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Abstract

The problem of retrieving a two-dimensional temperature distribution from radiometric data measured at various
frequencies and for different positions of the sensing antenna around the body has been considered. The retrieval
has been modelled as an inverse problem whose solution is investigated in a suitably defined fimctional space
which takes regularity properties of temperature functions into account. The retrieval of hot spots in a cylinder at
uniform temperature has been numericaily analyzed, the examples being relevant in the hyperthermia treatment of
malignancies.

1. Intreduction

Anti-umoral hyperthermia is the application of heat to malignant cells as an adjuvant of radiotherapy and
chemotherapy in cancer treatment, The monitoring and control of the temperature distribution, in an anatomic area
heated during a hyperthermia session, are important aspects of treatments. Subcutaneous tissue temperatures are
currently measured by inserting thermocouples or optical sensors. Drawbacks of these types of sensors exist and
motivate an exploration of non-invasive methods of measurement. Among non-invasive methods different
approaches have been studied. Multispectral microwave radiometry has been considered [Miyakawa, 1981; Bardati
and Solimini, 1983; Chivé er al, 1984; Mizushina er al, 1986; Bocquet ¢ gl, 1986] as being the only technique
which measures the temperature directly, while other non-invasive techniques measure variations with temperature
of physical quantities other than temperature.

Due to the strong attenuation of microwaves in high-water-content tissues, a microwave radiometer supplies data
proportional to the average temperature in a tissue region up to a depth of 3-4 cm from the body surface. The
average is weighted by a "weighting function” which takes into account (a) the morphology and diclectric properties
of the tissue surrounding the antenna, (b) the frequency band of microwave receiver, and (c) the response of the
contacting antenna used to receive the radiation. Properly, the antenna behaves as a transducer from fluctuating
temperature-dependent electromagnetic radiation inside tissue to fluctuating electrical currents in the radiometer input
device. Since the weighting function depends on frequency, the fine structure of the temperature can be obtained, in
principle, by elaborating the data of radiometric measurements performed at different frequencies. The theoretical
problem of the temperature reconstruction inside bodies of simple shapes (homogeneous and layered half-spaces) has
received attention in the past. The retrieval has been modeled as the solution of a Fredholm integral equation of the
first kind whose kemel is the weighting function. This inverse problem is an ill-posed one: the solution is not
- stable with respect to small variations of the data (noise). Therefore, only a finite number of components of the
solution with respect to a suitable basis can be accurately determined. The appropriate basis is provided by the
singular system of the integral operator [Bardati et 2/, 1987; Bardati and Brown, 1991 a].

In a recent paper [Bardati er al, 1991 b] it has been shown that the retrieval of iemperature can considerably benefit
from some a priori information on regularity properties of the function to be retrieved. The function space of
physical temperatures has been assumed to be the space of continuous rhermal functions. The latter have been
defined as solutions of a steady-state heat-transfer equation together with an homogeneous Dirichlet condition on the
boundary of the observed region. The computations, which have been carried out for the case of radiemetric
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observation of a homogeneous circular cylinder, show an improvement of retrievals with respect to previous
reconstructions. However, closed-form expressions of thermai functions are readily obtained only for very simple
structures. In this paper we consider the extension of the method to include cylinders whose electromagnetic and
thermal behaviour is characterized by nonuniform parameters, thercfore requiring a numericat approach. The data are
simulated by letting the radiometric antenna sense the surface of a circular cylinder along a circle on a plane normal
10 the axis. In this way a two-dimensional inverse problem is generated, that is, the temperature is retrieved as a
function of depth (i.e., in the direction from surface inwards) and in the transversal direction (along the scanning
line).

~

2. Two-dimensional radiometer equation

Let us denote by € the cross-section of the cylindrical body, normal to the cylinder axis (z-axis). The antenna is
modeled as a truncated parallel-plate waveguide I, width w, whose aperture lies on a plane a which is secant to the
boundary, o2, of Q at points Py, Py’ (Fig.1). Let P be intermediate between P, and Pg'. In the following P(¢)
will identify the measurement point around the body, where ¢ is the polar angle in the fixed frame x,y. It is worth
noting that a living tissue body undergoes a small deformation caused by the pressure of the contacting antenna,
which is filled by a solid dielectric material in most practical sitations. For the sake of simplicity, this deformation
is accounted for in our model by cutting away I'U€2.

