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Abstract

Parallel algorithms are presented that are suitable for the solution of the system of lincar
equations generated by moment method problems on local memory Multiple Instruction, Mul-
tiple Data (MIMD) parallel computers. The two most widely used matrix solution algorithms
in moment method codes are described, namecly the conjugate gradient (CG) method and LU
decomposition. The underlying philosophy of parallelism is briefly reviewed. Suitable parallel
algorithms are then described, presented in pseudo-code, their timing behaviour analyzed the-
oretically, and timing results measured on a particular MIMD computer — a transputer array
— are presented and compared to the theoretical timing models. It is concluded that efficient
parallel algorithms for both the CG and LU exist and that MIMD computers offer an attrac-
tive computational platform for the solution of moment method problems with large numbers of

unknowns.

Symbol | Definition

teomm Time to send one complex word

between adjacent processors.

Time for a real floating point + or x.

3 The ratio ?comm [teale

M Number of unknowns {dimension of the matrix).
N

d

Number of processors.
Depth of the binary trec.

Table 1: List of symbols used frequently in this paper.

1 Introduction

1.1 Background

It had long been accepted that the applicability of the moment method is limited by available
computational capability, in particular memory and speed of computation [l]. For a problem
with no special properties such as symmetry as a resuit of reflection, rotation, or translation, the

144



Notation | Definition

[A] The matrix A.

[A]T The Hermitian (complex conjugate)
transpose of matrix A.

ai The ij-th element of matrix A.

(z] The (algebraic) vector z.

x; The ¢-th element of vector [z].

[l[z]l] The Euclidean norm of the vector [z] of
length n; ||[z]}} = S, lal.

|| Absolute value of scalar x.

[2] The ceiling function of =,
i.e. the smallest integer > .

A The Boolean AND operation.

mod{a) | The modulo{a) operator.

O(M™) | Of the order of M™.

Table 2: Notation used in this paper.

computer time reqnirement grows at least as the cube of the number of unknowns, which is at
least linearly related to the electromagnetic size (Iength, surface area or volume, depending on the
particular problem and formulation) of the structure being simulated. The matrix equations to be
solved are in general complex, non-symmetric and full, althongh certain formulations — and also
physical symmetries, if present — inay yield matrices with more structure. For problems which
are not small electromagnetically, this presents formidably large systems of linear equations that
must be filled and solved. The emergence of vector supercomputers has permitted the solution
of much larger problems than could previously be handled. These computers, cpitomized by
the CRAY series, the first of which was installed in 1976, represented a tremendous increase in
computational resources for researchers with access to one. However, such systems are extremely
expensive, and not readily available outside the U.S.A., Europe and Japan at the time of writing.
There are also limits on the computational speed of such systems. This paper considers the use of
a different type ol computer, the local (also known as distributed) memory Multiple Instruction
Multiple Data (MIMD) computer; the algorithms described in this paper were run on an array of
INMOS T800 transputers, an example of such an array. Such MIMD systems offer performance
potentially rivaling that of the vector supercomputers, but require that the algorithms be very
carefully designed to exploit the parallel architecture and thus obtain something approaching the
manufacturer’s claimed peak performance. ! This paper concentrates on the derivation, analysis,
implementation and testing of such algorithms, for the conjugate gradient (CG) and LU matrix
solvers, and is an extension of previous papers by the author [3, 4].

!The transputer array used in this paper does not deliver performance on par with conventional supercomputer
systems such as the CRAY machines already mentioned. However, in the light of the next generation of massively
parallel arrays -- with hundreds or thousands of processors compared to the dozens used in this paper, and with
each processor running far faster than the transputers used here — the conventional supercomputer “now seems
poised for an indefinite but inexorable declire” [2, p.27].
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1.2 Parallel Processing

The fundamental principle underlying parallel (or concurrent) processing is that once the limits
on speed imposed by a certain computing technology have been reached, the most obvious way
of building a faster computer is to perform operations simultaneously. Two fundamental ways of
implementing parallelism have emerged, namely pipelining and replication. The former involves
overlapping parts of operations in time and is the approach taken by the vector supercompnut-
ers; the latter provides more that one functional unit (e.g. CPU), permitting operations to be
performed simultaneously, and is the approach taken by such systems as arrays of transputers or
i860 processors. The historical background of parallel computers and a more detailed explanation
of pipelining and replication may be found in the author’s tutorial paper (3], and with minor
revisions in {5, Chapter 3].

Several methods have been proposed to characterize parallel computers, but the most widely
used are speed-up and efficiency. Speed-up, S, is the ratio of time taken by an equivalent serial
algorithm running on one processor, T, to the time taken by the parallel algorithm using N
processors, Tp,. Efficiency, ¢, is the speed-up normalized by the number of processors. Formally,

(1)

(2)

S is usually bounded from above by N and ¢ is hence usually bounded from above by 1 — although
nnder very special circumstances an efficiency exceeding 1 is at least theoretically possible [5,
Section 3.4.1). Speed-up is the fundamental issue of importance for the user — it states how
much faster his algorithm will run on N processors than on one. Efficiency is self-evident. The
most important requirement for a parallel program — other, obviously, than its correctness —
is to obtain the maximum possible speed-up, and thus also efficiency, from the available parallel
hardware.

At present a major ellort is required by the user to properly exploit parallel processing, in par-
ticular for MIMD systems. Auntomatic vectorizing compilers have simplified the task for pipelined
vector computers, and similar tools exist for very small MIMD systems (with 2 or 4 processors),
but for large scale MIMD systems the user must frequently carefully select, analyse and imple-
ment suitable parallel algorithms. On some MIMD systems, some parallelized basic linear algebra
algorithms may be available, either from the manufacturer or from software companies, but this
was certainly not the case with transputer arrays. Even when such software is already available,
the timing models described in this paper should still be useful.

1.3 The Local Memory Message Passing MIMD Computer

The parallel algorithms and timing models considered in this paper have been developed for
a particular type of Multiple Instruction, Multiple Data (MIMD)) computer, namely arrays of
INMOS T800 transputers. The algorithms have been implemented in Occam 2 to validate the
theoretical analysis. 2 However, the assumptions made regarding the computer are representative
of a substantial class of parallel computers, namely local memory message passing MIMD systemns,
so the algorithms and timing analyses are applicable to other computers in this class.

2()ccam is a parallel fangnage based on the work of Hoare on Communicating Sequential Processes (CSP); see
[3] for more details. The transputer was designed to very efficiently implement the CSP paradigm.
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It is important to clearly indicate the properties of this type of computer, so that other
researchers with different hardware will be able to establish the suitability of the algorithms,
and where modifications to the theoretical analysis will be required, for their computers. The
MIMD classification was introduced by Flynn [6] and describes a computer consisting of a number
of nodes [7, p.485], each with at least a processing element, which operates independently on
its own local instruction stream and data. The further characterization of the machine as local
memory, message passing derives from the memory allocation and communication methods. On a
local memory system, all memory is divided up amongst the available processors, and a processor
may only directly access its own memory. Access to the memory on other processors is done
by explicit message passing, which is much slower than direct memory access. The problem of
memory contention that complicates the other main competing approach to memory allocation,
namely global memory, is removed with this approach, but the absence of global memory can
complicate the algorithm - an example will be given later in this paper. It is further assumed that
the computer uses explicit message passing over processor to processor communication channels
(links) — as opposed to communication over a common bus, for example — for all communication
(including both data and synchronization information). It is assumed that each processor has four
such links and these links can operate concurrently with high efficiency. This theoretical model
describes an array of transputers accurately. More details on transputer arrays may be found in
(3,8, 9]

The algorithms derived in this paper use interconnection topologies requiring at most only
four links; the number of links required for both the mesh (four) and the binary tree {three) is not
a function of the number of processors. These topologies are illustrated in Figures 1 and 2. * Four
communication links are required to build a two-dimensional grid, a very useful general purpose
topology, so four is a reasonable lower bound on the number of links required. The hypercube
topology, [3, Section 6.2] and [7], has attracted much attention, and is possibly the most useful
general purpose topology currently in use. The hypercube has the attractive property that for a
given number of processors, the diameter (the maximum number of links required to connect any
two nodes) is smaller than for many other topologies; see [3, Table I]. However, the number of
inter-processor links grows as the dimension d of the hypercube; a hypercube of dimension d has
N = 2¢ processors. While this is a fairly slow (logarithmic - log, ) growth in the dimension, and
hence number of links required, as a function of the number of processors, this nonetheless imposes
limits for systems with a limited number of links. For example, transputer based hypercubes are
limited to 16 processors. Fox et. al. have described a number of algorithms that run on hypercubes
[7]. Both the topologies (the binary tree and the two-dimensional mesh) used in this paper may be
mapped onto hypercube topologies (see [7, Chapter 19] and [7, Chapter 14] respectively), so the
algorithms to be described are also suitable for hypercube MIMD computers. It is possible that
fully exploiting the greater connectivity of hypercube machines may yield more efficient algorithms

than those presented here.

