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Abstract

This paper describes an effort to find the best profile for
a figure-of-revolution, center-fed, electrically-small dipole.
It includes presentations on equation development, singularity
treatment, code development, verification, and performance.

I. Prologue

The work described in this paper was undertaken to find a
minimum~Q shape for an electrically-small dipole to operate over
the HF band, 3-30 MHz. The starting point was the 1969 paper by
Mautz and Harrington{l] on bodies of revolution. Their formula-
tion for the integral equation and their expansion and testing
functions were used without scaling. The dipole is driven only
in the tangential direction, so it was assumed there are no
¢-components to the current density. This simplified the
problem considerably. There are numerous ways to handle the
potential-function singularity. After trying a couple of others,
subtraction of the electrostatic potential from the radiation
potential function{2] was chosen. The electrostatic potential
function is integratable in ¢ to a known special function, and
that function is numerically integratable so that the singularity
is expressed in the impedance-matrix elements in a stable way.

This paper is divided into the following sections:

T. Prologue

II. Geometry, the Basis Functions, and Counting
III. The Integral Equation

IV. Conversion to Discrete Form

V. Verification

VI. Impedance and Shape

VIT. Development Time vs. Execution Time
Appendix APL Syntax, Symbols and Functions

One purpose of this paper is to demonstrate that programming
in an interactive array-processing language (APL) makes the most
efficient use of professional time. The Appendix briefly de-
scribes its basic syntax and lists the definitions of symbols and

functions as used in this paper. Specific features are de-
scribed as they are used in Sections II through IV . 1In Section
V the work is tried by comparison with two classic results. 1In

Section VI a search for a shape that gives an antenna Q close to
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the theoretical minimum, 1/(Ba)3 [3], is outlined. In Section
VII the hardware-software performance issues are examined.

II. Geometry, the Basis Functions, and Counting

The dipole is symmetric and center-fed. It must fit in a
2 m cube and be easy to manufacture. It would be a good thing
then, if its profile were made of connected straight-line seg-
ments. Figure 1 shows an example of a simple shape, along with
some of the coordinates to be used in the calculations. All
prospective shapes are to be figures of revolution about the z
axis, with the feed gap at z=0. An x axis is necessary from
which to define the rotational angle ¢. <Cylindrical radius p
is used both for the shape description and in the calculations.
The fundamental coordinate for integration is the tangential
distance t, which runs from t=0 at z=-1 m to t=t at z=+1 n,

following the antenna’s profile.

~t— 1,

i

=0

Figure 1. A representative Figure 2. x and z projections
dipole as a figure of revo- of a tangential vector. x, is

lution about the z axis. parallel to the x axis.

One must know the projection of the current density vector
at one place onto the surface at another place, to calculate the

vector magnetic potential and surface E. Since the applied
field is in the z direction, it is assumed there are no ¢
components of current or electric intensity. Figure 2 shows the

components of jt projected onto the z and X axes.
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J, = J,sing’, J, = Jcose’, J, = J,sind’cosg’ (1)
For the purpose of doing a dot product with a unit tangential
vector at the observation point, the last projection should be by
way of cos(¢-¢’), but the rotational symmetry allows ¢=0.

The triangle function was used as the basic element of the
current expansion and weighting function series. The triangle,
which is shown in Figure 3, was divided by p(t) to make the
complete scalar function. Since the integrals were discretized
it was easier to denote the triangle by a subscript and deal with
its relation to t through their counters, which is displayed in
Figure 4. However, for the sake of the functional notation used
in the next section, one may say that

dT
1/a  dt
(a) {b) ‘ t
A+ A
-t/a
Figure 3. (a) Triangle function and a piecewise-constant
approximation. (b) The derivative of a triangle
function.
o T ()
W,-(t) = utwi(t) = U p(t) (2)

where 0, is a unit vector, W; are the vector basis functions,
and their divergences are

dT.

V°Wi = a-tl (3)

o=

The dipole can be described by assigning vectors of p and z
values at the corners in the profile of the half-dipole. For
example

RHD«0.01 1 0 ¢ ZD«0 0.9 1
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Figure 4. Relationship between the counter for t,

t,=(k-1)Dt, and the triangle counter.
T, spans from k=2i-1 to k=2i+2.

describes a dipole which has a radius of 0.01 m at the feedpoint,
cones out to a 1 m radius at z=0.9 m and cones in to a point at
z=1 m. The full dipole description is formed by reversing ZD and
RHD, negating the reversed ZD values, and attaching them to the
originals.

ZVe (-0ZD) ,0,2ZD (4)
RHV+ (ORHD) ,RHD[1],RHD (5)

The extra point in the middle is a convenience so the first z
point doesn’t have to be zero, and a straight pipe may be insert-
ed before the shape takes off.

Figure 5 shows the basis for a scheme to generate the
coordinate variables as functions of t. Since the profile is a
straight line between corners, the values of p and z on a
segment are displacements from their corner values which are
sin® and cosb times the t displacement from TC[K], where K is a
corner counter. The nub of the scheme is to generate the TC
vector, and then write a function to find the index of the last
corner for a given t. The increase in t between corners is the
length of the profile segment.

