AN INTEGRATED ENVIRONMENT FOR THE NUMERICAL MODELING
OF COMMUNICATION ANTENNAS BASED ON
RELATIONAL DATABASES

virginia Stover
Department of Mathematics and Cemputer S8cience
University of san Diego
San Diego, CA

James C. Logan
Research and Development Division
Naval Command, Contrcl and Ocean Surveillance Center
San Diego, CA

Abstract

As modeling systems mature, they become larger, more complex,
and more difficult to maintain. Modeling tools increase in number
and complexity. Frequently they are written in different languages
and require data in different formats. Databases also increase in
size as modeling systems are applied to new and more complex
problems. Engineers spend large amounts of money trying to
integrate tools and data that are basically incompatible.
Unfortunately, budgets do not grow at the same rate as the
complexity of our modeling systems and databases. To maintain
productivity, it is necessary to design modeling environments that
can handle large amounts of data in flexible ways and are simple to
maintain and upgrade.

This paper describes a new environment developed by the
authors for the modeling of communication antennas based on a
relational database management system. This approach simplifies the
task of integrating a set of heterogeneous programs with
incompatible data formats. The relational database provides a
common store for all modeling objects including the antenna,
platform, ground, electromagnetic sources, currents, charges, and
fields, and model history. The database management system provides
the organization, storage, and retrieval functions and some of the
data input, validation and display functions for the antenna
models. The main advantages of this approach are its ability to
grow as new tools and capabilities are added, its portability to
other machines and operating systems, and the ability it provides
engineers to easily share data among themselves and with other
modeling applications.

This work was conducted for the Naval Ocean Systems Center as part of the Navy Summer Faculty Research
Program, a cooperative program with the American Association for Engineering Education (ASEE).

Introduction

114

Engineers use both physical and numerical models to predict
the performance of communication antennas. Some of the numerical
analysis programs in use are based on the Method of Moments and
include NEC[1], MININEC[2], and Junction[3]. These programs are
intended for modeling arbitrary geometries defined by wire frames
and surface patches. They typically compute currents, charges,
impedances, electric and magnetic fields, and other antenna
parameters as output. Other numerical analysis programs are based
on the Geometric Theory of Diffraction (GTD) and Finite Difference
Time Domain (FDTD). GTD programs compute electric and magnetic
fields from arbitrary geometries composed of generic shapes such as
plates and cylinders. FDTD programs compute fields from partitioned
volumes and surfaces.

Besides an analysis program, computer antenna modeling
requires programs for inputting geometric, electromagnetic, and
program control data and for analyzing and displaying results. Many
of these support programs are sophisticated special-purpose tools.
Others are off-the-shelf products like CAD programs, spreadsheets,
and database management systems for inputting data, statistical
analysis programs and graphics programs for analyzing output, and
word processors and desk-top publishing systems for generating
reports. These programs are often written in different languages
and require input and output data to be in different formats.

Antenna models typically require large data sets for both
input and output. Besides the antenna, all or part of the platform
(ship, tank, jeep, airplane, etc.) may be required in the model. To
model a ship may require thousands of nodes, wires, and patches.
Many versions of the same model are often generated when
investigating various antenna configurations. Output is often
computed repeatedly over a range of frequencies for one or more
potential antenna sites. Furthermore, Method of Moments codes have
rigid requirements for model input. For example, there are
restrictions on wire radius, wire segment length, wire spacing,
number and angle of wires at junctions, size of surface patches,
and the total number of unknowns (nodes, wires and patches).
Therefore, users often have difficulty preparing and wvalidating
input data sets, especially when these sets are large. In addition,
users may have difficulty converting data to the format required by
the analysis software.