The theoretical results derived in this paper depend on only two machine dependent param-
eters, viz. the speed of computation and communication. The link concurrency discussed above
was exploited to varying degrees, and is discussed in the relevant analysis. The methods de-
veloped in this paper permit one to establish at least approximately, from the manufacturer’s
specifications and benchmarking, whether particular parallel computer hardware will be suitable

*The mesh shown in Figure 2 has column wrap-around, but not row wrap-around. The reason for this is rather
subtle: a transputer array has to have one link connected to the “host” - typically a PC — and if row-wrap-around
was used as well, no spare link would be available. While it is possible to work around this problem, the coding
becomes rather messy. Exploiting full wrap-around would reduce the communication cost slightly, but with the
pipelined communication used in this paper, the improvement would not be very significant.
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Figure 1: Interconnection topologies - binary tree dimension 2.

for moment method solutions, and is an important step towards guantifying the performance of
parallel hardware for important algorithms in computational electromagnetics.

Other rescarchers {8, 10, 9, 11] have also addressed aspects of parallel processing in electro-
magnetics, all using transputers, and have shown impressive speed-ups and efficiencies. lHowever,
these papers have concentrated on measured results, rendering difficult the application of their
results to other types of processor arrays, as well as the extrapolation of the efficiencies of their
algorithms to larger arrays. Hafner’s paper [8] deals with transputer hardware and soltware in
some detail, as well as the parallelization of a Multiple Multi-Pole program using an early parallel
FORTRAN compiler. Nitch’s work was on the parallelization of the moment method code NEC2
using a mixture of Occam and FORTRAN. Cramb et al. [9] used the processor farm paradigm
for what wonld be classified as a very “coarse grain” decomposition — essentially the same code
was run at different scan angles, with communication only between the controller and the worker
processor execuling the specific set of scan angles. Russel and Rockway [11] used the ParaSoft
EXPRESS operating environment, which provides a number of communications routines of the
type implemented explicitly in this paper. Their results for four processors were impressive, but
they do not address the scaling behaviour of the algorithm for more processors.

Computer technology moves so rapidly that any paper published giving absolute run-times
and computational benchmarks is out of date almost as it goes to print. A comparison of the
computational speed obtained with the algorithms described in this paper running on transputer
hardware with what may be expected from a typical workstation at the time of writing is givel
in the conclusions of this paper; it must be emphasized that the main thrust of this paper is to
describe suitable parallel algorithms for the broad class of local memory MIMD parallel processors
— of which the transputer is an contemporary example — and to develop methods for predict-
ing performance of parallel algorithms at least approximately, rather than promoting transputer

technology per se.

2 A Parallel Conjugate Gradient Algorithm

2.1 Iterative Algorithms and the Conjugate Gradient Algorithm

Over the past decade, much effort has been expended in the application of iterative methods, and
in particular the conjugate gradient and related algorithms, to computational electromagnetics.
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Figure 2: Interconnection topologies - mesh (lattice} with column wrap-around. Sec text [or
[arther discussion of the wrap-around.

Representative references may be found in Wang’s recent book [12, p.68]. * Golub and O’ Leary’s
paper provides a recent and comprehensive review of the mathematical history of the algorithm,
with an annotated hibliography [14]. A compact description of iterative methods in general and the
conjugate gradient algorithm in particular may be found in Jennings [15, Chapter 6]. Regarding
parallel iterative algorithms, very little appears to have been published on solvers for full matrices,
and what has been published has been frequently directed at different architectures, for example
the recent book by Dongarra et al. [16] on solving lincar systems, which concentrates on vector
and shared memory computers.

The CG method, extended for the general case of a matrix [4] with complex cntries where the
matrix is not known to be positive definite, is as follows [15, pp.220-221]:

[u] = [Allps] Step 1
S Step 2
el = [xe]+ arlpe]  Step3

[rie1] = [ra] —owlux]  Stepd (3)
Fir1] = [A) [res) Step 5
By = ”ﬁﬁln]ﬁ Step 6

[Prti1] (Fre1] + Belpe] Step 7

with initial values [ro] = [b] — [A][z0] and [#o] = [po] = [A]¥[ro]. This algorithm is suitable for
application to the matrix set up by the method of moments. Later in this paper, the question of

*There has been a long-running debate in the electromagnetics literatnre on the relationship of the “direct”
application of the CG method to the underlying operator equation as opposed to the use of the method as a matrix
solver for the matrix set up by the method of moments, see for example [13] and more recently [3, Chapter 2]. This
poinl will not be pursued further in the present paper, which is directed at the solution of the matrix equation set
up by the method of moments.
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Step | Complex operations | Real FLOP count
1 2M? 8M?
2 4M 16M
3 2M AM
4 2M 4M
5 2M? sM*
6 aM 16 M
7 2M 1M

Table 3: FLOP count of conjugate gradient algorithm. M is the number of unknowns or equiv-
alently, the dimension of the matrix.

whether the convergence of the CG method justifies its application to a full matrix is discussed.

Note that there are a number of very closely related conjugate gradient algorithms; one recently
discussed in the electromagnetics literature is the bi-conjugate gradient (BiCG) method [17]. The
author has also implemented the BiCG algorithm; the modifications required to implement it have
very little effect on the timing analysis. While the BiCG algorithm sometimes accelerates conver-
gence {18], it can also slow down convergence or stagnate [5, Section 6.8],[17]. Pre-conditioning is
also widely used in the Finite Element community to accelerate the convergence of the CG method;
unfortunately, previous work by the author on the application of pre-conditioning indicated that
it was not suitable for moment method matrices [18]. The reason for this is not clear.

The floating point operation (FLOP} count per iteration is shown in Table 3, retaining only
the largest order term for each operation. (Because of this, a term —2M, with M the number
of unknowns, is missing in the real operations counts in both Steps 1 and 5; this comes from
the number of additions, which is actually M(M — 1), not M?. The impact on the analysis is
minimal; it is convenient to use the M?* approximation for the parallel matrix-vector analysis,
and this also indicates clearly the difference between the parallelized matrix-vector products and
the unparallelized vector operations in subsequent results.) Note that oy and 3 in Steps 3, 4
and 7 are real, not complex, and this affects the conversion from complex to real FLOPs. One
complex addition is equivalent to two real FLOPs and one complex multiplication is equivalent to
gix real FLOPs; since it is the number of additions and multiplications that dominate the FLOP
count, and furthermore the addition and multiplication FLOP counts are almost identical, an
average factor of four can be used. (On most modern processors, the time required for a floating
point addition and a floating point multiplication are approximately the same: benchmarking the
transputer yielded ezactly the same times for both operations.)

2.2 Parallel Matrix-Vector Products

From Table 3, the computationally expensive parts of the CG method can be seen to be the
two matrix-vectors products — Steps | and 5, of O(M?) whereas the other steps are of O(M)
— hence efficient parallel matrix-vector product algerithms, taking into account the hardware
limitations discussed in the Introduction, are required. (The work of Fox et al. discusses parallel
matrix-vector products for hypercube architectures {7, Section 21-3.4], and uses a decomposition
different from that considered here).