TC[K+1]«TC[K]+ ( ( (RHV[K+1]-RHV[K]) *2)+(ZV[K+1]-ZV[K])*2) *¥0.5

This expression could be put in a loop and stepped through to
produce the vector TC. However, APL has a cumulative sum opera-
tor, '+, and there are a couple of simple ways to generate
the pairwise-difference of a vector. Here is one as a defined

function.
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Figure 5. Illustration of a piecewise-linear antenna profile
section. z and t increase to the right, p increases
upward, a and @ are positive ccw.

VDIFF[O]V
[0] Z«DIFF X
[1] 3Ze(L4X)-"11X (6)
Now the expression for TC is written

TCe0,+\ ( ((DIFF RHV)*2)+(DIFF ZV)*2)*0.5 (7)

For a single value of t, one way to find the index of TC just
left of t is to compare the value with TC. TC<T will produce a
Boolean vector with 1 for each corner up to the nearest one on
the left of T, and 0 for the rest. The index value for the
corner wanted is the sum of these 1s, +/TC<T. To do this for a
vector of t values, the outer product operator can be used.
TC®.<,T takes each value of TC and compares it to all the
values in T, producing a row in the result. The result has as
many columns as there are elements in T and as many rows as there
are elements in TC. The ’,’ next to T makes a vector of a
single-valued T. To get the index values now it is necessary to
sum down the columns of the Boolean matrix. These steps are put
in a defined function called REGION.
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VREGION[O]V
[0] S«REGION T
[1] Se+£TCo.<,T (8)

In this function TC is used as a global variable, T and S are
local variables through which data is passed into and out of the

function.

For the purpose of numerical integration, the profile of the
antenna, which is the range of t, is divided into increments of
A and Dt as in Figure 3. The center of the dipole has to be a
center point for an expansion function and a boundary for a 4
segment. Let NP be the number of A segments in the half-~dipole.

DEL&TC([pTC]+2xNP and DT«DEL:2 (9)

NP is also the number of unique current coefficients, so it is
quite important later on.

Finally, f=2m/n (BT«o02:LAMBDA) and § (BS«<BTxBT) are
important values in the calculations because f measures the
intervals in wavelength. LAMBDA serves as a global variable to

hold .

III. The Integral Equation

IIIA Field Theory

The antenna is a closed, perfectly-conducting (initial
assumption) surface so that the currents flowing on it and the
applied voltage must produce tangential E fields that add to
zero. The field due to the surface currents is

-5 , . _ th 27 ., . _ vf_j‘(tl)

B (k) = -["["|JouT (/) g(R) -vg (R) L5z |p’de’at’ (10)
The distance function is

F] Z : £
R = Jp2+p’"-2pp’cos(¢-¢’)+(2z-2") (11)
and the propagation function is

e'jBR
g(R) = (12)
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The égap source model was used so the incident E is

B (8) = ,V,5(2) (13)

and the boundary condition requires that (13) equal the negative
of the tangential component of (10). This would be an ill-condi-
tioned integral equation on several counts, but MoM smcoths it
out somewhat by multiplying both sides by a weighting, or averag-
ing, function and then integrating the products over the surface
of the antenna. Using a set of vector weighting functions and
the vector dot product (inner product) also picks out the tangen-
tial component on each side. Representing a weighting function

by
W(t) = aM(t) (14)

the smoothed equation becomes

[rfaE pdpat = [P[2 [ 3, [W(E)-T(£)g(R)

v () vg(R) I8 ) | gragratrpagat  (15)

Again, from symmetry there are no ¢-components to the sources or
fields, so the left side integrates to

2mp(t /2)W(t,/2)V,

The first dot product on the right can be represented by the unit
vectors involved,

0,1, = cosbcosé’+ sinBsind’cos(¢-¢’) (16)

from Figure 2 and the discussion around equation (1). The second
dot product involves the gradient of g(R), which is already a
singular function. Although a second-order singularity can be
handled [4,5], Harrington and Mautz [1] used the fact that the
body is a closed surface to replace the integral of W(t)'Vg(R)

in an integration by parts with -g(R)VW (t).

R and the unit-vector dot product involve cos(¢-¢').
These are the only rotational terms, so they were collected and
the angle integrals done first. Because the functions really
depend on the difference between the two angles, if one inte-
grates with respect to one angle, the dependence on the other
disappears. The ¢-dependent terms can be collected in two

integral functions as
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. i8R
G, = 21rjz g(R)dg = [:QE—cup (17)

and likewise
-JBR

G, = I:cos¢gjf—d¢ (18)

Collecting all these substitutions brought the integral equation
to

t t
P(ZNW(Z5)V
2 jsos S _ I;'“I;'“{W(t)J(t') (cose(t)cose(t’)G0+
sind(t)sind(t’)G,) = GoVW (£)V/-I(t’)/F)pp dt dt (19)

IIIB The Integrals in ¢

G, and G, hold the integrations in ¢, which must be done
before the outer integrals in t and t’. They also hold the 1/R
singularity. There must be some advantage to the rotational
symmetry besides the simplicity of the setup, perhaps it would be
in the evaluation of these integrals. At first, writing

MR=P(R-R,) +AR,, Ri=p>+(z-2z')°

was tried, R, being the distance to the axis under the source
peint. For B(R-R,)<1 a few terms in the exponential series

were used, which then led to terms involving elliptic integrals
of the three kinds. While this was educational, and some errors
in [6] were found, the result was rather complex and slow. An
interesting discovery was that, away from the singularity, it is
faster to compute the integral by the piecewise-constant series
approximation than to use the polynomial-and—~log approximation
from [7]. The speed crossover was at 20 terms in the series for
six-figure accuracy.