An Integrated Environment

Many of these difficulties can be overcome by providing a
single integrated environment for antenna modeling. A current Navy
effort in this area is called the Numerical Electromagnetic
Engineering Design System or NEEDS[4]. NEEDS will combine existing
software tools into a single uniform environment. It will guide the
user through the steps necessary to build a model, validate the
model, compute currents and other EM parameters, and analyze and

115

display results. It will convert data as needed, store intermediate
and final results, and document the history of models and their
various versions. It will facilitate the reuse and sharing of model
input and output. It will allow communication over networks for
remote processing. In addition, the system will be portable across
a variety of machine types and operating systems.

It is important to design NEEDS for maximum flexibility. It is
inevitable that additional analysis and support tools will be
added. It must be possible to modify the system easily in order to
integrate new tools written in arbitrary languages. This requires
that the major components of the system (model input,
electromagnetic analysis, output display, process control, and data
management) be implemented in separate independent modules. It must
be possible to use the data in ways not necessarily anticipated at
development time. Thus, data retrieval methods must be flexible. To
support a variety of analysis codes, the model geometries should be
represented by generic shapes from which wire frame or surface
patch models can be automatically generated as required by the
particular analysis codes used.

There are many issues to be addressed in building an
integrated system such as NEEDS. These issues include conceptual
model representation, partitioning algorithms for generating wire
segments and patches, model evaluation and validation, and user
interface designs. This paper, however, focuses on the issue of
data management. This is an issue that becomes more important as
databases increase in size and complexity. A significant amount of
time and money is now being spent maintaining large databases that
are basically incompatible. Methods are needed for handling large
databases in ways that will allow for the efficient sharing of data
among engineers and across tools and applications.

Data Management

A major problem with integrating heterogeneous programs is the
management of incompatible data sets. Each program in the system
typically uses its own internal files and has its own unique file
formats. Thus, there tends to be significant duplication of both
data and data-accessing routines. This duplication is inefficient
and can lead to serious inconsistencies in the data. In addition,
conversion programs are needed to translate files from one format
to another. One or more conversion programs may be needed between
each pair of programs in the system. The number of conversion
programs needed, therefore, generally increases as the square of
the number of programs in the system. Finally, data files tend to
be difficult to modify. Any change in the format of a file requires
changes to all programs accessing that file.

One way to deal with these problems is to use a common
database. By using a common database, each item of data needs to be

116

stored in only one place, and common data access routines can be
provided. Furthermore, conversion programs are needed only between
each program file and the database. Thus, the nunber of conversion
programs needed will grow linearly with, rather than as the square
of, the number of programs. This savings becomes more important as
the system grows. Finally, as we shall see, database languages
exist that make application codes less dependent on data file
formats.

Relational Databases

The leading database technology today is the relational
database[5]. Relational databases are known for their ability to
minimize data redundancy, provide flexible data representation, and
allow for efficient data access. A relational database organizes
data as a collection of tables. A separate table is used to
represent each type of object or "entity" in the database. Each
table has a fixed set of columns representing the characteristics
or "attributes" of each object type. And each row of the table
represents a single object or "instance" of that type.

For example, each node in a wire frame can be described by its
x-, y-, and z-coordinates (Table 1). An additional attribute,
called Node Number, is used as a key to identify each node
uniquely.

NODES
Node_
Number X Y Z
1 0.0 0.0 0.0
2 0.0 0.0 1.5
3 2.8 0.0 1.5
4 0.0 2.8 1.5

A List of Nodes
Table 1

Tables also can be used to represent relationships among two or
more entities. Relationship tables combine the key attributes (such
as names or ID numbers) from two or more entities. For example,
wires can be characterized by the indices of the nodes at each end
of the wire (Table 2). Additional attributes, such as Radius and
Number of Segments, can be added to describe the relationship
further.

117

WIRES

Wire_ Number Of
Number Nodel Node2 Radius Segments
1 1 2 0.001 4
2 2 3 0.01 2
3 4 2 0.002 4
A List of Wires
Table 2
Note that the columns labeled "Nodel" and "Node2" in the Wires

Table contain values of the key attribute (Node_ Number) appearing
in the Nodes Table. These attributes are called "foreign keys" in
the Wires Table. A foreign key points to a key in another table.