The product of a M x M matrix by a vector of length M can be considered from two viewpoints.
The first is as the forming ol M inner products. These inner products can be computed in parallel.

150



The second approach is as the forming of M? products, followed by an accumulation process. The
M? products can be computed in parallel, and the accumulation process can be parallelized. The
computational dependence of both is very similar — detailed expressions will be shown shortly.
These viewpoints imply at least the following two possibilities for forming a parallel matrix-vector
product:

o Row-block decomposition: Splitting up the matrix by row block, broadcasting the vector to all
processors, performing the inner products in parallel and then gathering together the different
parts of the vector split up over the processors

or

o Column-block decomposition: Splitting up the matrix by column, scattering the vector over
the processing array, performing partial inner products in parallel, and then accumulating
the tesultant vector. This is a special case of the M? parallel product approach, with all
the elements of a column clustered (grouped) on a processor, and entire columns clustered in
turn.

The four communications paradigms required by the two different decompositions can be
formally defined as follows, assuming N processors and a matrix dimension of M:

1. Broadcasi: This process broadcasts identical copies of the same vector to all the elements of
the array.

2. Gather: This process builds a vector up from its V disjoint sections of length M /N distributed
over the array after the parallel matrix/vector product.

3. Scatter: This process is the inverse of gather in that it scatters a vector over the array so that
each of the N processors has a different vector of length M/N.

4. Accumulate: This process accumulates the partial inner products resulting from the column-
block decomposition.

A graphical iltustration of the operation of the two possible algorithms may be found in (3]
and [5, Chapter 4], where the communication algorithms are also described in more detail.

The next stage of the development of a parallel algorithm is the identification of a suitable
topology, i.e. interconnection topology. This issue has been addressed in detail in [3], [5, Chapter
3], and also in [8], and the restrictions imposed by the transputer hardware have already been
discussed in the Introduction. Considering the type of communications required, the binary tree,
an example of which is shown in Figure 1, is a natural topology for this problem, for the following
reasons. It is only necessary to communicate information to and from the (controlling) processor
at the top of the tree from and to other lower level processors, and not from one side of the tree
to the other. Thus for approximately the same number of processors, the effective diameter of the
binary tree is actually one less than the diameter of the equivalent hypercube. The processor at
the top of the tree can either be used purely for co-ordinating the process, or can also share the
workload. The algorithm described here follows the former process. It is possible to use a ternary
tree — and the enhanced parallel communications will produce a more efficient algorithm — but
this does not map conveniently onto available arrays, where the available number of processors
generally follows some power of two. Thus the choice of topology is motivated not only by the
algorithm, but also by the available hardware, and typical configurations thereof.

151



begin{broadcast section: worker}
receive vector from higher processor
it {not at bottom of tree)
then
par
send vector to lower left processor
gend vector to lower right processor
end{par}
else SKIP
end{if}
end{broadcast section: worker}

Figure 3: Pseudo-code for broadcast: worker process

Having identified the parallelism in the problem, the next stage of algorithm analysis is the
development of timing equations. These will allow the prediction of the speed-up and efficiency
defined in equations (1) and (2). The timing equations have been derived in [3] and [5, Chapter
4] and only the results will be presented. Defining the time required to send one complex word,
consisting of the real and imaginary parts -— 8 bytes in single precision and 16 bytes in double
precision on a transputer, and indeed any system implementing IEEE arithmetic - from one pro-
cessor to another directly connected processor as {eomm, it may be shown that the communication
requirements of the matrix-vector product algorithms for M > 1 are as follows [3] and (5, Chapter

4]

throadeast = Mdcomm (4)
tgather = M1 — d/N]teomm (5)
tscatter = M[L — d/N]tcomm (6)

toccumulate = Mdcomm (7)

where d is the depth of the binary tree. Since the top-most processor is used purely for co-
ordinating the process, the number of worker processors is N = 2441 _ 9,

It is important to note that in deriving these results, it has been assumed that the communi-
cations parallelism available on a transputer has been exploited — this has been discussed in the
Introduction. Figure 3 shows an example of this for the broadcast primitive running on the worker
processors. The algorithms are most conveniently documented using pseudo-code — flowcharts
are very rarely used for parallel algorithms. The pseudo-code used, loosely based on Pascal, is
formally defined in [5, Section 3.7]. The mecaning of the code should be intuitively obvious to
anyone used to high-level, structured languages. The only construct that may be new is the par
construct; the code stubs within par ...par{end} are cxecuted in parallel.

Note also that there is a certain amount of computation that occurs after each communication
phase with the accumulate paradigm, arising from the addition of two vectors at each level; this
should be included in the overall compute time. The additional term is 2A/d (the factor 2 arising
from the conversion from complex to real arithmetic). The use of pipelining, to be discussed later,
has not been considered here.
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The amount of computation involved in a matrix-vector product is M? multiplications and
M(M — 1) additions. Thus the total amount of computation is approximately 2M? complex flops
or 8412 real flops. This is Ty, the time for the serial operation. The time for the parallel operation,
7, N ), is the sum of the computation time for the parallelized matrix-vector product, viz. SM?%/N,
and the communication time for either the row-block or column-block decomposition. The details
of the derivation of the speed-up and efficiency have been given in [3]. Only the result for the
following important case will be shown. Tf n, is defined as the number of rows per processor,
n, = ¥, then for N > 1, N = 24+1 hence d =~ log,N — 1, and the following approximate

formulae for ¢ is obtained:

1

E= ——— 8
1-|-§§—rlog2f\" (8)

where 3 = fcymm/lcaic 1s the ratio of communication to computation speed. f.,. is the time
required for a real floating point addition or multiplication. This formula is very important; it
indicates clearly that the matrix-vector product scales essentially with n7!, the inverse of the
number of rows per processor, and rather weakly (logarithmically) with the number of processors,
N. Hence, for a given n,. the efficiency is almost independent of the number of processors. This
prediction is confirmed by the measured results shown in Figure 7.

In reality, the dimension of the problem will not usually be an integral multiple of the number
of processors. This can be handled by either loading different processors differently or by padding
the matrix and vector with the necessary zeros. This can be incorporated into the preceding
analysis by replacing n, by [n,]. The effect on a plot of the efficiency as a function of M (or n,)
is to replace the smooth curve implied by equation (8) by a stairstep function. This point will be
understood as read in the rest of the paper.

The actual run-time of the algorithm can be obtained approximately from tmk%, indicating
the obvious importance of maximizing S for a given N.

2.3 The parallel CG algorithm

The timing analysis for the matrix-vector product of the preceding subsection can now be incorpo-
rated into a parallel conjugate gradient algorithm, and 5 and ¢ predicted. The algorithm exploits
the complementary roles of the row- and column-block decomposition; the matrix-vector product
is done using the row-block decomposition and the (Hermitian) transpose matrix-vector product
is done using the column-block decomposition (with the necessary change of sign of the imaginary
part of the matrix entries). This avoids having to either explicitly form the matrix transpose
during each operation -- a very expensive operation on a parallel processor with local memory,
since this requires an O(M?) interchange operation at each iteration — or store an additional
copy of the Hermitian transpose of the matrix — and thus double the memory requirements of
the code. This important contribution was the author’s [3], and has nol been published elsewhere,
to the best of his knowledge. It is notable that an operation as simple as forming the transpose
of & matrix — a trivial interchange of indices on a serial processor — can pose a major problem
ot a parallel system. Pseudo-code for the algorithm is given in Figures 4 and 5 for the master
and workers respectively. Only the matrix-vector products have been parallelized (Steps 1 and 5
in Table 3); the other vector update operations are performed on the master processor at the top
of the tree.
From Table 3, the serial time is

Ty = (16M? + 44 M Yoo (9)
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process[master. cgl
begin
initializatien
while {(not finished)
begin
broadcast p.k
gather u.k
compute alpha.k
update x.%+1 and r.k+1
scatter r.k+l
accumulate r.bar.k+1
compute beta.k
update p.k+1
compute and print normalized residual
check termination
end
end{while}
end{process[master.cgl}

Figure 4: Pseudo-code for parallel CG algorithm: master process

process[worker. cgl
begin
initialization
while (not finished)
begin
broadcast p.k
perform matrix-vector product
gather u.k
scatter r.k+1
perform transpose matrix-vector product
accumunlate r.bar.k+1
check termination
end
end{while}
end{process[worker.cgl}

Figure 5: Pscudo-code for parallel CG algorithm: worker process
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Precision Operation MFLOP/s
Single Addition 0.53
Double Addition 0.38
Single Multiplication 0.53
Double | Multiplication 0.48

Table 4: Computation benchmarks on the University of Stellenbosch’s T80 transputer array.