The next approach tried was an old one used recently by
Simpson, et. al. [2]. They split the exponential instead of fAR.

p-jBR 1 -.-jBR-l
- =R* R~ - (20)

This method removes the singularity trom the propagation function
to a static function which integrates to elliptic integrals.
These two parts can be thought of as the circuit-element part and
the radiation part, concepts which are explored in [2]. Define
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Goe = [, £ (21)

T CoSs
Gy = ]O jz—‘pdqs (22)
T o ARy
Gy, = ]0 =g ——d¢ (23)
r o 1BR_
Gy, = ]0 e—R—lcosqbdqp (24)
One can find the elliptic-function version of G, either by
a succession of substitutions or from [6] as
_ 2
Gog = ——K(r) (25)

Jafb

with a = pz+p'2+(Z—Z’)2, b = 2pp’ and r? = gg%

K(r) is the complete elliptic integral of the first kind whose
defining equation is

/2 dx
K(r) = _ 26
) =y s (26)

Using the same substitutions and the redundancy{8]

sinz = 5% - ﬁi(l—rzsinzz) (27)
provides
2 2
Gy = 5 —=|2K(r}-2E(r)-r*K(r 28

E(r) is the complete elliptic integral of the second kind,
defined by

E(r) = ];IZJI—rzsinzxdx (29)

No closed-form or special-function versions for Gy,
and G, were found, but the integrands are smooth and

well-behaved so they were simply approximated by the same
piecewise-constant interval integration as used by MoM.
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IIIC The Singularity

The development in IIIB moved from the static potential
function, which has a 1/R singularity through the integration in
¢ to the elliptic integrals. [7] gives a quite accurate approx-
imation which explicitly includes a logarithm which goes to
infinity when r-1, which occurs when t’=t. For t-t’ small
compared to p the argument of the approximation is proportional
to t-t’, so the approximation can be integrated analytically.
However, there are other functions which multiply the Gs, and
t-t’ is not necessarily small compared to p over the interval in
the discrete approximation to the integrals.

The basic approach by MoM to solving equation (20) is to
break up the integrals into sums, each term of which approximates
the integral over a small interval by the product of the interval
length and the integrand’s value at the center of the interval.
This is the piecewise-constant approximation. The question then
is, what value should be used to represent the ¢ functions for
intervals in which t’-t? Working the charged-cylinder electro-
static problem[9, 10] showed that displacing the source and
observation points by a small amount compared to the interval
size gave a result independent of this displacement, once it was
small enough, as far as plots of the charge density were con-
cerned. In the present case, the results were poor for small NP,
"even having sign errors in the terminal impedance. Apparently
the singularity was over-represented. The next best choice
seemed to be to use the average value of each G function, which
means numerically integrating them over the interval since no
analytical integration was available. Reference [7] provided
some formulas and values for functions with a logarithmic singu-
larity. The numerical approximation has the form

‘j;f(x)log(x)dx 2w, f(x;) (30)

where w; and x; are given in tables for various numbers of
samples per interval. The form needed was

16 = [“eyray = 2[6(v)dy (31)
since G is even in y. If y=éx, then the upper limit becomes 1,
IG = 2I;G(6x) sdx (32)
To use (30), f£(x) = G(&)/log(x},
G (8x;)

= il Seind A0
IG ¥ 26EWiToq(x ) (33)

108



The problem at hand was to integrate over a Dt interval with
respect to t’/ when t is at the interval center. y corresponds to
t’-t, § to Dt/2. The variables in the G functions were expressed
as functions of p, p’, 2z and z’, so they were re-expressed in
terms of t’-t, p and sind(t). This was made possible by assuming
t’ and t are on the same profile segment. The geometry of this
assumption gives

(p-p) 2+ (2z-2")% = (t’-t)° (34)
p’ = p+({t’-t)sind (35)
so that
a = (t’-t)%+2p(p+(t/-t)sind) | (36)
b = 20(P+(t’-t)sind) (37)
a+bh = (t’-t)’+4p(P+(t’-t)sind) (38)
a-b = (t’-t)° (39)
m = 1r = 358 - (1) (40)

m is the most convenient variable in which to express the ellip-
tic integral approximations.

v Conversion to Discrete Form

IVA Using MoM

On examining equation (20), one can see that each weighting
function is multiplied by a P and each occurrence of the current
density is multiplied by a P’. Furthermore, the first deriva-
tive of both functions is required. It makes good sense, in
hindsight, that Mautz and Harrington[l] chose to represent both
functions as a series of basis functions having a first deriva-
tive and being a simple function divided by P. The weighting
functions are

) T. (t
W (t) = ﬁt,.";E(;)L, 15isN (41)

The surface current density is

N N T (')

J{t*) = £1q,,Jd 42
( ) k=1 t'k tkp(tl) ( )

One can show, by taking the textbook approach of sketching a

differential-sized box on the antenna surface and applying the

definition of divergence as a Gauss’s Law limit, that
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V"W- = = pdt‘ (43)

and
(44)

There can easily be a notation and counting confusion because the
value of t at the middle of a triangle is never actually used in
the integral computations. It is simpler to express the inte-
grals, though, using this value, so let it be 7, for triangle T,.
Then, since the triangle functions are honzero over a 2A domain
the integrals are shortened up. The application of each
weighting function to equation (20) generates a separate
equation, the full sequence produces a set of N equations for the
N J, amplitudes.

