,663 s

Table 2.3: Computational data, A,V-A formulation, A_n discontinuous

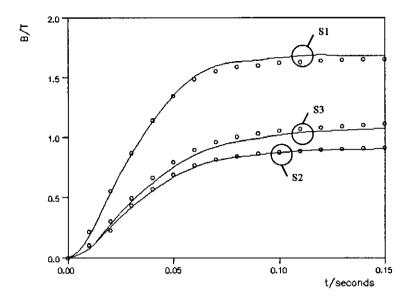


Fig. 8: Time functions of average flux densities, A_r , V- A_r formulation, A_m discontinuous o o o o: measurement, ———: computation

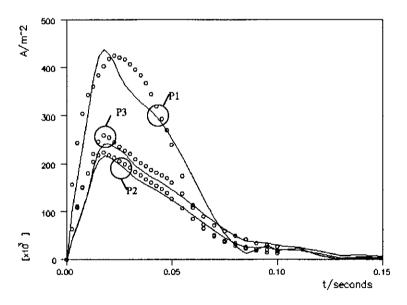


Fig. 9: Time functions of current densities, A_r , V- A_r formulation, A_m discontinuous o o o o: measurement, ———————: computation

		position (coordinates in mm)				position (coordinates in mm)			
	ľ	S1	S2	S3			Pl	P2	Р3
time	t(s)	0.0 <x< 1.6<="" td=""><td>x=41.8</td><td>122.1<x<125.3< td=""><td>time</td><td>t(s)</td><td>x=1.6</td><td>x=41.8</td><td>x=125.3</td></x<125.3<></td></x<>	x=41.8	122.1 <x<125.3< td=""><td>time</td><td>t(s)</td><td>x=1.6</td><td>x=41.8</td><td>x=125.3</td></x<125.3<>	time	t(s)	x=1.6	x=41.8	x=125.3
step	-(-)	0.0 <y<25.0< td=""><td>0.0<y<25.0< td=""><td>0.0<y<25.0< td=""><td>step</td><td></td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<></td></y<25.0<></td></y<25.0<>	0.0 <y<25.0< td=""><td>0.0<y<25.0< td=""><td>step</td><td></td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<></td></y<25.0<>	0.0 <y<25.0< td=""><td>step</td><td></td><td>y=6.25</td><td>y=6.25</td><td>y=6.25</td></y<25.0<>	step		y=6.25	y=6.25	y=6.25
5p		z=0.0	60.0 <z<63.2< td=""><td>z=0.0</td><td>-</td><td></td><td>z=0.0</td><td>z=63.2</td><td>z=0.0</td></z<63.2<>	z=0.0	-		z=0.0	z=63.2	z=0.0
1	0.0025	0.0234	0.0093	0.0092	l	0.0025	1.0805	0.4390	0.4155
2	0.0050	0.0612	0.0249	0.0246	2	0.0050	1.7310	0.7360	0.7099
3	0.0075	0.1142	0.0474	0.0470	3	0.0075	2.3863	1.0575	1.0303
4	0.0100	0.1824	0.0781	0.0787	4	0.0100	3.0836	1.4188	1.4316
5	0.0125	0.2651	0.1179	0.1223	5	0.0125	3.7678	1.8206	1.9378
6	0.0150	0.3566	0.1632	0.1731	6	0.0150	4.2121	2.0724	2.2730
7	0.0175	0.4508	0.2103	0.2265	7	0.0175	4.3720	2.1633	2.4171
8	0.0200	0.5425	0.2565	0.2793	8	0.0200	4.2573	2.1450	2.4245
9	0.0225	0.6305	0.3011	0.3304	9	0.0225	4.0869	2.0678	2.3598
10	0.0250	0.7134	0.3435	0.3794	10	0.0250	3.8132	1.9864	2.3002
11	0.0275	0.7917	0.3836	0.4255	11	0.0275	3.6167	1.8924	2.2074
12	0.0300	0.8664	0.4214	0.4688	12	0.0300	3.4921	1.7916	2.0755
13	0.0325	0.9377	0.4574	0.5098	13	0.0325	3.3717	1.700 7	1.9641
14	0.0350	1.0062	0.4918	0.5489	14	0.0350	3.2707	1.6273	1.8719
15	0.0375	1.0721	0.5249	0.5865	15	0.0375	3.1866	1.5630	1.8011
16	0.0400	1.1354	0.5567	0.6227	16	0.0400	3.0944	1.5038	1.7303
17	0.0425	1.1960	0.5872	0.6576	17	0.0425	2.9617	1.4444	1.6672
18	0.0450	1.2533	0.6163	0.6909	18	0.0450	2.8246	1.3779	1.5989
19	0.0475	1.3071	0.6438	0.7225	19	0.0475	2.6758	1.3089	1.5261
20	0.0500	1.3571	0.6696	0.7525	20	0.0500	2.5130	1.2350	1.4533
21	0.0550	1.4425	0.7150	0.8061	21	0.0550	2.1364	1.0942	1.3093
22	0.0600	1.5110	0.7530	0.8522	22	0.0600	1.6995	0.9275	1.1349
23	0.0650	1.5625	0.7835	0.8906	23	0.0650	1.2626	0.7554	0.9568
24	0.0700	1.5982	0.8070	0.9216	24	0.0700	0.8532	0.5922	0.7829
25	0.0750	1.6200	0.8242	0.9459	25	0.0750	0.5265	0.4450	0.6216
26	0.0800	1.6311	0.8364	0.9646	26	0.0800	0.2665	0.3246	0.4855
27	0.0850	1.6367	0.8453	0.9794	27	0.0850	0.1252	0.2455	0.3863
28	0.0900	1.6453	0.8542	0.9929	28	0.0900	0.2064	0.2399	0.3515
29	0.0950	1.6574	0.8636	1.0061	29	0.0950	0.2913	0.2474	0.3375
30	0.1000	1.6653	0.8711	1.0171	30	0.1000	0.1912	0.1981	0.2834
31	0.1100	1.6842	0.8854	1.0370	31	0.1100	0.2247	0.1855	0.2504
32	0.1200	1.6916	0.8942	1.0508	32	0.1200	0.0862	0.1171	0.1758
33	0.0130	1.6812	0.8952	1.0568	33	0.0130	-0.1320	0.0236	0.0809
34	0.0140	1.6826	0.8993	1.0640	34	0.0140	0.0220	0.0546	0.0907
35	0.0150	1.6829	0.9024	1.0698	35	0.0150	0.0108	0.0423	0.0730

