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Abstract

In non-invasive hyperthermia, penetration depth in high water content biological tissue can
be increased up to 3 times using a focused instead of uniform surface electric field distribu-
tion. The focusing involves maximizing the field integral at a focal point by solving for the
surface phase function which makes the integrand real and positive for all surface points.
The resulting non-linear differential equation is solved in using a series approximation. A
focused power deposition pattern is presented using this ideal planar distribution which 1s
the theoretical optimum for high resolution hyperthermia cancer treatment.

Introduction: EM Cancer Treatment

Favorable responses to electromagnetic heating of tumors to 42° - 45° C has generated in-
terest in developing antenna applicators to assist in treating cancer in humans [Overgaard,
1972, and Hahn, 1982]. Electromagnetic radiation has advantages over other current forms
of treatment since it can be administered non-invasively, without anesthesia, and causes
minimal side effects. Hyperthermia also shows promise when used in conjunction with
standard treatment modalities, by increasing the absorption and response of chemothera-
peutic agents or by attacking radiation resistant cells [Strohbehn, 1984]. It is essential in
designing these antennas to find field distributions which maximize the deposited power at
the tumor, while keeping healthy intervening tissue from overheating. The “best” focused
field pattern is one that has at least as much power at the focal target as on the surface
or at any locations of secondary maxima.

The current analysis assumes a simple uniform geometric model of tissue volume with a
localized tumor at its center, exposed to radiation from a surrounding antenna aperture.
Previous work has optimized the source distributions for spherical and cylindrical geome-
tries [Rappaport, 1987, Pereira, 1991, Jouvie, 1986]. This study will examine maximizing
the power at the mid-plane of a planar slab, optimally illuminated from both sides. As
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such, it provides a benchmark for possible microwave heating of relatively flat portions of
the body: primanly chest and abdomen.

Electrical characteristics of human tissue vary non-linearly with frequency: with conduc-
tivity increasing and dielectric constant decreasing as frequency increases. To determine
the best power dissipation pattern in a volume of tissue, the frequency must be selected
to balance the competing effects of exponential wave decay and geometric focusing. A
higher frequency wave has a smaller wavelength (and thus decays more rapidly), but can
be focused better than a lower frequency wave. The present synthesis effort concerns power
deposited in high water content tissue (HWC): muscle, organs, and blood, which has higher
conductivity and dielectric constant, and so is more challenging to focus waves at depth
in than low water content tissue (LWC): fat and bone.

It has been determined that for a deep, well-formed focal maximum in uniform HWC tissue,
915 MHz is the best standard frequency of electromagnetic radiation [Rappaport, 1988].
Above 915 MHz, the wavelength is too short to take advantage of lower loss per wavelength
and increased constructive interference of HWC tissue; while below 915 MHz, the greater
tissue conductivity climinates a high-resolution, well-defined focal maximum. For uniform
heating, lower frequencies are better, but to target a localized tumor and minimize heating
of the surrounding healthy tissue, frequencies above 500 MHz are necessary. The diclectric
constant and conductivity of HWC tissue at 915 MHz are about ¢’ = 51 and ¢ = 1.28 S/m
[Johnson, 1972}

Optimization Procedure

The method used for deriving the best power pattern in a planar slab involves integrating
the surface ficld distribution. Although the electric field and deposited power can be
increased at a focal target in lossy tissuc by specifying a conjugate phase distribution on
a single planar source irradiating a half-space, it is not possible to raise the power levels
at depth to that of the surface [Loane, 1986, Gee, 1984]. To deposit as much heat in the
center of a slab model of HWC tissue as on its surface requires balanced excitation from
both sides. The maximum thickness of the tissue slab is determined by this focal point
global maximum condition, and is a function of frequency and source distribution. It is
the point of this study to find this maximum slab thickness.

The standard focusing practice of specifying a conjugate (or time-reversed) source phase
distribution maximizes the focal field in free space or lossless media. However, in dissipa-
tive media, an additional correction phase function is required to ensure all points of the
apertute constructively contribute to the field at the focus. It should also be noted that
if the mediwn is lossy, an infinite, uniform amplitude aperture does not produce infinite
field intensity at the focal poiut.
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By first assuming the source fields on opposing source planes have uniform amplitude, the
synthesis problem reduces to finding the best phase distribution. The phase function is
determined so as to make the integrand purely real for the observation field-point at the
focus. This ensures that every point of both source planes adds constructively at the focal
target. For other points—both in the longitudinal and transverse directions—there will
be some measure of destructive interference, which will enhance the relative power at the
focus.