T (t“‘)v

- N 7.-]-& T +ﬂ . . .

_lfg%ﬁ_g = E%J}kjflojfta{Ti(t)Tk(t')(cosecose’G0+51n951na’G1)
= 1

G, dT;(t) dT, (t’
- Go 9T; (£) dTy ! )}dt’dt, 1<i<N (45)

ZF dt dt”’

The left-hand sides of this egquation sequence are zero except
for i=NP because only that triangle function is nonzero at t /2.
The results of the double integration on the right-hand sides are
functions only of i and k, so they can be symbolized by the
standard Z;,.

N
Vi = JyZik, 1lgicN (46)
k=1

IVB Preparing the Way; Geometry

The function values needed in each Z; , sine, T,, etc., are
used over and over again, so it doesn’t pay to recompute them
each time. The basic strategy was to precompute them as vectors
and matrices, and call the needed data by their indices during
the 2 element calculation.

APL provides a function to generate a vector of index
values, ’,’. Any set of values which can be written as a
function of an index can be generated as a vector, making a loop,
with its repetitive interpretation, unnecessary. One can gener-
ate a function of any number of indices by using the outer
product operator with the individual index vectors which will
produce an array with as many axes as there are index variables.
While this is quick to execute, large temporary outer products
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can eat up storage to the point where there isn’t enough, which
will generate a WS FULL (WS for workspace)} error message.

The vectors and static G functions are calculated in a
function SGENERATE.

[0] SGENERATE;;K;T;THT;L;T1;N1;N2
All the variables in the header are local.
{1] T1eO0TS ¢ N1e2xNP ¢ N2e4xNP

[2] ZT«ZA T«DTX 0.5+1N2 ¢ RHT«RHO T ¢ THT«<TH T ¢ COST«20THT
< SINT«10THT

Remember that the interpreter works from right to left in a
statement. The statements in a line are executed starting with
the leftmost one. The first statement in line [2] starts by
generating a vector of integers from 1 to N2, then adds ‘0.5 to
these integers, then multiplies them by DT and assigns the result
to T, which is the vector of t values used in all subsequent
functions. The T is also an input argument to a function Za
which calculates the corresponding vector of z(t) values, ZT.
The next two statements in line [2] calculate p(t) and 6(t)
vectors, RHT and THT. All three of these functions use the
simple segment geometry and the function REGION (6). The next
two statements in line [2] produce cos® and sinb using the
circle function with a left argument to indicate which of the 15
transcendental functions is wanted.

[3] TRT«(1 3 3 1)%4 ¢ DTRT«<(1 1 "1 "1)*DEL

These are vectors to hold the sample values of the triangle
function and its derivative.

[4] GO«Gl«(N1,N2)p0 < Ke1

G0 and G1 are matrices which hold the static potential integrals
Gy and G,;. These matrices must be symmetric about their main
diagonal, regardless of the geometry of a problem, and they are
also symmetric about a line between rows N1 and N1+1 because of
the geometric symmetry of the dipole. Use was not made of the
diagonal symmetry because of the complexity of the indexing
required. The row symmetry was used.

[5] (iN1) REALGREEN IN2 ¢ kel

REALGREEN is a function which calculates the values for the
static G functions and puts them in the arrays GO and Gl. Its
input arguments are sets of row and column indices. The workings
of REALGREEN and IG will be discussed below.
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[6] GL:LeIG RHT[K],SINT[K] ¢ GO[K;K]«L[1l] ¢ G1l[K;K]«L[2]
O - (N12KeK+1) /GL

This is a one-line loop to replace the diagonal elements of GO
and Gl with the average values of G, and G, on the intervals
where they are singular. The calculation on these intervals in
REALGREEN were prevented from overflow by replacing zeros of m
with 1E'50. It would have been more efficient to send the
results directly to GO and Gl inside IG, but it was left in its
development form which gives an explicit result.

(7] GO<GO,[1]0®GO[N1+1-13;] ¢ G1l«Gl,[1]OG1[N1+1-13;]

Not all the possible values of GO and Gl are ever used. Again
because of geometric symmetry, there are only NP unique values of
Jixs SO only NP equations are needed. The expression

N1+1=-.3 generates a vector N1, N1-1,N1-2 which picks these three
rows out of the matrix. No column index is specified so the
whole row is taken. This three-row block is then reversed
end-for-end, and attached to the original matrix under its

columns, making the result a 2NP+3 by 4NP array.
[8] (+/0 O 0 3600 60 1 1E 3xOTS-T1l) ‘SEC, STATIC GO AND Gl1.'

This line calculates and displays the elapsed time in seconds.
The mixture of numeric and character data in a vector is a
feature of APL2. In standard APL the number would have to be
converted to characters to be displayed in the same vector.

(9] OSOUND SCALE,[1.5]100

This line plays an ascending C major scale to get the user’s
attention when the function is finished executing.

IVC Preparing the Way; Potential Integrals

REALGREEN is so named because its results are Green’s
functions of a sort.

[0} OX REALGREEN SX:;A;B;SQAB;M;K:E

0X and SX stand for observation-point indices and source-point
indices, respectively. These are the input arguments, the other
variables listed in the header are local to the function and

named to correspond to variables in (25) and (28). SQAB=4a+b.