The dependence of the radiometric datum, Ty, on the physical temperature T(P") at a point P’ €] is given by the
radiometric equation

T,(P.v) = LW(P,P',V) T(P') dP’ o

where v is frequency and Q is a non-negative weighting function normalised according to

[wepvdar=1 . @
Q

Ty is called the available radiometric temperature of the source, when the latter is observed through the antenna at
position P.

Equation (1) defines a mapping from an object space of functions of P'e 2 into an image space of functions of ¢
and v . In practice, only a discrete set of data is given, corresponding to radiometric data measured at M positions,
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Fig.! Geometry of the structure.
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&m, and at N frequencies, ¥ p, in a given frequency band, [¥ 3,vp]. The radiometer equation for the case of discrete
data is

Pam=J Wan(P) T(P) dP' o

where pyy 18 an element of p, a vector of RMxN ang Wnm=W©®m,P', v n). We are interested in a solution to (3)
which is continuous in { and vanishes on 6£2.

A suitable inner product between elements p and q of the image space of RMxN can be defined by means of the
equation

N M
(pvq) = UZ z pnmqnml @)

n=1 m=1

where p=(N-1)-1(M-1)-1. It has been shown [Bardati er al, 1991 a; Bardati e al, 1991 b] thal a suitable scalar
product in the object space Xy of physical temperature is the following

(u,v)x, =f K(P) Vu(P)- Vv (P") 4P’ )

where K has the meaning of a thermal conductivity, while u and v are two elements of Xy. To obtain a solution for
T from equation (3) in the space equipped by the scalar product (5), we must consider thermal functions ¥nm(P')
such that, for any T(P'):

(¥om Dy, = IQan(P') T(P") dP' ©
Equation (6) enforces T to be the weak solution of
VAKVY, ) = W, u(P) -

which satisfies a homogeneous Dirichlet condition on dQ [Brezis, 1983]. Therefore the thermal functions are
immediately recognized from (7) to be solutions of the classical stationary heat equation in €2 vanishing on the

Finally, solutions for T in the Sobolev subspace spanned by the above defined thermal functions are obtained by
enforcing

(“an’T)x‘P:pnm ’ (8)

for n=1,...,.N and m=1,...M. It is of interest, and will be done in the following, t0 compare solutions to 3) in X
to those which can be obtained in the object space equipped by the familiar Ly scalar product:

(WV)xy =A f Py v(P)dP ©
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where A= mis (§2). The integral equation obtained by using (9) instead of (5) is similar to equation (8) where,
however, we find AW, instead of Wnm.

We look, now, for the minimal-norm solution of equation (8) which can be writien in terms of the singular system
[Bertero et al, 1985] of the integral operator J3, which is defined as

(Su)nm=(‘{’nm7 u)Xqi L] (10)

where the symbol ($3u)ymdenotes the nm-th component of vector Bu. The adjoint of & from @is

N M
(B*qQ) (PY=p 2 > ¥ n(P)qum - (1)

n=1 m=1
The singular system is obtained from the solutions to the following shifted eigenvalue problem

(Bup, = AWy - 0=l Ny m=1, M 1

(B*q (P =i u(P) ,P'eQ,

where A, uk(P’) and qre RMXN are called singular values, singular functions and singular vectors, respectively.
By using (12) it is easy to show that the singular values are the square roots of the eigenvalues of the symmetrical
Gram matrix:

[G]nm,n'm' = ”(‘an’lpn'm')x\, y 13
By means of (7), after a short manipulation we obtain

Glamar =1 ¥orm®) W () P’ a

The singular values are ordered according to Ag>Ay41. The singular vector gi is the eigenvector of [G]
corresponding to Ay which is normalized according to the norm induced by (4). Finally, the singular functions are
obtained from the second equation of (12). The singular functions form an orthonormal basis of Xy while the
vectors q are an orthonormai basis of the image space. It is worth noting that orthonormality must be referred to
the inner products (4) and (5). :

The temperature is basically retrieved by means of the minimal norm solution of the equation (8), which is

- NaM 4
T(PY= ), —(p.auP) . (5)
k=1 Ay

Minimal norm solutions are exact solutions of the radiometric equation in the object space in the absence of noise.