Table 3.1: Average flux densities in steel (T) A_r , V- A_r formulation, A_m discontinuous

Table 3.2: Y-component of eddy current densities on surface of steel (10⁵ A/m²)

A_r,V-A_r formulation, A_m discontinuous

No	Item	Specification			
1	Code name	IGTEDDDY			
2	Formulation	FEM (Finite Element Method)			
3	Governing equations	$\nabla \times (\mathbf{W} \times \mathbf{A_r}) - \nabla (\mathbf{W} \cdot \mathbf{A_r}) + \sigma \frac{\partial \mathbf{A_r}}{\partial t} + \sigma \nabla \frac{\partial \mathbf{v}}{\partial t} =$			
		$-\sigma \frac{\partial \mathbf{A}_{\mathbf{S}}}{\partial t} - \nabla \times (\nu \mu_0 \mathbf{H}_{\mathbf{S}}) \qquad \text{in conductor}$			
		$\nabla \times (\nu_0 \nabla \times \mathbf{A_r}) - \nabla (\nu_0 \nabla \cdot \mathbf{A_r}) = 0 \qquad \text{in vacuum}$			
4	Solution variables	A. v in conductor			
		A, in vacuum			
5	Gauge condition	imposed on governing equations directly, Am discontinuous			
		on iron/air interface			
6	Time difference method	θ method with θ =1 (backward difference)			
7	Technique for non-linear problem	Incremental method			
	Convergence criterion	mean $(\Delta \mu_r / \mu_r) \le 1\%$ over all Gaussian points			
		max $(\Delta \mu_r / \mu_r) < 5\%$ over all Gaussian points			
8	Approximation method of B-H curve	straight lines			
9	Technique for open boundary problem	truncation			
10	Calculation method of magnetic field	Biot-Savart law (analytical)			
	produced by exciting current	Biot-Savart law (numerical)			
11	Property of coefficient matrix of linear equations	symmetric, sparse			
12	Solution method for linear equations	ICCG			
	Convergence criterion for iteration method	$ Ax+b ^2/ b ^2<10^{-10}$			
13	Element type	hexahedron			
		nodal element (20 nodes)			
14	Number of elements	7,344			
15	Number of nodes	32,986			
16	Number of unknowns	89,278			
17	Computer	name: DECstation 5000-200			
		speed: 24 MIPS			
		main memory: 264 MB			
		precision of data: 64 bits			
	t e	CPU time total: 685,377 s			

Table 3.3: Computational data, A_r , $V-A_r$ formulation, A_m discontinuous

References

- [1] T. Nakata, N. Takahashi and K. Fujiwara, "Summary of results for benchmark problem 10 (steel plates around a coil)", in R. Albanese, E. Coccorese, Y. Crutzen and P. Molfino (ed.), *Proc., Third International TEAM Workshop*, Sorrento, Italy, 12-13 July 1991, pp. 211-221
- [2] O. Biro, K. Preis, "On the use of the magnetic vector potential in the finite element analysis of 3-D eddy currents", IEEE Transactions on Magnetics, vol. MAG-25, 1989, pp. 3145-3159
- [3] K. Preis, I. Bardi, O. Biro, C. Magele, W. Renhart, K.R. Richter and G. Vrisk, "Numerical analysis of 3-D magnetostatic fields", IEEE Transactions on Magnetics, vol. MAG-27, 1991, pp. 3798-3803