[1] Be«2xRHT[OX]®.XRHT[SX] ¢ AB<RHT[OX]®.+RHT[SX]
O A«ZT[0X]°.-2T[SX]
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In each of the statements in line [1] the generalized outer-
product operator forms a matrix of all combinations of the left
argument elements with the right argument elements, with the
arithmetic function placed between them. B has as many rows as
there are values in OX and as many columns as values in S¥, and
each element of B is 2p(t;)p(t,)=2¢p’. Each element of AB is p+p’,

and each element of A is z-z’.
[2] ABe« (AxA)+ABXAB ¢ A«0p0 ¢ M«1E S0+ZERO 1-2xB:AB

The first statement forms a matrix of at+b values. The second
statement reduces A to an empty vector to reduce storage. The
third statement calculates an array of m values, defined in (40),
as an argument for the elliptic integrals in the next line. The
function ZERO replaces each number whose magnitude is less than
1E°'14 by zero.

[3] Ke(AE1 MPOLY M)-(®M)XBE1 MPOLY M O E«(AE2 MPOLY M)
- (M) xBE2 MPOLY M

MPOLY is a function whose left argument is a vector of polynomial
coefficients. It evaluates the polynomial for each element in M
and returns the results in the same shape as M. AEl, BEl, AEZ,
and BE2 are the coefficients in the polynomial-and-log approxima-
tions for the elliptic integrals given in [7 p591-592, 5 terms].
®M gives the natural log of the values in M.

[4] GO[OX;SX]«2xK:SQAB-AB*0.5
& G1[OX;SX]« (2:B)x(Kx (AB-B)+SQAB) ~ExSQAB

Line [4] expresses and assigns the blocks of element values to
the indexed parts of GO and Gl. The first statement is a direct
copy of (25). The second statement is a reworking of (28} to
minimize the number of variables holding intermediate data.

REALGREEN called its geometry values by indexing the previ-
ously-constructed vectors for p and z. The average value for
each G function over a singular interval requires that t’ values
be calculated within the interval for the integration formula,
and the G functions evaluated at these t’ values. Therefore one
can’t use REALGREEN and some of the same statements must be
rewritten. This is done in the function IG.

[0] 2«IG Y¥:;X:K;E;A;B;AB;SQAB;XQ:M

Z and Y are output and input arguments for the function, each a
two-element vector as can be seen from its use in line [6] of
SGENERATE. The local variables listed in the header mostly have
the same uses as they do in REALGREEN.
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[1] XeGIXxDT:2 O XQeXxX ¢ Be2xY[1]xXY[1]+XXY[2]
O AB«XQ+2xB & A+XQ+B

GIX is a vector holding the tabulated x; values from {7 p920,
n=4)}. DT+2 is the half-interval scale factor to convert the
¥X; to t’-t values. The statement for B is a copy of (37),
letting execution order take care of the parentheses. AB is
(38). A is (36). These are all four-element vectors.

[2] MeXQ:AB ¢ Ke (AE1 MPOLY M)-(®M)XBEl MPOLY M ¢ SQAB«AB*0.5
M is (40) again, and K and SQAB are as in REALGREEN.
(3] E«(AE2 MPOLY M)-(®M)xBE2 MPOLY M © 22X+ /GIWXK+SQABXLGX

GIW is a vector holding w;, values and LGX is a vector holding
log(x;) values. ‘+/’ does the summation so now Z holds the
average of Gy, over a particular interval for which it is
singular.

[4] Z«3Z,2%+/GIWX( (AXK+SQAB)-SQABXE) +BXLGX

Line [4] calculates the average for G, and catenates it

with 2 to form the new Z which the function passes out as the
explicit result. The 26 in (33) doesn’t appear in this function
because (33) is the integral, not the average. The average is
the integral divided by 26.

The complex G functions, Gy, and G,, {23,24), are initial-
ized, collected and timed in a function WGENERATE which is nearly
identical to SGENERATE. The results are held in arrays GOC and
G1C. The actual integrations are done by the function
CMPLXGREEN.

[0] ©OX CMPLXGREEN SX;N;DA;ANG:R;CR;SR

[1] Ne15 O DA«=0:N O ANGe20DAX 0.5+WN
¢ R+ (RHT[OX]XRHT[0X])®.+RHT[SX]XRHT[SX]

The integration in ¢ is done by the piecewise-constant approxi-
mation. N is the number of intervals between 0 and w, and DA is
the interval length. ANG is the vector of cosine values for the
centers of these intervals. R, in this line, is a matrix of all
the possible p2+p’2'va1ues specified by the 0X and SX index
vectors.

[2] ReR+(ZT[OX]°.-ZT[SX])*2
& Re ( ( (N, pR) pR) —2XANG® . XRHT [0X]© .XRHT{SX]) *¥0.5
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The last statement in line {1] and these two statements are a
three-step construction of all the possible values of the dis-
tance function required by the index vectors OX and SX and the
steps in ¢. Coming into line (2] R has all the p2+p’% values,
and the first statement adds all the (z-—z')2 values. Starting
at the right of the second statement in line [2], the ()*0.5 will
take the square root of all the elements sent to the outer
parentheses. Just inside the right parenthesis pp’ is done as
an outer product to form a matrix the same shape as the current
value of R. This matrix is then outer-product multiplied by the
cos¢ values in ANG to form a 3-axis array. The first axis
corresponds to the steps in ¢, the other two to the index values
in 0X and SX. This array is next multiplied by 2 to give the
2pp’cos¢ part of the distance function. Now a copy of the
present value of R needs to be generated for each step in ¢ so
the subtraction part can be properly done. (N,pR)pR makes a

3-axis array out of the p2+p'2+(z-z')2 values with N identical
copies along the first axis.