The opposing planar sources, shown in Figure 1, have circular symmetry about a focal axis.
The observer point is identified by vector 7. When 7 lies along the axis of symmetry at the
point (0,0, z), d/2+z is the distance to the source at z = —d/2, and d/2 — z is the distance
to the source at z = d/2. The tangential electric field on the source plane is assumed
to be y-polarized with unit amplitude, and have both tangential (radial) and longitudinal
(axial) real phase and amplitude dependencies expanded about the axial coordinate at
each source:

Ey7) = gej¢(p)+jl"(.o)(%ﬂ:Z)+J'T(P)(%iZ)zeE(p)(%iz)eﬂ(p)O((%iZ)s) (1)

where ®(p) is the surface phase radial dependence at z = Fd/2, and the choice of sign
preceding z is the positive for the source at z = —d/2 with wave propagation to the right,
and negative for source at z = d/2 propagating to the left. Note that for each source at
z = +d/2 there is no amplitude variation as a function of p, but the derivative of E, with
respect to z at the surface has non-zero amplitude with radial dependence =(p). It will be
assumed that the amplitude varies exponentially (with linear exponent rather than as e“‘zz,
or higher order). Similarly, the ' and T phase functions are necessary since the normal
derivatives have non-zero phase. All phase dependence higher than second order on z are
lumped into the last factor of Equation (1).

Inserting this assumed electric field into the circular cylindrical version of the Helmholtz
Equation,

? 19 0 _

- p—+KHE =0, 2
(622+pa‘0 o ) (2)

yields one real and one imaginary equation:
E"—rz—¢'2+(giz)[...]:a2—ﬂ2 (3)

and
= e 2 d

—r=+ @ +?+2T+(§:!:z)[...]:2aﬁ (4)

where § and the terms involving derivatives of ®, T', =, and T multiplying (% + z) have

been suppressed. The wave number is k = 8—jo = (w/c)/€ — o/weg for radian frequency
w and speed of light c.

At each source, separately, z = Fd/2, Equations (3) and (4) reduce to:
A2 -0l — (B —al) -2 =0 (5)
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Figure 1: Opposing planar surface source excitation of tissue slab geometry with desired
focal target at the origin.

and o
—2a8 + 20,8, +®"+ —+2T =0 (6)
p

where the natural substitutions, Z(p) == —a,(p), I'(p) = B:(p) have been made in analogy
with inwardly propagating inclined plane waves.

The derivative of the source phase with respect to radial coordinate, ®'(p), is thus given
in terms of these unknown auxiliary functions representing the normal component of the
propagation constant k, = 3, — ja,.

One additional equation is necessary to uniquely specify the phase. This final equation
is the focusing condition. The Kirchoff integral equation for electric field caused by unity
amplitude surface electric field can be written in terms of the parameters and geometry
discussed above as [Kong, 1986],

_ 2w o0 d
po=i [ a [ i [i (s )

dj2 4z 1 e~ IlkR-2 ()] ;
TR (“+E>+az] 4R (7)

where the sources are on the plancs at z = £d/2, and R = \/p’2 + (% £ 2)? is the distance

from the source point ¥ = (p',¢', %) to the observation point along the focal axis 7 =
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(0,0,z). The terms «a; and 8, result from the normal derivatives of the surface clectric
field. They correspond to the surface magnetic field.

The task is to determine ®(p') so that the integral of Equation (7) is maximized at the
observer focal point, (p,z) = (0,0). This condition occurs when the integrand is entirely
real and positive for all values of integration arguments ¢' and p’. Writing the entire
integrand in magnitude/phase form and setting the phase to zero at the focus, z = 0,
yields the nonlinear differential equation for ®:

d/2Ry + ad/2 4+ a. Ry

&(p') = BRy — tan™! (8)

where Ry = \/p'? + (d/2)%.

Differentiating Equation (8) with respect to p' results in:

]

@(p') = fp- +8(0) (9)

where the correction phase function é(p’) represents the derivative of the arctangent func-
tion. In the subsequent analysis, the primes on the source radius will be suppressed.