The parallel time is the sum of the parallelized matrix-vector products, the unparallelized vec-
tor operations and the additional computational overhead of the accumulate paradigm, and the
communication requirements of the broadcast, gather, scatter and accumulate paradigms:

T, = (16 M?*/N + 44M + 2dM Yt oqie + (2M[1 — d/N] + 2M d)tcomm (10)
Forming the quotient of 75 and T;, and simplifying vields

1_|_275
€ 23 FETEEn (11)
N (275 +0.125d + A=)

Note that this result is actually the eficiency of one iteration; since by far the majority of time
required by the algorithm is in the iterative cycles, the algorithm as a whole can be characterized

by its performance per iteration.
Under the assumption M, N > 1, this can be simplified to

1

€= 12
1+ §(2.75 + 0.125d + 2855) (12)

Attention must be paid to correctly terminating parallel algorithms: if not done correctly,
certain processes will never terminate, and re-initialization of the array may be required before
any other code will load. In the code developed by the author, the termination criteria is that either
the normalized residual error must have decreased to less than the user-specified value or that some
maximum number of iterations must have been executed (the conventional criteria for an iterative
algorithm). The former can only be determined by the master processor. Hence it is necessary
for the master process, at the end of each iteration, to monitor the termination criteria. If one (ot
both) of the termination criteria has been satisfied, then the master must explicitly inform the
workers, who then inform the lower level workers and terminate their execution. The configuration
program that loads the worker processors and correctly allocates software abstractions (channels
in Occam) to hardware (links on a transputer) for an arbitrary depth of binary tree also requires
attention; this is dependent on the specific language and configuration meta-language. A suitable
configuration for the Occam code developed by the author is given in [5, Appendix Al

This analysis requires two fundamental parameters to characterize the machine: the computa-
tion and communication speeds. The most reliable way of obtaining this data is by benchmarking -
actually measuring the performance of the system under conditions simulating those of the actual
code. Two simple benchmarks were developed: the first tested computation speed and the second
communication speed. Such benchmarking is necessary lor any patrallel computer; pseudo-code
useful for benchmarking local memory MIMD systems is presented in [3, Section 4.7]. Results are
shown in Tables 4 and 5. The parameter 3 can now be computed from the benchmark results
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Precision | MByte/s
Single 1.32
Double 1.39

Table 5: Communication benchmarks on the University of Stellenbosch’s T800 transputer array.

Precision | [
Single | 3.22
Double | 4.37 |

Table 6: ﬁ = tcomm/tmlc

for the case of single and double precision. The numerical values given in Table 6 are for the
transputer array used to generate the results that follow. 5

2.4 Results and Discussion

This section describes results obtained by the author using his Ocecam 2 implementation of the
algorithm. It was run on a 64 transputer array, developed in South Africa by the Council for
Scientific and Tndustrial Research. The array is known as the Massively Concurrent Computer/64
(MC? /64, or MC?n this paper). ® The array has been described in [3, Section 4.11. At the time of
running the timing tests, it was only possible to use half the array, for technical reasons: firstly, the
mermory was not homogeneously distributed, and secondly, some problems with the inter-cluster
switching (from one “cluster” of 16 processors to another) were being experienced. These results
represent the experimental validation of the timing models developed. Although the pseudo-code
given in Figures 4 and 5 appears simple, much detail — especially in the communication routines
- is hidden, and the debugging was very time-consuming and tedious, due to the absence of
interactive parallel debuggers. This code was also developed before useful books on the subject
such as {7] were available.

Measured efficiencies are shown in Figure 6. Theoretically, equation (11) predicts that the
efficiency should be a function mainly of the number of rows per processor, %, and a weak
function of d, the depth of the tree. These predictions are confirmed in Vigure 7. Thus this
parallel CG algorithm ezhibits a most desirable property - it scales with the number of rows per
processor. With a given number of rows per processor, the efficiency of the algorithm is a rather
weak function of the number of processors. The measured and predicted results for 30 workers are
shown in Figure 8, The maximum problem size is limited by the available memory; at the time
of writing a maximum of 64MB of usable memory was available.

It will be noted that in Figure 8, the measured and predicted curves agree very well regarding
the shape of the curve, but there is an offsct between the measured and predicted curves. Similar
results — not shown in this paper — were obtained for other numbers of processors. It should be

5Cme of the reviewers queried these benchmarks. However, these results agree closely with those reported in
[8, Table I] for the FORTRAN benchmarks, when the off-chip RAM is used. Using on-chip RAM yields rather
faster results [8], but there is only 4kD of this, so any real application program has to use the off-chip RAM. The
computational benchmark was coustructed to avold measuring loop overhead.

5The name “Massively” seems rather presumptuous in retrospect, but when initially mooted, the system was

indeed massive.
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noted that the aim of the modelling is not to be able to predict the performance exactly in the
sense that one predicts an antenna’s radiation pattern; the aim is simply to indicate trends and
determine whether the performance (efficiency) will be satisfactory for the problems of interest.
Farthermore, the predictions serve as a check on the correct functioning of the code. Possible
causes of the differences are latency (the time to initiate communication), loop overhead and
differences between the coding and the model caused by some usage restrictions in Occam. More
details may be found in [5, Section 4.8].

The measured data shown was obtained from PARNEC, a parallel version of the thin-wire part
of the moment method code NEC2 developed by the author in Occam 2 {5, Chapter 6]. Double
precision was used.

The efficiency of the parallet CG algorithm that has been described in this paper could be
further increased by exploiting communication pipelining, a concept that will be described with
reference to the parallel LU algorithm. Some further comments on improving the efficiency of the
algorithm will be made in the Conclusions of this paper.

3 A Parallel LU Algorithm

3.1 The Basic LU Algorithm

The LU method is probably the most widely used algorithm for the solution of square systems
of lincar equations. Given a system with a moderate number of equations, it is usunally the
best algorithm to use, provided that the system is not extraordinarily ill-conditioned. On serial
processors 7, LU decomposition followed by forward and backward substitution is always better
to use when solving a system of equations than forming the explicit inverse of the matrix [19,
p.347]. Given the fundamental role of the LU algorithm, the development of an efficient algorithm
suitable for a local memory MIMD array is an essential research topic for parallel computational
electromagnetics.

Before considering the parallel version of the LU algorithm, it is necessary to review briefly the
serial form of the algorithm. The LU algorithm factors a matrix A into the product of an upper
(U) and lower (L) triangular matrix. The diagonal elements of L are most commonly chosen as 1
— although other choices are also useful, for example Choleski decomposition. 8 The algorithm
can be found in virtually any book on matrix algebra, for example [19, p. 359]. The algorithm
consists of M main steps. Step i, which computes the i-th row of U and the i-th column of L, is
repeated for i = 1,..., M — 2 and is defined as follows:
begin{Step i}

1 i—1
Us; = r[‘li.i = L]
2,1 k=0

Repeat forall j=¢+1,..., M — 1:

1 1—1

ugi = g ang = 3tk (13)
i k=0
1 i—1

Lig = —lagi — Y 1 ptt] (14)
U,:’; k=0

"It was brought to my attention by a reviewer that some researchers have concluded that this may not be true
on certain parallel systems such as the Connection Machine.