[3] GOC[;O0X;S8X]«DAx (+#CRe (" 1+20BTxR) R}, [0.5]+/SRe (10BTxR) R

(4] ANGeg((0pR)pANG) © G1C[:O0X;SX]«DAx(+AANGXCR), [0.5]+#ANGXSR
e IR jg represented in rectangular form as cos(fR) (20BTxR) and
-sin(AR) (-1loBTxR). The imaginary and real parts are separately
formed and summed down the first axis (the ¢ steps) and lastly
multiplied by DA to complete the integration. The first

statement in line [4] reshapes the cos¢ vector into a 3-axis
array to match the other items in the integrand of G,,.

The reader may feel that these are compact (a good thing)
and formidable bits of code. They are to the developer too.
They were developed by using vectors with a few elements each to
test the operations and see that they worked out to the shapes
needed. If an operation works for little vectors, it will work
for any.

IVD Filling the Impedance Matrices

Following Simpson’s path, the Z; matrix was split
into circuit-element and radiation parts.

S,
_ k
Zy = Iﬂk*j%”+zmk (47)
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The L and S matrices depend strictly on geometry with noc frequen-
cy component, so that once they are computed for a given shape,
they need not be recomputed. It actually costs more execution
time to compute Z this way most of the time, but it was interest-
ing to see the relative effects of the static and dynamic G
functions.

s +A ’ )
L, = I:;_GI::_aTiTk(Gngcosecose'+G,Esines1ne')dt'dt (48)
_ Ti+8 'rkﬂ:dT— daT .
Si = Iri_A fk_a—'-dthE-"—Ldt,dt’dt (49)

r.4+8 o1 48 ' .
Zoix = ITT-aIT:-a T; Ty (Go,cOS8C0S8’+G, ,sindsiné”’)
1

dT:. G daT
_ == Fow 27k
at > dt,}dt’dt (50)

Again, two kinds of functions were written for these matrices,
one to initialize them, set up loops, and time the calculations,
and one to do the actual double integration given the i,k values.
[0] REACT;I:K;T1l:;NC

This function sets up the reactance matrices, L and S. They are
called XGIL and XGC respectively. The function also finds the
terminal (circuit-element) reactance due to the static poten-
tials.

[1] T1«07s ¢ 1«1 ¢ XG<XGL*XGC* (NP,NC* 1+2*NP)PO
[2] IL:K*1

These lines initialize the starting time, loop counters, and
matrices. NC is the ‘N’ summation limit in (46), which is the
number of equations and unknowns without taking account of the
geometric symmetry.

[3] KL:XGL[I;K]*LIK I,K © XGC[I;K]*SIK I, K
¢ = (NC2KFK+1) /KL © = (NP2ZI*I+1)/IL

LIK and SIK are the functions that do the integrations.
[4] XGL* ((NP,NP)TXGL)+%0, (NP, 1-NP) TXGL

[5] XGC* ((NP,NP)™XGC)+%0, (NP, 1~NP)TXGC
¢ XGCXGL+XGCTBS

116



Here is where the symmetry in t is used to reduce the matrices to
NP by NP. Suppose NP=5. Then J,=J,, J,=J3, Jg=J, and Jy=J,. This
implies that the columns to the right of 5 can be reversed in
order and added to those to the left of 5. Only NP rows are
calculated, with this reduction in mind. NP,1-NP specifies NP
rows and NP-1 columns from the right side of the matrix for the
take (1) function. The 0, on the left will put a column of

zeros on that side of the NP by NP-1 present result. The reverse
flips the matrix side-to-side so the column of zeros lines up
with column NP and column NP+1 of the original matrix lines up
with column NP-1. The last step in the reduction process is
addition to the left NP columns of the original matrix. XG is
the total reactance matrix.

[6] JTe=((NP-1)p0),:60XxBTXxDT*DT)EXE ¢ XTERM«:02xJT{NP]

JT is the vector of current density coefficients, J,,. The V,
are NP-1 zeros, and a negative imaginary number, —1%(605Dt2).
The Dt was put with V; to reduce the multiplies. Since V; is
imaginary and XG is real, JT is imaginary, as it should be.
V,=1, so the terminal reactance is

Xter‘m = 1 (t
t Ty (30
2”9(“2'@)%Jtup
()
- 573 (51)

27T yp

The next two lines of the function print the reactance, the run
time, and sound the scale.

The integration functions have the same format, so only the
more interesting LIK is described.

[0] 2¢LIK IK;L:M
[1] L P+2XIK[1] © M“P+IK[2]

[2] 2Z¢((TRT*SINT[L])+.XG1{L;M]+.XSINT[M]XTRT)+
(TRTXCOST[L])+.%GO[L;M]+.XCOST[M]*TRT

P is a global vector whose elements are 1 0 1 2. This makes L
and M the set of t and t’ indices needed for the four-point inte-
gration, as shown in Figure 4. The appropriate portions of the
G0 and G1 matrices are called as 4x4 matrices. Each one is then
the center matrix in a vector-matrix-vector multiply (inner
product) to do the double sums. That’s it.
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Another pair of functions, IMP and ZIK, organize and compute
the elements for Z,. The computation principle for the integration
is the same as in LIK, but the complex numbers require a little
more work in handling the shapes of the vectors and arrays. The
reactance and impedance matrices are combined and the net
terminal impedance computed in the function TERM.