In order to solve for ®(p) using Equations (5), (6) and (9), the values of a.(p) and B:(p)
must be determined.

If Equation (6) remains finite at p = 0, the lowest order term of é must be linear (i.e.
8(p) = 61p+0(p*)), and thus 6(0) = 0. Further, since é(p) is proportional to the derivative
of the argument of the arctangent function of Equation (8), which in turn has terms
composed of either p/Ry, da,/8p, or 83./dp, then at p = 0, a possible constraint is:

Oa, _0

ap p=0

i =0 (10)
9p | =0

Appealing to Equation (5) and the notion that at p = 0 the incident wave is entirely
normal, it can be safely concluded that o, = a+ O(p?) and 3. = 8+ O(p?). Choosing the
precise form of a, and 3, is somewhat arbitrary. As their values increase, the electric field
at the focus, given by Equation (7) at z = 0 increases, even though the surface electric
field stays constant at unity. This is analogous to coupling to a resonator at a point near
an electric field null. Since these parameters represent the magnetic field sources, they
cannot be selected to be too large at any point on the source surface, since they produce
large electric fields one-quarter of a wavelength away. As long as a. and 3. are bounded
to values close to @ and 3, there will be no non-physical fields resulting from the normal
electric field derivatives. Also, since the contributions to the focused field from surface
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source points more than several wavelengths away from the focal axis becomes negligible,
only the limiting behavior of a; and 3; near p = () matters.

The phase term Y(p) of Equation (1) represents the second-order normal dependence of
the field. As p — oo, 5. — 0 (because the wave would be propagating entirely in the

radial direction), and the entire z-dependent phase is proportional to Y(p)z® (similar to
the expansion of the radius dependence of the spherical Green’s function for small z).

For p — oo the argument of the arctangent of Equation (8) approaches a constant, while
Ro — p. Therefore, ®'(p) — 3, and 8"(p) — 0, and thus é(p) — 0. Equations (5) and (6)
are solved in this limit to give:

6z| p—roo =0

Ozl p oo =

Armed with these physical arguments for limiting behavior, the approximation form of a,
and 3, are selected to be:
a; &« (11a)

b (11B)
\/1 (LR + (L) + (L)

with the coefficients By, B,, and B3 to be found by numerically solving the non-linear
differential Equations (5) and (8). The assumption of Equation (11a) simplifies these
equations considerably. This assumption is reasonable, since a,(0) = a, a;(o0) = @, and
all other radial variations in this problem are monotonic. Also, since the amplitude 1s
specified to be uniform on the surface for all radii, it makes sense for the media loss to be
solely and entirely dependent on the axial coordinate.

Equation (6) need not be solved to determine the ideal phase function. However, since T(p)
is unconstrained, except for its value at p = 0, it can assume any functional dependence
required to solve Equation (6}.

To find the coefficients of Equation (11b), Equation (9) is squared and substituted into
Equation (3), yielding:

_ 1 (P 8p)s
T & S m T e (12)

which is solved for each p?™ term. Note that since the argument of the arctangent function
of Equation (8) is a function of p?, §(p) is an odd function of p, and the right hand side of
Equation {(12) is an even function of p. The series form of 3, approximates the focusing
phase derivative well, while maintaining the correct initial and final values. To solve exactly
Equation (12} would require an infinite series of even powers of p in the approximation
of 3., but as long as the error between the left and right hand sides of Equation (12) is
small—especially for small radii, where the source field most strongly affects the focused
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field—only three terms are necessary. This is explicitly shown to be true in the numerical
example in a following section.

Although the selection of @, seems unsubstantiated, and Equation (6) is used only to
establish limiting behavior, as long as the solution for the source phase distribution ®(p")
specifies electric field which is self-consistent with the Helmholtz Equation and also gives
an entirely positive integrand in Equation (7), it represents the optimal solution. The
computation leading to this result is approximate to the extent that the amplitude is
assumed to vary no more rapidly than exponentially in the normal direction {which, in
fact, is observed in the power pattern results section), and that the phase correction is
approximated by a three-term series (with extremely small error).