® Note that Choleski decorpasition is only applicable to symmetric positive definite matrices [15, p.107]. Matrices
set up by the moment method do not generally have these properltics.
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end{Step i}

a;j, i ; and u;; represent the Z,j-th element of the [A], [L] and [U] matrices respectively;
i,j€{0,1,..., M — 1}; M is the dimension of the matrix. The matrix entries have been numbered
from 0 to M-1 for coding convenience: an array @ in Occam is numbered ag, ag, - ...

The algorithm requires special treatment for Step 0 and Step M-1 [19, p.359], and if at any
stage I; ;u;; = 0, the algorithm is terminated with an error message to the effect that factorization
is impossible. Provided that the matrix is not singular, pivoting may be used in such cases —
and is advisable whenever the matrix is not known to be well conditioned. Pivoting is a strategy
to optimize numerical stability by ensuring that the largest (in some sense) element is on the
diagonal. Mazimal column or partial pivoting and mazimal pivoting [19, p.330-3] are two well-
known algorithms; the former involves searching the column below the diagonal, the latter the
entire active region, to use the nomenclature of this paper. Bisseling and van de Vorst [20] have
shown that partial pivoting may be incorporated into the parallel LU algorithm implemented in
this paper without a major effect on the efficiency of the algorithm; the effect on equation (22)
is to replace the % by % However, the coding becomes substantially more complicated than that
already required and is not at present incorporated into the author’s parallel code.

Following the factorization of [A] into the product of (L] and {U], the unknown left-hand side
is solved for in a two-step process; the first step is forward substitution. Consider {A]{z] = [b],
with A factored as [A] = [L][U]. Define [[/][z] = [z]. Now the system [L][z] = [b] can be solved for
using forward substitution, since [L] is lower triangular. Then [z] can be solved using backward
substitution from [U][z] = [2] since [/] is upper triangular.
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It may be shown that the timing requirements of LU decomposition are ap proximately MTS -+
O(M?) 4+ O(M) additions and approximately the same number of mulliplications; see [15, p.109].
The constants associated with the lower order terms are small integers, so for all practical pur-
poses, the amount of work required is % operations. The factor of 2 comes from the additions
and multiplications. Similarly, the dominant term in the time for forward substitution is M?

operations, and the same result also holds for backward substitution.

3.2 Previous Work on Parallel LU Algorithms

This discussion of the serial algorithm now leads to the question of the identification of the
parallelism in the algorithm. Compared to the CG algorithm discussed in the preceding section,
the parallelism is hardly obvious. Nonetheless, very efficient parallel algorithms can be developed.

Since LU decomposition is such a fundamental algorithm in linear algebra, much work has
been done, but very often the work is not applicable to the problem of a full matrix, without any
special propertics. Brief reviews of parallel LU decomposition may be found in (21, 22]; a rather
more recent review paper is [23]. The present paper is based on recent work by van de Vorst and
Bisseling [24, 20]; the algorithm used is essentially identical to that of Fox et al [7, Chapter 20},
although the very different approaches used to present their algorithms by Bisseling and van de
Vorst on the one hand, and Fox et al. on the other, make this similarity initially obscure. Van
de Vorst’s work [24] is particularly difficult to read — eryptic is not an exaggeration for someone
unfamiliar with the use of formal methods in computer science — and Fox’s work, while far easier
to read, is for a banded matrix, hence the difficulties in recognizing the similarity.

3.3 A Parallel LU Algorithm - a Graphical Description

The essence of the parallel algorithm is the following observation. Instead of waiting for Step ¢ to
compute u; j and ;;, as in the serial algorithm described in the previous section, the summations
in equations (13) and (14) may be performed as soon as data is available, given sufficient processors
(N = M?). As an example, the first summation for each element of row 1 of U may begin as scon
as the relevant element of row 0 of U and column 0 of L is available. All the summations required
for row 1 may of course be performed in parallel, since there is no dependence within a row of [U]
or a column of [L] (other than on the diagonal element for the final division). Similarly, the first
summations for row 2. 3 etc. may also begin as soon as the results of row 0 and column 0 are
available. One could of course perform the serial algorithm in exactly the same way, but in the
serial case, nothing would be gained, and the algorithm would appear unnecessarily complex. The
required summations for row i of U and column i of L are thus computed using a series of partial
sumns performed in parallel at each step which terminates in Step i. Hence the maximum degree of
parallelism in this algorithm is M2 As will be noted shortly, the algorithm requires at least 2M
steps to execute. A more detailed explanation may be found in [4], which discusses in a tutorial
fashion the mode of thinking required to identify the parallelism inherent in the algorithm.

A parallel algorithm implementing the above is given in pseudo-code in Figure 9. This al-
gorithm assumes the diagonal elements of [I] to be 1. Note that the pseudo-code assumes M:?
processors; if this is not the case, then clustering is required. It should be appreciated that ef-
ficiently implementing the clustering and communications made the actual Occam code much
more complex than the psendo-code shown. A matrix [X] is used in the pseudo-code; when the
algorithm terminates the upper triangular part of [X] is [U], and the lower triangular part of
[X] — excluding the diagonal elements, which are 1 by initial choice — is [L]. Il the matrix [A]
is not needed after factorization, them as the computation of elements of [X] is completed the
corresponding elements of [A] may be overwritten.
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process[s,t]
begin
x[s,t] := als,t] {initialize matrix}
k := 0 {initialize global clock}
while k < n do
begin
if k < min(s,t} then
begin{active}
par
receive 1[s,k] from process [s,k]
receive ulk,t] from process [k,t]
end{par}
x[s,t] := x[s,t] - 1[s,k]*ulk,t]
end{activel}
else if k = t AND s > t then
begin{criticall}
receive ulk,k]
x[s,t] := x[s,t] / ulk,k] {note k=t in this case!}
send x[s,t] to all processes[s,ql with q > k
end{criticall}
else if k = 5 AND s < or = t then
begin{pseudo-critical}
send x[s,t] to all processes[g,t] with q > k
end{pseudo-criticall}
else if k > min(s,t)} then
SKIP {passive}

k:=k+1
end
end{while}

end. { process(s,t]] }

Figure 9: Pseudo-code for the parallel LU algorithm; adapted from [24].
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The algorithm can be most casily understood graphically. Figures 10 to 12 show the evolution
of the algorithm for a matrix of dimension 3 on a 3 by 3 array of processors, i.e. one processor
per element, the upper limit of the parallelism that can be extracted with this algorithm. The o
and * represent elements that are critical i.e. in the last stage of computation. (The * represent
the row of [/] in the final stage of computation. The choice of the diagonal elements of [L] as
1 means that no computation is required, but the values must still be communicated, hence the
distinction and the name pseudo-critical, used in the pseudo-code). The o represents elements
that are active, i.e. forming the partial sums. Blank entries represent passive elements, where no
work is performed, since the relevant element of L or U has been computed in a previous step.
The echelons of completed elements step diagonally downwards in an almost wave-front fashion.

* * %
e 0 O
e 0 O

Figure 10: Step 0 of LU decomposition

Figure 11: Step 1 of LU decomposition

Figure 12: Step 2 of LU decomposition

passive elements
e critical elements
pseudo-critical elements
o active elements

It is useful to give an example describing how the algorithm given in Figure 9 and illustrated
in Figures 10 to 12 proceeds. Tt is assumed for this discussion that there are M? processors, i.e.
one processor per matrix element. The initialization of [X] = [A] establishes the first row of [U] —
actually belore the algorithm has started. (This is because of the choice of diagonal [L] elements).

s On slep 0, the first column (column 0) of [L] is computed, and then this column, as well as
the first row (row 0) of [U] is sent to all the critical processes so that the partial sums can be
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¥ k%
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Figure 13: Communication in parallel LU algorithm, Step 0. The arrow symbols are defined in
the text.

computed. Note that by the end of step k£ = 0, the computations for the second row (row 1)
of [U] have been completed.

e On step 1, the second column (column 1) of (L] is computed, and this column, as well as the
second column of [U], can be sent to all remaining critical processes so that ongoing partial
sums can be computed. By the end of step k& = 1, the computations for the third row of [U]
(row 2) have been completed.

e The algorithm proceeds thus, until £ = M. (3 in this case).