When noise is considered, regularized solutions must be used to counteract the lack of continuous dependence of the

normal solutions on the data. In this paper we shall use a rectangular filter, that consists of limiting the summation
AN

in equation (15) to an integer AS(MxN). Such a regularized solution will be denoted by T
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The norm [(p,p)]2 is called signal and denoted by S in the following. The channe! noise, Sppm, is commonly
defined as the rms value (averaged over the radiometer integration time) of the fluctuation superimposed on the
1

datum measured at frequency v, and position ¢y, i-e. pym. The norm [(5p.5p)12 is called noise and is denoted by

N. A common definition of degrees-of-freedom of a measurement is the number of independent pieces of information
which can be extracted from data in the presence of noise. It can be shown that a reasonable estimate of the number
of degrees-of-freedom [Pike er al, 1984] of a temperature retrieval by means of (15} is the largest integer A' for

which the quotient Ax/A; is less than the signal-to-noise ratio &/ N.

3. Numerical analysis

In this paper the antenna has been modelled as a parallel-plate waveguide, filled by a diclectric material of uniform
relative permittivity €, =30. To a first approximation cylindrical segments of human body such as limbs and
thighs can be described by two concentric cylinders. Therefore the body has been assumed to be composed of two
materials, a bone for r<rg and a muscle for rg<r<rp. The complex permittivity € (P',v) takes different values in
bone and muscle, They will be denoted by e gy, and e vy in the respective regions, at frequency v . A microwave
radiometer equipped by N=4 channeis (1.1, 2.5, 4.5 and 5.5 GHz) has been considered in the numerical examples.

It is known from reciprocity in antenna theory that the weighting function is equal to the power deposition within
Q when the antenna is used in the active mode to radiate unitary power into the body. Therefore, at frequency vy

2
Wam (P') = - Cam @ v, Im [e ] |Eq o(P))| ae)

where Cpp, is found by imposing condition (2) and E;rm(P") is the electric field vector generated by the microwave
incident radiation from the antenna at ¢,,,. The minus sign in (16) is due to the fact that the imaginary part of €, is
negative for a time-dependence exp(j2rv pt) of the electromagnetic field, where j is the imaginary unit. Note that
Enm and €, are the only functions defined in €.,

The computation of Ey,q, has been performed numencaiiy by a fmme-dlffereme time-domain technique [Yee, 1966].

The incident electric field has been assumed as z cos(rE/w), | €l < w/2, ( Z is the unitary vector along the z-axis, §
is the transversal coordinate or the xy-plane of a cartesian frame &,n,{ solidal with the waveguide, and w is the width
of the waveguide) at a depth inside the waveguide, where high-order modes, which originate on the aperture,
sufficiently vanish. Contour level plots of the weighting functions at radiometer frequencies are shown in Figs. 2-5.
It is worth mentioning that, due to the rotational symmetry of the assumed permittivitics, the weighting functions
depend on the angular difference § between the source point and the angle-of-view ¢m : 9=¢"-¢m. Moreover, since
the tangential electric field is continuous across two media of different permittivities, as a consequence of (16) the
weighting functions are also discontinuous.

The thermal functions have been numerically calculated by means of equation (7), where K takes different constant
values, Kg and K)y, in bone and muscle. Also for this computation a finite-difference time-domain method has been

used, i.e., the term dT/0t has been added to the left-hand side of (7) and the resulting time-dependent heat-equation
has been numerically soived. The steady-state solution is coincident with the solution to (7). Diagrams of the
‘thermal functions are recorded in Figs. 6-9.
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Fig.2 Contour piot of the weighting function at Fig.3 Contour plot of the weighting function at
1.1 GHz. Levels (dB) are referred to a maximum value 2.5 GHaz.

