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ABSTRACT

In this paper we show that edge elements (a class of
mixed finite elements) provide an efficient numerical
approach in the determination of resonant modes in three
dimensicnal high frequency cavities. These finite elements
avoid "spurious modes", the non-physical numerical fields
obtained from the solution of eigenvalue problems.

Here, empty cavities as well as dielectric loaded
cavities are analyzed: no "spurious mode" was observed.
Moreover, comparisons with analytical results and
previously published ones show the great accuracy of the
numerical technique.

INTRODUCTION

Electromagnetic resonance is important in the design
of particle accelerators, microwave ovens and resonant
cavities. For such analysis, numerical techniques including
the finite element method have been developed.

The well known finite element method seems very
attractive since for several years it has been found tc be
an efficient tool in low frequency electromagnetic field
computations. In high frequency applications, finite
elements were used for cavity resonances analysis [1]-[5]:
resonant modes and resonant frequencies are obtained as
solutions from an eigenvalue problem.

The main serious drawback in these studies is that the
computed solutions are plagued by non-physical ( or
"spuriocus") solutions: solutions which do not satisfy the
divergence free condition implied by the Maxwell’s
equations. Many attempts were performed to circumvent these
unwanted numerical fields (enforcing the divergence
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condition with a global penalty term [1],[5], reducing the

number of unknowns by taking locally into account the
divergence condition [3] , using divergence free trial
functions ... }. It has been observed that discretized
fields with continuous tangential components suppress the
“spurious modes" (the problem was solved for a scalar
function in two dimensions [5] and for the magnetic wvector
potential [4] in three dimensions); nevertheless no precise
argument was put forward to explain the importance of this
kind of approximation.

However the choice of finite elements for
electromagnetic field computations is essential: A.
Bossavit showed that "edge elements" are well adapted for
the representation of vector fields since they allow their
possible discontinuities [6]). These "edge elements" are
also a class of the mixed finite element proposed by J.C.
Nedelec ([7]. Such elements were successfully used in eddy
currents problems [8]-[10] and are well adapted for the
approximation of scattering and resonance problems [11]
(12] :; the reason for which they would not generate
"spurious modes" is explained in [12].

We have developed and applied such a numerical
approach for empty and dielectric loaded cavities. In this
paper, we present first the variational formulation of the
Maxwell’s equations in terms of electric field and the
reason of the occurence of "spurious modes"™. Then we detail
the numerical discretization and explain the interest of
"edge elements". Finally we present the analysis of three
dimensional cavities .

VARIATIONAL FORMULATION
We deal with the Maxwell’s time-harmonic equations in

a bounded region Q surrounded by a perfect conductor and
containing lossless materials :

rot e = ~ iw pyh (1)
rot h iw eye, e (2)

where e and h are the complex electric and magnetic fields,
€ and T are respectively the permittivity and
permeability of vacuunm, €, 1is the relative permittivity
and w is the angular frequency.

The conditions on the boundary I' of N are those of a
perfect conductor:

n-~e=20 (3) _ n. h=2=ao (4)
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where n is the outward normal vector.
Substituting (1) intc (2), we deduce the following
eigenvalue problem expressed in terms of the electric field

{ rot (rote) —€_€ o o W =0 in Q (5)

n~e=20 on I (6)

A weak formulation of (5)-(6) holds in E; [11]:
IQ rot e.rot e’ do - k? IQ €, e.e’ d2 =0 Ve’ €E (7)

where 5 5
E, = {eE[Lz ()], rot e € [L? ()] , n ~ e |[-=o}

2

and where the values of k ( k¥ =0 %¢ ,un ,) are the

wavenumbers.
SPURIOQOUS MCDES

The searched resonant fields (w > 0 ) are

theoretically divergence free since from (5) it follows:

div e e = —;; div ( rot (rot e)) = 0 (8)
Moreover, for a simply- connected region Q , the only field
corresponding to w=0 (static field) satisfying equations
(1), (3) and the condition div ¢ _e=0 is e=0.

The trouble arises when discretizing (7) with
classical finite elements (for example nodal vector
elements) : a matrix with many eigenvalues being zero is
obtained (0 is a highly degenerate eigenvalue) [3] [5]. The
numerical approximations of this value k?=0 are difficult
to isolate from the meaningful lowest non-zerc eigenvalues
( k? > 0); especially when the number of degrees of freedonm
increases. Most of them do not satisfy div ¢ _e=0 and then
are unacceptable as solutions of Maxwell’s equations. The
resulting set of solutions is a mixture of physical modes
and numerical spurious onhes.

With edge elements, as we shall see in the next
section such a situation doesn’t occur .

FINITE ELEMENT DISCRETIZATION

Mixed finite elements [7] are used for the numerical
approximation of (7). Let @, ( with boundary I'l) be the
discretization of Q@ with tetrahedra. The "edge elements"
have the following properties:
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The degrees of freedom e, and the trial functions w,
are associated with the mesh edges. For every edge "a"
containing the nodes "i" and "j" :

. e is the circulation of e along "a".

e, = [, e.t av (9)

. w, can be expressed in terms of the barycentric
functions Xx; and A; as :

W, = X gradAj = X gradi; (10)
In each tetrahedron e is :
e(r) = +p ~ r (11)

where o and g are three-components constant vectors and r
is the vector (x,v,z).

We introduce the space E, :

E0h={e,e=2eawa ,naell-=0} (12)

For every e in E, the tangential part of e is continuous
across tetrahedra interfaces. The approached problem is to
find e in E;, so that :

fh rot e.rot e’dQ, - k2 IQ € .e.e’dy =0 ¥ e’ € E, (13)
h : h

Finally, we have to solve a generalized algebraic
eigenvalue problem of the form :

Au=%% Bu (14)

A ("stiffness matrix") and B ("mass matrix") have
dimensions n ,x n, where n, is the number of edges in the
finite element mesh.