Note that even given M? processors, at each step ¢, corresponding to one of the Figures 10 to
12, the algorithm given in Figure 9 needs two discrete computational “ticks”: firstly, to compute
the i-th column of 1. — in parallel — and secondly, to then update the partial sums on the
active processors— also in parallel. Hence with M processors the algorithm will take 2M1% ., to
terminate, assuming the times for floating point addition, subtraction, multiplication and division
to be similar.

Figure 13 shows the communications executed by the algorithm in Step 0. In this figure, the
| indicates communication to all the active elements of the column, and similarly the — indicates
communication to all the active elements of the row. The | symbol indicates both | and —.

Note how fine the grain of parallelism is compared to some other published applications; see
for example Cramb et al. [9]. They use a processor farm application for antenna array modelling,
and decompose their problem by scan angle, producing a parallel system requiring very little data
interchange: essentially data initialization, then collection of the finished computations. Such an
application is rather easier than those considered in this paper, since far less attention need be

given to highly efficient coding.

3.4 Topology, Clustering, Load Balancing and Communications

Given enough processors, the natural topology in the case of LU decomposition is a two-dimensional
mesh, reflecting the two-dimensional matrix. The row and column communication shown in Fig-
ure 13 can also be implemented very cfficiently on such a mesh. However, as with the CG
algorithm, the problems of interest are large-grained, where many unknowns must be grouped (ot
clustered) on each processor. A new problem, not present in the CG algorithm, emerges with
the LU algorithm, viz. load balancing. Inspection of Figures 10 to 12 show the problem; the
work in each row and column decreases as the algorithm proceeds, resulting in idle processors,
producing a lower bound on the efficiency of only approximately 33% [5, Section 5.8]. Hence the
tapology required for an efficient LU algorithm must not only minimize the communication cost,
but also provide a solution to the load balancing problem. The solution to the latter is clearly
to interleave rows or columns in some fashion so that the work on each processor remains fairly
constant, but this is also clearly linked to the communication cost. Prior to van de Vorst’s work,
most LU decomposition algorithms clustered the unknowns either by row or by column. llowever,
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Figure 14: Scattered grid distribution; 3 by 3 processor array (mesh). The elements in the upper
left corner map onto processor 00 of Figure 2, those in the upper centre onto 01, those in the left

centre onto 10 ctc.

a better method is to combine these. This double interleaved distribution is also used by Fox et
al. [7, Section 20-3] for the parallel LU decomposition of a banded LU matrix — the bandedness
of the matrix affects the timing analysis, but not the basic algorithm. Fox ef al. use the term
sscattered square decomposition”. It would appear that Tox has priority on the donble interleaved
distribution, but his early work appeared as internal Caltech reports and van de Vorst’s and Fox’s
work appeared in the published literature at much the same time. Van de Vorst’s earlier work
appears to have been carried out independently of Fox’s [24], but Bisseling and van de Vorst later
acknowledge the similarity [20].

From the viewpoint of minimizing the communication count, van de Vorst [24] has shown that
a square mesh distribution is the optimal Ny x N3 grid topology. (Note that a row or column
distribution are extreme cases of this general case, in the former case with Ny = N, Ny =1, and
vice versa for the latter). This can be confirmed intuitively: with a column or row distribution,
the amount of data to be communicated at each step is O(M) — an entire column (or row)
must be communicated — whereas using the grid distribution the amount of data at each step is
O(%) Furthermore, with the grid distribution, the column and row broadcast pipelines can he
rmn concurrently. This will be explained shortly.

With this grid decomposition required to minimize the communication cost, the load balanc-
ing problem may be solved very elegantly using a double-interleaved clustering scheme for data
distribution [24, 20], whereby both row and columns are scattered moduloy/N over a square array
of VN by /N transputers, with VN « M. The distribution of a matrix of dimension 9 on a 3
by 3 array using this double interleaved distribution is shown in Figure 14 [or the processor mesh
shown in Figure 2. The “wave-front” suggested by Figures 10 to 12 now sweeps cyclically through
the processor array, cach cycle completing V'N rows and columns. The algorithm terminates after
M/VN cycles. It may be scen by inspection that all the processors remain occupied until the
very last cycle of the algorithm. The load-balancing problem is thus alleviated.

In the casc where M is not an integral multiple of V'N, special care is required; the work is
divided up as evenly as possible but the processors with one less row and column to work on must
be thus explicitly programmed. The method used in the CG code of padding the matrix with
rows and columns of zeros is not applicable in this case, since the LU algorithm fails when a zero
is encountered on the diagonal.

Formally, the double interleaved distribution is the Cartesian product & of sets G; x H; :

G={CixH;:0<i,j<VN) (15)
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with

G, = {S:se\"/\snlod\/:\T:i}VOS i< VN (16)
H; ={t:teV Al modvV'N = JIV0 < j <« VN (17)

and
Vz{s:0<s< M} (18)

The indices i and j refer to processor indices and the indices s and ¢ to matrix clement indices. As
an example, for the 9 by 9 matrix distributed on the 3 by 3 processor mesh shown in illustrated in
Figures 2, V = {0,1,2...8}, and G, G1 and Gy (and T, H, and H;) are {0,3,6}, {1,4,7} and
{2,5,8} respectively. The Cartesian product (g X Hp gives the indices of the 9§ elements clustered
on processorgg. [he full distribution (i is shown in Figure 14.

An upper bound on the load-balancing complexity can be established as follows. The maximum
load is carried by processor sy—7 /81 (the processor at the lower right of the processor array). As
already discussed, the scattercd grid distribution results in a cyclic “sweep” through the processor
erid, with V' N Steps per cycle and M/V/N cycles in total. The amount ol work in the last cycle
— where there is only one element left to update — is approximately 2(v/'N) (the factor 2 comes
from the multiplication followed by subtraction, and the v'N from the number of Steps in the
cycle); on the preceding cycle 2(4v/N); and so on back to the first cycle with M/ N|2VN.

Summing over all M/V N cycles yields an upper bound of

9 113 2
20 e "
3N VN

The first term is clearly the parallelized computations; thus the second term is the additional

computational overhead caused by the load-balancing term.

The communications use pipelined, concurrent, row and column broadcast. The pipelines are
implemented in software; the concept is to overlap the incoming and outgoing vector to further
exploit the parallel link operation possible on a transputer. An cxample is shown in Figure 15
for one of the communication primitives exploiting pipelining. The effect is to specd up the
communications by a factor of almost 2+/N, where the factor ol 2 derives from the concurrent row
and column operation and the VN from the pipelining. Details and more complete pseudo-code
may be found in [5, Section 5.10], and also in [4].

An upper bound for the communication count can be derived by considering the processor
column carrying the heaviest communication load, namely the right-most column. For the first
cycle, the amount of data to be communicated is approximately y_ﬁ for each Step in the cycle.

For the next cycle, the amount of data is 7‘“}% — 1 per Step, and so on. Summing over all the

M/V/'N cycles yields

tesh < {[(—%)ﬁ] + [(—:}% “ VN + 4 DV N Heomm (20)

There arc 7‘“-% squarc-bracketed terms in total in the above equation (ie. the number of cycles),

which can be re-written as

M2 _\%7_1
Lmesh < {ﬁ ~ VN AZ::O kM eomm (21}
and thus L
tmesh < = —== + O(M) (22)

2N
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procedure broadcast_celumn_to _right{length)
begin
{initialize pipeline}
{note: length of vector passed as argument}
receive vector[1] from left processor
repeat for i = 2 to length
par{run pipeline}
receive vector[i] from left processor
send vector[i-1] to right processor
end{par}
end{repeat}
{flush pipeline}
send vector[length] to right processor
end{procedure broadcast_column_to_right}

Figure 15: Pseudo-code for rightwards pipelined column broadcast procedure. This runs in
parallel with similar leftwards column broadcast and upwards and downwards row broadcast
procedures.

Bisseling and van de Vorst’s result (20, equation (3.19)] has an identical dependence on %,
once the necessary change of notation is made.