on the aperture. The size of the grid used for finite-

difference computation is 0. lcm. The numerical values

vsed are: rg=2.8cm, ry=6.0cm, €p=6.4-j1.6,

eM=50.5-j24.3.
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Fig.4 Contour plot of the weighting function at Fig.5 Contour plot of the weighting function at
4.5 GHz. 5.5 GHz.
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Fig.6 Thermal function ¥;. The contour levels are at Fig.7 Thermal function ‘¥».
intervals of 10% of the maximum value. The ratio
Kr/Km=0.74 has been used.
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Fig.8 Thermal function ¥3. Fig.9 Thermal function ¥y4.
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Let T(e,xo) be acircle fully contained in the annular muscle region rp<r<ny, of eccentricity e and radius r. (Fig.10).
We have numerically investigated retrievals of temperature functions defined as:

TP)=1,PeT,; TP)=0,PeT. : (17

The above defined functions have been considered for modelling a localized hot spot in a uniform emperature field as

may be the case during hyperthermia treatments. Synthetic data have been generated by substituting T(P') from (17)

into equation (3) and by letting the antennas assume M=32 equiangular positions around the cylinder. Examples of
~(N)

reconstructions, i.e. contour level plots of T , are shown in Figs. 11-16, for various values of e and two values of

A

A common feature of retrievals is distortion, in the sense that the sharp original function (17) is retrieved as a main
~(A)

lobe, which corresponds to the maximum of T , while secondary lobes can occur (Fig. 11). Moreover a shift of

the main lobe maximum with respect to the original function is present. A larger value of A, i.e. of the number of

terms retained in the minimal norm solution (15), corresponds to an assumed larger ratio / N. As can be seen from
the diagrams, increasing A improves the retrievals by reducing the shift and increasing the main lobe sharpness.

A retrieval in the L., subspace, Xw, spanned by the weighting functions is shown in Fig. 17 for a comparison with
the retrieval in X for the same signal-to-noise ratio. The retrieval in Xw exhibits discontinuities as a consequence
of the discontinuities of the weighting functions at the boundary between two materials of different permittivities.
Moreover a spurious lobe occurs close to the boundary 92 where temperature is sensed by antennas. This lobe is
due to the fact that the weighting functions reach the largest values in the vicinity of the antennas.

4, Conclusions

The problem of the retrieval of a 2D temperature distribution in a circular cylinder observed through a parallel-plane
waveguide whose walls are parallel to the cylinder axis has been studied. The retricval of temperature has been
modelled as an inverse problem, whose solution has been investigated in a space spanned by thermal functions.

o
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Fig.10 Thermal structure to be radiometrically retrieved for various values of the eccentricity e. The radius of the
circuolar hot spot is re=0.5cm.
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Fig.11 Temperature retrieval, T , for e=3.5cm and Fig.12 Temperature retrieval, T , for e=4.0cm and

A=27. The value of A corresponds to &/ N=30. The the same A as in Fig.11.
contour levels are at intervals of 20% of the maximum

positive value. Black shaded areas correspond to

regions where the retrieved temperature is not less than

98% of the maximum value.
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Fig.13 Temperature retrieval, T  for e=4.5cm and the same A as in Fig.11.
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I_?ig_.14 Temperature retrieval, T , for e=3.5cm and Fig.15 Temperature retrieval, T , for e=4.0cm and
& N=100 (A=45). the same A as in Fig.14.
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Fig.16 Temperature retrieval, T, for e=4.5cm and Fig.17 Temperature retrieval, T » for e=4.0cm and

the same A as in Fig.14. A=44, in the L,_ subspace, Xw , spanned by the

weighting functions. The value of A Eogesponds to

§/N=30. The same values of ¢ and of /N have been

used for the retrieval (in Xy) shown in Fig. 12. The

negative portion of diagrams are indicated by gray
hading,
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The solution to the inverse problem needs the solutions to two direct problems, an electromagnetic scattering
problem and a heat-balance one. In this paper both problems have been numerically solved by finite-difference time-
domain schemes of computation. It is worth noticing that also the computation of the temperature distributions due
to electromagnetic heating in hyperthermia is commonly performed by numerical procedures which first solve an
electromagnetic boundary value problem and then a heat transfer equation. The finite-difference time-domain
technique is widely used. Therefore the retrieval of temperature from radiometric data can benefit from numerical
techniques which are developed for planning hyperthenmia treatments.

Finally the results show that the use of a Sobolev space greatly improves the retrievals.
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