It is important to design database tables carefully in order
to reduce the number of blank spaces and the amount of redundant
information. Redundant information wastes space and can lead to
inconsistencies. A well-known process for designing relational
database tables is called "normalization". Normalization breaks
large tables into smaller tables so that each table describes a
single atomic entity or relationship. Relationships among tables
are preserved in the foreign keys. Smaller tables can later be
combined into larger tables, as needed, by using an operation
called a "join".

Both the Nodes Table and the Wires Table above are normalized.
Notice that when multiple wires end at the same node, there is no
need to repeat the x-, y-, and z~coordinates of that node. The
coordinates are stored only once in the Nodes Table and a reference
made to them in the Wires Table through the foreign keys. This
helps to maintain the consistency of the data if changes are made
to the node's coordinates.

Besides the database itself, a query language is needed for
organizing, storing, and retrieving values from a database. The
Structured Query Language (SQL) is an ANSI standard for relational
databases. SQL commands can be executed interactively or embedded
within a general-purpose programming language like C or FORTRAN.
SQL gueries allow the user to retrieve any subset of the rows of
any table from any subset of its columns, as well as to combine
tables. SQL provides flexibility in allowing the user to retrieve
precisely the subset of data required. SQL is a non-procedural
language. That 1is, it describes what subset of data to retrieve
without describing how to retrieve it. This minimizes the amount of
programming required. It also ensures that the code that accesses
the data is independent of how the data is actually stored. This
"physical data independence" ensures that changes to the physical
structure of the database can be made without affecting the code

118

that accesses it. Some examples of SQL queries are as follows:
EXAMPLE 1. The query

SELECT SUM (Number_ of Segments)
FROM Nodes, Wires
WHERE (Nodel = Node_Number) AND (Z2 > 0.0);

retrieves the total number of segments on those wires

for which the first endpoint has a positive z-coordinate.
Notice that this query requires information from both

the Nodes Table (for the z-coordinate) and the Wires Table
(for the number of segments).

EXAMFLE 2. The SQL query

SELECT W1l.Wire Number, W2.Wire Number
FROM Wires W1, Wires W2

WHERE ({(Wl.Nodel = W2.Nodel)
OR (Wl.Nodel = W2.Node2)
OR (Wl.Node2 = W2.Nodel)
OR (Wl.Node2 = W2.Node2))

AND (W1l.Wire Number < W2.Wire Number) ;

finds each pair of adjacent wires (temporarily called

"W1" and "W2") and retrieves their wire numbers. It
combines a copy of the Wires Table with itself. The result
is shown in Table 3 below.

Wire Number | Wire Number

1 2
i 3
2 3

Query Result
Table 3

A complete database management system will provide
capabilities other than simple storage and retrieval functions.
These capabilities usually include multi-level security, backup and
recovery in case of software or hardware failures, concurrency
control to allow more than one user to access the database at the
same time, and indexing and clustering to speed up access to the
most frequently used data. Commercial database management systems
usually provide tools for creating user interfaces that facilitate
access to the database. And they allow database files to be
imported from and exported to other operating system and database
files.

119

The ORACLE Relational Database Management System

The authors built a prototype of an integrated antenna
modeling environment based on a relational database management
system (RDBMS). The prototype demonstrates the feasibility of using
a RDBMS for providing the following data management capabilities:

v

a central uniform data repository

» efficient access to the data, either directly
by the user or transparently through application
programs

» low-level data validation

» conversion of file formats between those used
by the database management system and those used
by the application programs

» documentation of the history of models and their
various versions and

» archiving of models for long-term storage.

Low-level data validation involves checking constraints on the data
imposed by the conceptual model. Additional constraints on the data
imposed by specific analysis programs are assumed to be handled by
the analysis software itself. Security, concurrency, and network
access were not considered to be important at this time.

We decided to use a commercial RDBMS for several reasons.
First, commercial systems are extremely reliable. Second, the user
interface tools provided by most commercial systems minimize the
time needed to develop and update application software. And third,
it would take many years to develop a system that would provide the
same functionality as that currently provided by commercial
systems.