A theoretical model for the efficiency may now be derived. The serial time, using a conversion
factor from complex to real flops of 4 as before, is (§M3){cq1; the parallel time is the sum of the
computation count, equalion (19), and the communication count, equation (22). Summing the

last three, using equation (1) and simplifying yields

1
B 1+n—1(% + %)

(23)

€

where n = M/+/N is the grain of the problem, i.e. the number of unknowns per processor, and 3
has the previously defined meaning.

It is instructive to compare this result with that for the CG solver, re-written using the same
notation:

1
£ =
1+ n~1VN(2.75 + 0.125d + 28215

Note that the terms in n~! in the denominator of the respective equations have similar constant
multipliers, but in addition the CG equation has a v/N and also a log, N term. Hence it can
be expected that for similar n that the LU algorithm is more efficient, a result that is confirmed
experimentally. This indicates that a parallel LU algorithm based on a mesh topology scales better
than a parallel CG based on a binary tree — the mesh and binary tree being considered as the
“natural” topologies for the CG and LU algorithms respectively, for the reasons already discussed
in this paper. To summarize: the CG algorithm scales with the reciprocal of the number of
rows per processor, whereas the L1 algorithm scales with the reciprocal of the square root of
the number of unknowns per processor, and the latter is the smaller multiplier. This is a most
interesting result, considering how initially unsuitable for parallelism the LU algorithm appeared,
and is confirmed by the results in Section 3.6.

(24)
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process[s]
begin
z[s] := bls]; k = ¢ {initialize}
while k < n do
begin
if k < s then
receive z[k] from process [k]
z[s] := z[=] - LIs,k] =z[k]
else if k = s then
z[s] := z[s] / L[s,s]
send z[s] to all processes ¢ with q > k
else if k > s then
SKIP
k := k+1
end
end. { process(s]] }

Figure 16: Forward substitution pseudo-code; solve [L][z]=[b].

3.5 Parallel Forward and Backward Substitution

Following the factorization of [A] into the product of [L] and [U], the unknown left hand side is
solved for using the two-step forward and backward substitution processes already discussed. A
parallel version of the forward and backward substitution algorithms is also necessary, not because
of the computation time, which is O(M?), but because it is most undesirable to communicate all
the elements of the [L] and [U] matrices back to a master processor, since the master must
then have enough memory to store the enlire matrix and the communication procedure takes
time. The former is the more serious problem for a typical MIMD array with local memory;
sufficient memory is not available on any one node (processor plus memory) to store the entire
matrix. Suitable parallel substitution algorithms have been derived by the author; pseudo-code
for forward substitution is given in Figure 16. The modifications for backward substitution are
simple; the algorithm may be found in [5, Chapter 6]. Subsequent to publication of the author’s
own research [25], van de Vorst and Bisseling published an algorithm for parallel forward and
backward substitution.

The substitution algorithms operate on only one column of the processing array at a time,
and the latest version of the relevant vector ([z] or [z]) is passed from column to column as the
algorithm proceeds. This is far from the most efficient parallel substitution algorithm possible,
since only VN processors are active concurrently, but has the major advantage of using the same
scattered grid distribution as the parallel LU algorithm.

3.6 Timing Results

The parallel LU and substitution algorithms described in this section have been implemented by
the author in Occam 2 for a transputer array. Details of the implementation are discussed in [5,
Section 5.11]. Preliminary results were presented as [25]. Figure 17 shows efficiencies for a number
of different processor array sizes as a function of matrix dimension. The timing results are for
single precision runs. The matrix was generated using a simple thin-wire moment method scheme
using sinusoidal basis functions and collocation, using results from {26, Section 7.5] for the field
radiated by a sinusoidal current. This moment method code was also written in Occam 2. The
largest problem solved had 1500 unknowns, and used 25 transputers. The LU solver took about
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15 minutes to run, which corresponds ta a computation speed of 9.6 MFLOP/s, and an efficiency
of close on 90%. The matrix was also generated in parallel and the efficiency of the entire code
is very similar to that of the LU part, which is of course the most computationally expensive
part. The forward and backward substitution algorithms have also been implemented and despite
having rather poor efficiency (as expected}, the overall impact on the code is negligible due to the
O(M?) computational cost of the substitution algorithm.

Figure 18 shows theoretical predictions, which can be secn to be somewhat optimistic, although
the general trend is correctly predicted. Reasons similar to those given in Section 2.4 may be
advanced for the differences; note that rather finer grain of communication in the LU algorithm is
more difficult to model accurately than the communication in the CG algorithm. Recent work by
the author indicated that the pipelines have a subtle problem in that the effect of the set-up time
— the time to initiate a communication on a link — is nof negligible when elements are being
communicated individually; it is around 6.5ps, approximately equal to feomm i single precision.
The effect of this is to double 3 in this case, and this has been incorporated in Figure 18; however,
the theoreotical results are still some way off the measured results. To permit comparison of the
parallel LU and CG algorithms, measurements for a parallel CG algorithm are also shown in
Figure 18 for 14 transputers. (The binary trec and mesh topologies cannot use exactly the same
number of processors; a tree of 14 and a mesh of 16 is a fair comparison). The CG results were
measured with a single precision version of PARNEC. (Note that the results shown previously for
the CG solver are for the double precision version of PARNEC.)

Bisseling and Van de Vorst show similar measured results in [20]; the numerical values for
efficiency shown in Figure 17 are not directly comparable with their results, which are presumably
for real valued matrices, although the latter is not explicitly stated in their paper. The form of
the curves is very similar.

4 Scalar efficiencies of the LU and CG algorithms

Scalar efficiency * deals with the actual run-times of the algorithms when run on the same com-
puter — since the efficiencies of the algorithms discussed in this paper are comparable, it is also
very important for these parallel algorithms. It has generally been assumed that using an iterative
solver reduces the amount of computation from O{M?3) for the LU solver to ni.,O(M?) for the CG
solver, where n., is the number of iterations required for convergence. The motivation for using
parallel iterative solvers for [ull matrix problems was the expectation that the convergence would
be sufficiently rapid for the CG algorithm to terminate in a small number iterations, making the
run-time considerably less than the corresponding LU factorization. Iterative methods are widely
and successfully used in methods resulting in sparse matrices such as the Finite Element method
[27, Chapter 10].

Unfortunately, for arbitrary moment method problems, the number of iterations appears to
be a quite substantial fraction of the number of segments, for structures discretized according to
some nominal segment length rule, for example A/10. For problems that are over-discretized, the
number of jterations appears to be a function of the problem, and increases only weakly with the
discretization, once the structure is satisfactorily discretized. See for example [18]. The reason
for this is probably that the extra eigenvalues introduced by the over-discretization are not very
significant; see [28]. Unfortunately, it is problems that arc just satisfactorily discretized that are
frequently of the greatest interest to electromagnetic modellers.

Hence, for the important case of structures just satisfactorily discretized, the computational

9The term was suggested by a reviewer, and describes the issue very succinctly.
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dependence of the CG algorithm would also appear to be essentially O(M?). Since the efficiencics
of both parallel methods are comparable, the serial break-even point can be used, namely where the
number of iterations is 1/6 of the matrix dimension. However, even in the largest case investigated
to date by the author, using about 2 000 segments, this fraction was closer to 1/4, and was even
larger for smaller problems; see Table 7. Peterson and Mittra reported similar res ults several years
ago, for smaller systems with at most a few hundred unknowns [29]. The present author used a
normalized error criterion of 10~2, giving an error of around 1%. So, unless one is satisfied with a
larger error, the LU method would have been slightly, to considerably, faster for all the problems
investigated. The rate of convergence is highly dependent on the problem; for some other work
recently performed on relatively large systems (1 000 to 2 000 unknowns), the rate of convergence
was much poorer than that mentioned above.

With a multiple right-hand side problem, such as a typical radar cross section problem, the
superiority of the LU method has long been acknowledged. The work of Smith et al. [30] on
using the CG method to solve multiple right-hand sides, by re-using some of the data generated
for previous right-hand sides, showed that although significant time savings compated to the
standard CG method were possible, for many right-hand sides the LU method remained the
better approach. However, a new technique recently proposed by Kastner and Herscovici [31]
shows promising resnlts for a multiple right-hand side CG formmlation.