Secondary Maximum Suppression

Solving for the phase in the preceding section yields the best uniform amplitude electric
field source distribution for maximizing power at the center of the planar tissue slab. The
thickest slab which can safely be heated would be that for which the focal power is the
samne as the surface power and higher than any secondary volume field maximum. Higher
surface power than the focal power risks overheating tissue close to the sources; while lower
focal than surface power would allow a thicker slab to be safely heated.

Using the source distribution derived in the preceding section at 915 MHz unfortunately
generates a symmetric pair of secondary electric field maxima along the z axis. These max-
ima must be reduced to below the focal field value to avoid overheating healthy intervening
tissue. By slightly adjusting the source distribution, it is possible to correct the pattern,
lowering the secondary maxima fields, without significantly affecting the focal field.

These secondary maxima, each of which is closer to one source plane or the other than
the focal maximum, are more sensitive to the surface source regions close to the z-axis.
Introducing a minor constant phase shift for source points in the region p < a will have
a strong destructive effect on the secondary maximum, since the phase of each source
contribution varies considerably with radius. However, the focal maximum will not change
as much, because the entire in-phase source region p < a is phase shifted by the same
amount. Of course, the maximum slab thickness will have to be reduced slightly, since
the focal field will no longer be the ideal integral of purely positive contributions. Instead,
the ficld at the origin will be the vector sum of two phasors separated by a small angle 6.
The vector sum must be unity, so the sum of the magnitudes of the vectors (which in the
previous ideal case simply equaled the focal field) must be a slightly larger than one. The
equation for determining @ is follows from the Law of Cosimnes,

L+ -1

261, (13)

f = cos
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where

a 2m
I = / pd)! / dé'T
0 Jo
o0 27
I :] pdp'f dé'I
a 0

and 7 is the integrand of Equation (7).
The field throughout the volume is thus given by:
E(F) = Lt + 1 (14)

with the same values of the functions a., A;, and @ as in Equation (7), and the source-
to-observer distance R = \/(d/2 £ z) + p'? -+ p? — 2p'peos(¢’ — §).

It is not important what the “best” value of radius @ might be, as long as the angle 8 is
small, and the secondary ficlds levels are lowerced to below the focal and surface field levels.

Maximum Slab Thickness Determination

An iterative procedure is used to find the thickest HWC tissue slab model with a central
global maximum at 915 MHz. First, an arbitrary slab thickness d is sclected, say, one
wavelength. The required focused phase distribution, ®(p), is obtained as described abave,
and the power pattern is caleulated using Equation (7) along with the values of 8, and
a; (= a) as stated in Equation (11). If the focal target power at z = 0 is greater than the
surface or other secondary peak power, the slab thickness d is increased.

When the maximum thickness is reached, a radius a is selected for the constant phase shift
to lower the secondary maxima of the power pattern. Once the greatest focal power peak
is found, d is again increased, and the ideal focusing phase is recalculated.

The material characteristics of HWC tissue at 915 MHz are A = 4.46 cm, 3 = 1.40 cm™!
and a = 0.322 em~!. The result of the iteration gives a maximum thickness d = 11.3
cm. The best coefficients for the approximation of Equation (12} for d = 11.3 cm are:
B, = 5.615, B, = 13.74, and B3y = 19.3 cm. Note that several significant digits are
necessary to accurately specify these coefficients since the phase correction function 6(p} is
of order unity radians/cm, its approximation should be accurate to at least two places, and
the series representing the approximation should be correct within two additional places.
The series approximation error for §(p’) phase is shown in Figure 2. This phase derivative
error is presented rather than phase crror since the derivative is being approximated in
Equation (12), and the numerical integration needed to obtain the phase may introduce
further error. It is seen in Figure 2 that the worst error occurs at about 35 cm, or 8
wavelengths from the focal axis, with a value of one-half of one percent of a radian (0.3°)
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per centimeter. Inside a two wavelength source radius, the error is less than 0.0003 radians
per em.~—clearly acceptable within the scope of this biological problem, where the measured
electrical parameters are accurate to at most 1 %.