IVE Current and Dissipation

Once the current density coefficients, J, , are Known,
the current at each sample point can be found by adding the
appropriately-weighted triangle functions. The values of
J. are held in the variable JTC, but only for half the
dipole. To provide plots for the exercise of intuition, the
current was extended for the whole dipole. All of the A seg-
ments have two triangles on them except the starting one at t=0
and the ending one at t=t,. The total current is formed by
generating a complex vector of coefficient values padded with 0
at the right end (t,) to multiply by the first half of the tri-
angle function, and another coefficient vector padded with 0 at
the left end (t=0) to multiply by the second half of the triangle
function, and then add the two.

ICX~(JTC, (d 0 "1 {JTC),0 0)°.xTRT[1 2] (52)

Since JTC is a complex vector (2-row matrix) the outer product
produces a two-plate, or 3-axis, result. The first column of the
first plate is 0.25 times the real parts, the second column of
the first plate is 0.75 times the real parts, and the second
plate is the corresponding imaginary parts of the current coeffi-
cient times 0.25 and 0.75.

RCe{,ICX[1::]),[0.5],ICX[2::] (53)

After extending JTC, there are 2NP by 2 elements in each plate of
ICX. Raveling each plate takes the plate row-by-row and makes
one 4NP-element row, every other element is 0.25 times a coeffi-
cient and its neighbor to the right is 0.75 times that same
coefficient. Thus, each pair in a row is the left half of a
triangle function times a current coefficient. The next state-
ment reuses ICX to multiply the current coefficients by the right
half of the triangle function, with an extra zero put in at the
beginning. In (55) ICX is reformatted as above and the two sets
are added.

ICXe-(0 0 ,JTC,d O "14JITC)© .xTRT[3 4] (54)

RC«RC+(,ICX[1::]),{0.5],ICX[2;; (55)
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RC holds the surface-current density times the radius, because
the complete basis function hasn’t been used. To get the total
current through a cross-section, just multiply RC by 2w.

IT+02%XRC (56)

Oone of the banes of electrically-small antennas is that loss
resistance can be higher than radiation resistance. One of the
benefits expected from a thick dipole is a lower loss resistance
due to spreading the current out over a large surface. Assuming
that which is desired, the dissipation should have little effect
on the current distribution, so one can use the current from the
lossless equation to calculate the dissipation. The total
dissipated power is

tln *
P = 27 "RJ Jipdt (57)
. v, peor
with Ry = N5 = N g (58)

At this point in the programming, RC is J.p, so magnitude squared
of RC divided by RHT (P) is used instead of J.Jp.

P+02XDTX { (060%BT+SIGMA} *0.5) *+/ (+#RCXRC) *RHT (59)

v Verification

One cannot build a system of APL functions, any more than
one can do a long mathematical development, test it only at the
end, and hope to live without ulcers. Verification begins by
testing the operation of each function on simple cases that can
be verified by inspection, by hand calculation, or by looking up
results in tables. Also, limiting values for large or small
arguments are sometimes useful checks. Both the Green’s function
matrices and the impedance matrices (before folding) must be
symmetrical. In earlier stages of this project, more of the work
was done by completely separate functions, and there were more
loops in the matrix-generating lines. This allowed easier
testing of things like the elliptic integrals and their argument.
Once some confidence was developed in results from these simpler
functions, these results were kept for comparison, in separate
workspaces, against results from more sophisticated versions.

The final tests are overall performance tests. Since we are
approximating a continuous current distribution by a finite set
of sample values, and using approximate integrations everywhere,
we cannot expect perfect agcuracy. We have a right to expect
that the terminal impedance values will behave smoothly as a
function of the number of sample points, and converge to some
result. The slow convergence of the impedance values was, at
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first, daunting. Reading about the similar experience of others
[14, 15] gave a little morale boost. Although quite a number of
test shapes were tried, with varying success, two are offered
because they are shape extremes and are represented in the
literature. These are the very thin wire dipole and the sphere
dipole, both operated at half wavelength.

The classical impedance for a thin halfwave dipole is
73+j42.5 0. To describe this shape to the functions, set
RHD=1E 8 0, ZD=0.9999 1. There was no difference in the results
for the radius two orders of magnitude larger. The triangle
basis function automatically sets the current at the dipole end
to zero, and the difference between the two ZD values is much
less than any integration segment used, so the result is a
numerical model for a very thin straight wire. The ZD values
couldn’t be identical because a divide-by-zero error would occur.
Because of experience in control systems and brocadband rf elec-
tronics, convergence was originally tested by doubling NP from
one trial to the next, later switching to a 2-5-10 sequence. The
largest number which could be run without overfilling the work-
space was NP=150. This corresponds to 600 sample points.
"Finally, NP=5 10 20 50 100 was settled on as the test values. The
admittance values were then fitted by polynomials in 1/NP. This
course was taken because a polynomial in 1/NP goes to a constant
value as NP-ow,. Thus, if the solution values do converge, the
peclynomial-fit constants might be the right values. Table 1
shows the data and results for the thin dipole.