5 Parallelizing the matrix fill

A number of tesearchers have reported that the time required for matrix fill, although an O(M?)
operation, can still dominate moment method codes for large numbers of unknowns [11]. Certainly
with a patch code, especially if using the Galerkin formulation, this could be a serious problem.
With thin-wire collocation codes such as NEC2, the matrix solve fairly rapidly dominates the
matrix fill; an example is shown in Table 7. This is for a CG solver; the number of iterations
is also listed. The “break-even” number of iterations where the CG run-time equals that of LU
decomposition is M/6. Using the NEC2 formulation and the CG solver row-block decomposition,
the problem of parallel matrix gencration was easily solved — one simply decomposes by match
point, in precisely the same fashion that the NEC2 out-of-core solver functions. Work is at present
in progress on incorporating the LU solver into the parallel NEC2 code.

6 Conclusions

6.1 General

This paper has presented parallel algorithms for the two algorithms most frequently used in com-
putational electromagnetics for the solution of systems of lincar equations. The basic algorithms
have been reviewed; parallel algorithms have becn presented — both informally and formally in
pseudo-code, analyzed, and results obtained with an implementation of the algorithms on a spe-
cific parallel computer reported. The experimental results for the CG and LU solvers have been
compared both to the theoretical predictions and with each other for similar numbers of proces-
sors, demonstrating both theoretically and practically that the parallel LU algorithm presented is
more efficient than the parallel CG algorithm shown. The scalar efficiency of the LU algorithm is
also better since the run-time of the CG method is highly dependent on the rate of convergence
of the CG algorithm, and it has been found that the rate of convergence of the CG algorithm for
practical problems is not sufficient for the CG algorithm to out-perform the LU algorithm.

170



Number of | tsone/tsar | Number of
segments M iterations
50 1.0 14
124 2.2 73
188 2.7 134
316 24 131
428 7.2 372
876 9.1 405
1196 10.4 409
1516 11.9 414
1996 211 543

Table 7: Ratio of the matrix fill to solve times for a particular simulation, viz. a cone-cylinder
with four monopoles [5, Section 6.7]. 30 worker transputers were used. All data except for the
last entry are for double precision: the 1996 segment data was generated using single precision.

6.2 Scaling behaviour and grain size

A very important result has been demonstrated, both theoretically and experimentally, namely the
sealing propertics of the algorithms; larger problems can be solved in an approximately constant
time by increasing the number of processors. The scaling property of the parallel LU algorithm
considered in this paper has been shown to better than that of the parallel CG algorithm discussed,
although both have quite satisfactory scaling properties. It might be thought that it is self-evident
that as the grain size (the number of unknowns per processor, n? as used in this paper), increases,
so the efficiency will increase — however, this is only a property of an algorithm where the
computation cost as a function of the grain size increases faster than the communication cost, and
is by no means a general property of all parallel algorithms.

The dependence of the efficiency on the grain has some implications for massively parallel
systems that should be considered explicitly. If 50% efficiency is considered acceptable, then
a grain size of several hundred is required for acceptable efficiency for the LU algorithm; or
put slightly differently, a sub-matrix per processor of dimension iwenty or so. An important
theoretical result in this paper is that for a given efficiency, this grain size remains constant for
the LU algorithm and is only weakly dependent on the number of processors for the CG algorithm
{the dependence is approximately v/N); actual timing results confirm this (Figure 7). Note that
since the efficiency is a function of the 3, the commuuication to computation ratio, this break-even
point will also be a function of this ratio. For the transputer technology used, this ratio produced
very acceptable efliciencies on problems of practical interest: it is, of course, a function of the
processor technology, and the user must accept it as a given for a particular processor. For arrays
with hundreds of processors, where the algorithms remain relatively coarse-grained, the results in
this paper can be extrapolated to show that what are really the classic serial algorithms (albeit
in parallel form) can still give very acceptable efficiencies. It should be stated, however, that
these results may not apply to truly massively parallel systems, with perhaps tens or hundreds
of thousands of processors. The fundamental philosophical issue is that of global interaction (viz.
integral equation methods) versus local interaction (viz. differential equation methods) and it is
likely that the latter methods with their highly local interaction requirements may be far better
candidates for massively parallel computers.
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6.3 Workstations or transputers?

This section compares T800 based arrays with workstations available at the time of writing (1992)
and will inevitably date. As was clearly indicated in the Introduction, the aim of this paper was
not to blindly promote transputer arrays; a sober analysis of competing computer technologies
is necessary. The present transputer technology (the T800) dates to around the mid-nineteen
cighties, and at the time of writing, a contemporary high performance RISC workstation would
probably be a better investment; the maximum through-put of a 64 transputer array is about 33
MFLOP/s (in single precision, with a 100% efficiency of the parallel algorithm) as soon as one
uses the off-chip RAM, as is typically the case. The author has only been able to use about half
this array (25 processors), and obtained 9.6 MFLOP/s. The author has benchmarked the HP720
RISC workstation at close to 20 MFLOP/s on .U decomposition (also in single precision).

Note that this is in not a very fair comparison, since it involves the comparison of computing
technologies separated by five to six years; the balance will change back dramatically in favour
of transputer arrays when the T9000 is shipped from Inmos (4, 11], so the time invested in
developing the parallel algorithms described here is time well invested for future arrays; as serial
processors (and the related processors such as super-scalar architectures) increase in speed, so
do the individual elements of processor arrays. Cwik and Patterson have reported the accurate
solution of what can only be described as rnassive moment method problems with 30 000 unknowns
on a 312 node i860 array [32].

6.4 Issues still to be addressed

An issne that has not been addressed in this paper is the stability and accuracy of electromag-
netically large problems discretized using the moment method. The stability of the LU method,
applied to computational electromagnetic problems, has been studied by the author using a thin-
wire problem and results obtained indicate that in all except the most exceptional circumstances,
involving serious violation of the basic “thin-wire” assumption, the solutions obtained using the
LU solver are stable. The availability of a parallel version of NEC2 has permitted the investigation
of the accuracy of the moment method for large problems. This was done by using a physically
symmetrical problem; first solved with, and then without, exploiting the symmetry. Using sym-
metry reduces the number of unknowns by the degree of symmetry, thus requiring the solution of
a much smaller system of equations. This method has been used to demonstrate the accuracy of
NEC?2 for problems with up to 2 000 unknowns [5, Chapter 6]. Some preliminary details are to
be published in [4].

The CG algorithm was the [irst major parallel code developed by the author and is not optimal
in a number of respects: if pipelining, as exploited in the LU algorithm, were to be exploited in the
CG algorithm for the broadcast and gather operations, improvements should be anticipated —
this has not been implemented, however. Further, the unparallelized vector operations (addition,
subtraction etc.), responsible for the 2.75 factor, could probably also be reduced by parallelizing
the vector operations. These amount to “fine-tuning” the existing binary tree algorithm. (One
should also bear in mind that given a processor with four communication links, a ternary tree
would be more efficient than a binary tree — as mentioned iu [3]). However, in the light of the
predicted and measured performance of the parallel LU algorithm, an interesting question that
arises is whether implementing the parallel CG algorithm on a mesh would result in communication
performance similar to that of the parallel LU algorithm. This is a topic for future research. At
present, the whole question is possibly more of academic than practical interest, since the existing
parallel CG coade, while admittedly not optimal, is still very efficient for the problems of interest
on presently available arrays. However, rather larger MIMID arrays involving possibly thousands
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of processors may require parallel CG algorithms with better scaling properties.

6.5 General Conclusions

While the use of more powerful computers with existing algorithms is still ultimately limited by
the third power law (see Section 1), for many problems a relatively modest increase in problem size
closes the gap between moment method analyses and asymplotic analyses such as the Geometric
Theory of Diffraction. The importance of the algorithms discussed in this paper is the good scaling
properties that permit the efficient exploitation of large — but possibly not massive - processor
arrays for large problems.
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