The resulting focused phase is given in Figure 3, along with the simple conjugate phase
function with zero offset. Figure 4 shows a detail of the correction to the phase as a
function of radius. Mathematically, this is a plot of the arctangent function of Equation
(8). The correction is greatest at the focal axis, lowering the conjugate phase value by
almost 1.28 radians. It falls off with increasing radius to 0.92 radians at p = 25 cm
or 5.5 wavelengths. This amounts to about 20° variation in a radius of 5.5 A. This
correction function does not vary much compared to the conjugate phase distribution;
however, to determine the optimum power deposition pattern, all contributing factors
must be considered. The difference between the electric field at the focal point resulting
from the conjugate phase and from the ideal phase distributions amounts to about 0.1%,
so the conjugate phase distribution is sufficient for focusing.

Power Pattern Results

Figure 5 shows three power patterns for electromagnetic radiation at 915 MHz in an
infinitely wide slab of muscle tissue with thickness d = 2.54A = 11.3 cm, as a function of
distance from the focal target at the mid-plane. Each pattern is normalized to the power at
the slab surface. The pattern with the least power at the focus z = 0 represents dissipated
power for uniform phase and unity amplitude opposing sources located at z = i%. Its
functional dependence is P = | cos(f — ja)z|?/| cos( — ja) 2 |* [Rappaport, 1986]. For this
slab thickness, all tissue more than 1.76 cm, or 0.4\ away from the mid-plane is overheated.

With phase focusing, including the lossy media correction function, the power at the focus
increases by almost an order of magnitude. The slab thickness for which the surface power
equals the focal power is d = 11.4em. Slight overheating occurs at the secondary maximum
near 3.0 cm out from the mid-plane. Of course, this secondary peak can be reduced with
a thinner slab by placing the sources closer to the focal target.

Phase shifting the source within the region p < a = 3cm and using Equation (13) to find
the shift § = .40081 changes the absolute power at the focus very slightly from the uniform
amplitude case, while reducing the secondary peak to the level of the focal power. The
limiting thickness, d = 11.3 is determined by this pattern. The sacrifice from introducing
the constant phase shift decreases the maximum thickness 0.1 cm, less than 1%. The
maximum thickness has increased over the uniform phase illumination by a factor of 3.2.
Figure 5¢ represents the maximum amount of power delivered to the deepest point in a
planar slab without risking overheating any other regions. Thus 5.65 cm is the deepest
possible safe heating depth from plane microwave sources.
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Figure 3: Conjugate ((ashed) and ideal (solid) phase. functions for focusing at a point on
the mid-plane of a d = 11.3 em thick slab of high water content biological tissue from the
source plane at 915 MHz.

106



-0.95

-1

-1.05

Phase Difference (radians)

135 5 10 15 20 25

Radial Distance from Focal Axis (cm)

Figure 4: Correction function for complex integrand for focusing 915 MHz radiation at
d/2 = 5.65 cm depth.

Relative Deposited Power

0 1 2 3 4 B 6
Distance from Mid-Plane (cm)

Figure 5: Power patterns for 915 MHz opposing planar sources: a.) uniform source phase
(dashed-dotted), b) phase focused unit amplitude (dashed), and c) phase focused with
phase shift of .40081 for p < 3em (solid).
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Figure 6: Optimum phase focused axial power deposition patterns for radial positions
p=0, 1.0, 2.0, and 3.0 cm.

As a check, the axial power patterns for four radial positions: p =0, 1.0, 2.0, and 3.0 cm
for the optimized source distribution of Figure 5¢ is shown in Figure 6. The focal power at
z = 0 falls off to about two-thirds at p = 1.0 cm, and is almost negligible for greater radii.

Conclusions

The source excitation phase distribution for safely and efficiently heating the center of a
planar slab of high water content tissue have been optimized. Corrections to the lossless
conjugate phase focusing distribution produce only minimal increases in focal power.

The best planar source distribution can deposit a global power maximum in the center
of a tissue volume more than three times thicker than for a uniformly excited slab. This
power pattern is the best theoretical pattern. It may not be possible to duplicate the
desired source phases and amplitudes with real hyperthermia applicators, but this pattern
provides an ideal benchmark for determining feasibility of treatment.

It is conceivable that a different choice of constant phase shifting of part of the distribu-
tion might increase the ratio of focal point power to secondary maximum power without
significantly suppressing the former below the surface power. However, this improvement
is insignificant, especially in view of the large variation of measured tissue electrical char-

acteristics.
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