Remark: with "edge elements" all the numerical solutions
corresponding to k¥ > 0 are "weakly divergence free" : no
spurious mode occur. The reason is the following :

Iet ¢ be any linear combination of the barycentric
functions XA, ( ¢ piecewise affine ) and ¢ =0 on I'; it can
be showed that all the fields e’ of the form e’= grad ¢
are in E;, [11] {12]. Then they can be chosen as admissible

test fields in (13). Rewriting e’= grade in (13) leads to :
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k? Iﬂ €.e. grade d, = 0 (15)
h

Equation (15) is equivalent to say that for every k?> 0 the
solution div € _e = 0 is verified in the distribution sense.
An integration by parts of (15) shows that for every inner
node "i" of ,, an integral involving the sum of jumps of
€. e.n through facets of tetrahedra having node "“i" in
common is zero. This property is important since it gives
an average local divergence condition. Such result does not
exist in case of classical finite elements (nodal ones)
since the fields of the form e’ = gradp are not in the

space of the test functions Ey, -

NUMERICAL RESULTS

a. Empty rectangular cavity.

An empty rectanqular cavity with perfectly conducting
walls was modelled with the above developed technique. The
cavity has dimensions: a= 0.4 m, b =0.3m, ¢c=1.m
(figure 1-a). A quarter of the cavity (figure 1-b) was
analyzed using 220 tetrahedra. Symmetry conditions were
prescribed on faces x = 0 and z = 0 .

m e 4 e r e v wm = sma o m o ssm e /

4 ! - / Yy 4
/ / Z x
o ’ PR o
b=0.3 m L a=20.4nm ’ D
’ 4
‘I' : e - - . — = = = e

a) b)
Figure 1 Studied air-filled cavity

The problem is symmetrical in x, y, z; so the fields
can be expressed as TE (transverse electric) or T
(transverse magnetic) to any one of these coordinates [13].
It is conventional to choose the longer dimension along the
z direction. Analytical solutions are then 1labelled TEmp
(modes whose electric field has no z-component ) and
(modes whose magnetic field has no z-component). The
corresponding resonant wave numbers are :
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2 2 2

m n
k2=11'2(—+_+9_)

a2 p?z c?

The algorithm for solving the matricial eigenvalue
problem is based on the classical QR method.

Computations were performed on a DN4000 Apcollo
workstation; about 10 minutes are necessary to solve the
entire problem. The six lowest computed modes are shown on
Table 1.

Mode Wavenumber Wavenumber Error
k computed k analytical (%)
TE g 8.365 8.458 1.
TEyy, (TMyy, ) 13.243 13.461 1.6
13.488 13.461 0.2
TE, (3 12.327 12.268 0.5
TE;3 (TMgy, ) 16.273 : 16.129 0.9
16.356 16.129 1.4
Table 1

Numerical Results

This simple case is known to give spurious solutions
when solved with classical finite elements [2] [14]. Here
no spurious mode is observed. Moreover the relative error
never exceeds 2%.
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Figure 2 Figure 3
Electric field (TE,,, mode Electric field (TE,,, mode
in (x,y) plane for z=0.5 m) in (x,y) plane for z=0.5 m)

Figures 2 and 3 show, in the quarter of the cavity,
the distribution of vector fields for the TE,,, mode and
the TE,;,, mode respectively. The plane of symmetry is on
the right of the figures. On this plane e is tangential and
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on the others e is normal. In each tetrahedron e is
represented with an arrow in the centre of gravity and the
length of the arrow is proportional to the magnitude.

eous dielectric aded cavities
Two examples of inhomogeneous 1loaded cavities were
analyzed.
The first one ( figure 4 ) is the preceding cavity
with dielectric discontinuities in one direction only. The
relative permittivity ¢ . of the dielectric material is

€. =16 . For a quarter of the cavity 230 tetrahedra were
used. The theoretical eigenvalue for the dominant mode
(lowest eigenvalue) is known {15] : k = 2.5829. An error of

0.4% was found.

= __:__.‘——-L--------
_____-4
sl

* Figure 4
Cavity with dielectric block (example 1)

The second cavity (figure 5-a) is the cavity of a.
with dielectric discontinuities in three dimensions ( €, =
16). The quarter (figure 5-b) was modelled with 240
tetrahedra (figure 5-c). Computing time 1is about 15
minutes.
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Figure 5
Cavity with dielectric block (example 2}

No analytical result is available but comparison with
already published computed values is possible; results for
the dominant mode are the following:

Source k (computed )
Ref [1] 5.60
Ref [15] 5.529
Ref [16] 4.907
Presented Method 5.102

All these results agree within roughly 10%. Some
others structures should be modelled in order to make a
comparison more satisfactory between all the methods.
However the mixed finite elements used here are well
adapted in case of dielectric materials because they imply
the tangential continuity of the electric field across
interfaces and take account of the discontinuity of the
normal component .
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Figure 6
Electric field (dominant mode)
In the (x,y) plane In the (y,z) plane
for z=0.5 m for x=0.2 m
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No spurious mode occured; all the computed field correspond
to resonant fields. Figure 6 shows electric vector fields in the
quarter of the cavity.

CONCLUSION

"Edge elements" (a class of mixed finite element) have been
used to model empty and dielectric loaded cavities. The first
resonant frequencies were computed; comparison with analytical
values or results published in previous papers shows the
efficiency of the method.

These elements avoid all the well known "spurious modes" and
seem very promising for the study of more complicated problems in
high frequency applications
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