There are many commercial RDBMS's on the market. ORACLE' was
chosen for this project to achieve some standardization with other
Army and Navy projects. ORACLE is a complete database management
system providing all the capabilities mentioned above. It runs on
a variety of machines under all major operating systems allowing
application scftware to be easily ported. Versions of ORACLE are
available that run over a network. ORACLE supports embedded SQL
commands in both C and FORTRAN.

Description of the Prototype

The prototype runs under MS-DOS? 3.3 and ORACLE RDBMS 5.1B on

TORACLE is a registered trademark of Oracle Corporation.

2MS-DOS s a registered trademark of Microsoft, Inc.

120

an IBM-PC® or compatible with at least one hard disk drive and at
least 256K of extended memory. The extra memory is required for the
ORACLE RDBMS. The PC version of ORACLE is a single-user systemn.

The central data repository is a relational database with pre-
defined tables. Users can directly access the database through SQL
commands or indirectly through application programs and database
forms. The database contains model input and output, model
histories, control data, and some intermediate model-derived data.

In addition to the database, the prototype includes the
following programs:

» the Junction code from the University of Houston
for computing currents, charges, far fields, and
near fields from models described by a combination
of wires segments and triangular surface patches

» an ORACLE menu for navigating through the system

» ORACLE forms for inputting data and displaying
results

» several C programs with embedded database queries for
converting between the ORACLE database and Junction's
ASCII formatted files and

» a supervisory program written in C.

Included in the Junction code are routines for producing surface
patches from generic shapes such as cones, cylinders, and spheres.

During a typical modeling session, a user would

» define a new model or select an existing model for update

» input or update the model geometry and electromagnetic data
including definitions of wires, surfaces, sources,
frequencies, and far and near field locations, as desired.

» select the desired output such as currents, charges, far
fields, and/or near fields

» request the system to compute the desired output

» view the output

The supervisory program ensures that programs are executed in
the correct sequence and that each program receives its data in the
proper format. The computation of output can be divided into
several phases: 1) creating wire segments and surface patches, 2)
computing additional geometry parameters such as the midpoint of
wire segments and locations of body-wire junctions, 3) computing
currents, and 4) computing charges, far fields and near fields, if
desired. Each of these phases can be executed separately and
intermediate results viewed. These phases must be executed in this

3I1BM is a registered trademark of International Business Machines Corporation.

121

order, but not all changes to the input require recomputation of
each phase. For example, a change in a source location requires
that the currents, and hence charges and fields, be recomputed, but
a change in a near field location requires only that near fields be
recomputed. To control the execution sequence, tables in the
database record which types of data have been defined by the user
and which types of data have been computed by the system. By
referring to these tables, the supervisory program prevents users
from attempting to compute output data before all prerequisite
input data have been entered, and it avoids computing data that are
already available in the database.

The user traverses the system by means of a menu. Menu and
sub-menu commands ultimately execute database commands, operating
system commands, database forms, or other application software. A
background menu, accessible from anywhere in the menu system,
allows advanced users to execute their own operating system or
database commands directly in order to accomplish specialized
tasks.

A form-based user interface facilitates input and output of
non-geometric data and geometric data for small models. Forms allow
for the entry of data independent of the analysis software. Forms
can do low-level data validation, such as type-checking and range-
checking, before data is committed to the database. This helps to
maintain the integrity of the database, and it provides immediate
feedback to the user when mistakes are made. Help messages and
default values can be provided for each field in the form. The
developer can designate certain fields as key fields which must
have unique values. Non-key fields can be designated as either
mandatory or optional. (Optional fields may contain null values.)
And user updates can be restricted to a subset of the available
fields, if desired.

Since these forms are closely integrated with the database,
they can perform functions not common to other forms software. For
example, forms can be designed to make simultaneous updates to
other fields, such as foreign keys, in other database tables (see
Example 2 below). This helps to maintain the consistency of the
database. The same form that is used to insert or update data in
the database can be used to retrieve data from the database. The
user performs queries by providing a value or a range of values in
one or more fields of the form. The form will then retrieve all
database records that include those field values. To allow
additional functionality, database operations and/or C code can be
tagged to certain events (such as updates, gqueries, or cursor
moves) that are executed when the user causes those events to
occur. These "triggers" are used for more advanced data validation
and housekeeping functions.

The following are some examples of the capabilities of
database forms. The form in Figqure 1 references the Nodes and the

122

Wires Tables discussed above.

NODES
Node
Number| X (meters)| Y (meters)| Z (meters)
1 0.0 0.0 0.0
2 0.0 0.0 1.5
3 2.8 0.0 1.5
4 0.0 2.8 1.5
WIRES
Wire Radius Number of

Number| Node 1| Node 2| (meters)| Segments

1 1 2 0.001 4
2 2 3 0.01 2
3 4 2 0.002 4

A Form for Inputting and Displaying Wires
Figure 1

EXAMPLE 1. To insert a new wire, the user types a value
for each field in the Wires Table and invokes the Insert
function. The form can verify that the two nodes
referenced by the new wire have already been defined in
the Nodes Table.

EXAMPLE 2. If the user wishes to change the index of
Node 4 to Node 5, the user changes the "4" to a "5"
under Node Number in the Nodes Table and invokes the
Update function. The form can propagate this change
automatically to the Wires Tables, so that Wire 3
would then connect Node 5 to Node 2.

EXAMPLE 3. To list all the Nodes in the database with
an x-coordinate greater than 0.5 meters, the user types
"50,.5" in the X field of the Nodes Table and invokes
the Query function.

The prototype also records the history of models as they are
developed by the user. It allows the user to document different

123

projects, several models belonging to each project, and multiple
versions of each model (see Figure 2). Each model is described by
a model number, model name, project name, the name of the person
creating the model, the date it was created, the number of versions
it has, and a textual description of the model. Each version is
described by a version number, the number of the model to which it
belongs, the date it was created, the date it was last updated, the
name of the file where it is stored, and a textual description. A
new version is created automatically after the user computes the
currents for the existing version. Thus, each time the currents are
computed for a group of frequencies, the input data become fixed
for that version. Any additional changes to the input data are
reflected in the new version.

PROJECT

MODEL 1 MODEL 2
Model Number Model Number
Model Name Model Name
Project Name Project Name
Creator Creator
Date Created Date Created
Versions Versions
Description Description

VERSICON 1 VERSION 2 VERSION 3

Version No.
Model Number
Date Created
Date Updated
Filename
Description

Version No.
Model Number
Date Created
Date Updated
Filename
Description

Version No.

Model Number
Date Created
Date Updated
Filename
Description

The Description of Model Histories
Figure 2

Because of the limited memory of a PC, it would be difficult
to store input and output data for all versions in the database
simultaneously. Therefore, the database contains workspace for the
current version only, plus a catalog of past and current models and
versions. In addition, alternative sources, near field regions, and
far field regions can be stored in the database. Previous models
and their various versions are archived on disk and can be reloaded
from the on-line catalog as needed.

124

Lessons Learned

A relational database management system proved to be well-
suited to this application. It was possible to develop a fairly
complex, modular system in a short time due to the database menu-
and form-building software and the use of embedded SQL commands in
application programs. These application-building tools also allow
the developer to provide the user with transparent access to
database. Thus, the typical user does not need to know that a
relational database exists or how it is organized.

ORACLE, however, is primary a business~oriented database
management system. Therefore, its query languages lack a complex
data type and such built-in functions as square roots,
exponentials, logarithms, and trigonometric functions needed for
scientific and engineering applications. Thus, embedded C code is
needed to perform these functions. A scientific database management
system would provide these as extensions of the SQL language.

Another disadvantage of the ORACLE RDBMS for some is its size
and cost. The database management system requires at least 1 MB of
main memory and about 9 MB of disk space in addition to disk space
for the database itself. Large amounts of memory and disk space,
however, are becoming much more affordable. And ORACLE's
portability and network capabilities may ultimately far outweigh
these disadvantages.

The most significant advantage of the relational database is
the flexibility that it provides. It allows data to be combined and
retrieved in many ways. As the modeling capabilities of the system
are extended in the future (to include, for example, loads,
transmission lines, or material types), it will be necessary to add
new tables or new columns of existing tables to the database. This
database extension, however, does not require changing either
existing data or existing code. As long as table and column names
are not changed, existing analysis programs and support tools will
still execute properly on the modified database.

It was difficult to keep more than one version of a large
model in the database at one time due to the memory limitations of
a PC. Therefore, the ability to make arbitrary comparisons of data
across different versions or models is not a built-in capability of
the system at this time. For advanced users, however, it is
possible to make such comparisons by accessing the database
directly. This requires knowledge of simple SQL commands in order
to create new tables and to move data from one table to another.

Any environment that generates so much data, however, should
provide for an efficient way to browse through the data, compare
data from different models and versions, and do other kinds of data
synthesis. In the future it would be advisable to run the database

125

management system on a dedicated workstation or minicomputer as a
database server, so that numerous models and their various versions
could be kept in the database at one time. A more sophisticated
archival system is needed for expanding the work area as needed and
for automatically storing data on disk or tape as available memory
is used up.

Future Possibilities

It is anticipated that additional tools will be added to the
integrated system in the future. These include graphical input
programs for large geometries, 2- and 3-dimensional graphical
output display programs, a windows-based user interface, and
additional EM analysis tools, such as other Method of Moments (MOM)
codes, Geometric Theory of Diffraction (GTD) codes, and Finite
Difference Time Domain (FDTD) codes. Since this prototype was
developed, ORACLE Corporation has marketed an interface for
Microsoft Windows* 3.0 that will also allow developers and users
to access ORACLE data from most Windows applications.

Different analysis codes {MOM, GTD, and FDTD) require slightly
different input in different formats to model the same physical
objects. In the past, as new antenna analysis programs were
developed, new special-purpose tools were written to support model
input. Thus, there is a need for tools that input and store generic
objects that can be adapted to any analysis tool. This would allow
input objects to be used with many different codes in many
different applications. These codes could be modified to access the
database directly thereby eliminating the need for file format
conversion programs. Substantially the same tools are also needed
to display such output as currents, charges, far fields, and near
fields regardless of the program that generates this output. This
need for reusable tcools will become more important as the tools
become more sophisticated and as integrated systems become larger.
A common database format for describing geometries would facilitate
the realization of this goal.

Finally, advantages can be foreseen for using standard
databases and standard query languages in order to interface with
other modeling systems. For example, data generated numerically on
the computer could be more easily compared with data measured from
physical antenna models if a common data format were used. This
also would facilitate the integration of software for antenna
modeling with software such as COEDS[4] for modeling entire
communication systems. The use of a relational database management
system that is widely portable can be an important step toward
creating sharable data among such related applications.

“Microsoft Windows is a trademark of Microsoft Corporation.

126

References

1. Burke, G. J. and A. J. Poggio, "NEC - Method of Moments ", Naval Ocean Systems
Center Technical Document 116, 1981, revised 1988.

2. Rockway, J. W., J. C. Logan, D. W. S. Tam, and S. T. Li, The MININEC System:
Microcomputer Analysis of Wire Antennas, Artech House, Inc., 1988.

3. Wilton, D. R. and S. U. Hwuy, "Junction Code User’s Manual", Naval Ocean Systems
Center Technical Document 1324, August 1988.

4. Li, S. T, J. C. Logan, and J. W. Rockway, "Ship EM Design Technology," Naval
Engineers Journal, May 1988, pp. 154 - 165.

5. Korth, H. and A. Silberschatz, Database System Concepts, McGraw-Hill, 1986.

127