Table 1. Admittances for the Thin Halfwave Dipole, mS

NP 5 10 20 50 100 o
G 11.05 10.13 9.823 9.709 9.7 9.713
B -4.548 -5.071 -5.278 -5.42 -5.486 -5.568
G = 9.713-2.501NP '+133NP 2-889.2NP 3+2270NP™*
B = -5.568+9.077NP '-99.66NP 2+772NP -1866NP™*

Z, = 77.49 + j44.42 0

The spherical dipole profile has to be approximated by a
sequence of straight-line segments. A five-segment model with
equal subtended angles was chosen for the half-sphere so that the
longest A value would fit between the corners. The generating
statements are ZD«0,1000.1x5 and RHD«<1,2000.1xt5. The results
for the same trial values and curve fitting are given in Table 2.
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Table 2. Admittances for the Halfwave Sphere Dipole, mS

NP 5 10 20 50 100 ©

G 17.01 16.71 16.65 16.64 16.64 16.64
B 58.68 71.41 83.78 99.96 112.2 130.1
G = 16.64-0.1826NP '+5.024NP 2+47.95NP 3-112.1NP™*

B = 130.1-2119NP '+3.592E4NP 2-2.764E5NP 3+7.043E5NP™*

7, = 0.9673 - 37.563 0

The polynomial coefficients give an indication of the rate
of convergence, if it exists. The sphere represents two ex-
tremes, a case where convergence has already occurred, and a case
for which it is doubtful. NP has to go over 2000 to drive the
variable terms below 1 mS for B. For the thin dipole, NP=200
drives the variable part of B below 1 % of the constant, and
NP=25 will do the same for G.

Figure 6. Cross=-sectional current along the half-wave thin
dipole.
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Figure 7. Cross-sectional current along the half-wave sphere.

Forging ahead, the current distributions were plotted for
spheroids of various radii from 1 m on down. Figures 6 and 7
show the two extremes. The real parts show a sinusoidal shape as
might be expected. The imaginary part of the thin dipole current
is negative, necessary for the inductive terminal impedance, and
looks sinusoidal except for a tiny upward cusp at the feedpoint.
As the dipole is thickened, this cusp grows, the imaginary part
of the current changes sign along the z axis, and finally becomes
entirely positive. The full sphere shows a large leading current
near the feed gap. Since this current is a growing function of
the antenna radius, it is presumed that it is bounded as it
looks, and the admittance values are reasonable, if not highly
accurate. ‘

According to Ramo and Whinnery, Stratton and Chu{ll] used
spherical-harmonic modes to match the boundary conditions for
spheroidal antennas. Their results for the full sphere give a
converging series for the conductance, but not for the suscep-
tance. Figure 12.23d, p544, from [12] shows curves for these
quantities as functions of fa, ‘a’ being the sphere radius. The
susceptance value for pa=w/2 from this figure is about 27 mS,
which was expected to be low, because they stopped arbitrarily at
19 terms. The conductance value is about 17 mS, which matches
Table 2 above. A frequency response for fa between 0 and 3 was
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VI. Impedance and Shape

For many years it seemed, from [12], that the sphere was a
potential broadband antenna, but the recent reexamination of this
material and the calculations described in section V show that
the large gap perimeter adds too much capacitance to the antenna.
At small a/h the wire dipole has too much series body capaci-
tance and the sphere has too much feed capacitance. A shape with
more body than the wire and less gap than the sphere ought to do
better than both. From Hansen’s paper[3] quoting Chu[l13], the
ninimum Q@ for an antenna with fa<l is

o = 1+3Fa2

At 3 MHz, A=100 m, and the antenna size limit is a=1 m. This
means that Q ; =4063. For a simple tuned circuit this means a
bandwidth of only about 750 Hz, a little tight even for SSB.
This may seem a high value of Q but no reported wire antennas
come anywhere near this low. Starting from the sphere, the gap
was opened up by using a cone from a small gap as a transition
section to a barrel and a capping cone, without good result.
Then a biconical half-dipole was explored and showed that the Q
improved as the cap cone was flattened. This led to a single
cone flaring out from the feed to a plate cap. Is the straight-
sided cone the best that can be done? Both convex and concave
profiles were tried. Concave was better. Finally, the tube and
cone was found to be the best of this shape type. The profile
for the best tube-and-cone half-dipole is a tube of 10 cm radius
from the feed gap to 0.75 m, then a cone flaring out to 1 m
radius at the end, with a plate to close the figure. Table 3
gives descriptions and results for some of the trial shapes.

(60)

A basic conclusion one can draw from this work is that both
gap and body capacitances need to be kept down. Even with the
gap perimeter reduced going from the sphere to the barrel,
there’s a great deal of charging current. So why isn’t a tube
out to a plate the best shape? Possibly a little circuit tuning
is going on. A frequency-response run for the T-C (tube and cone
antenna), shown in Table 4, turned up a series resonance near
17.49 MHz.

Figures 9~12 show the current distributions along the T-C
dipole. The real part is nearly flat along the tube below, at,
and above resonance, while the imaginary part is closer to flat
than anything else below and above the resonance. This is what
one would expect from an end-loaded small dipole and supports the
idea that the resonance is a circuit phenomenon. The sharp drop
in the z components near the dipole ends, shown in Figure 10, are
due to the abrupt change in the current’s direction going from
the tube to the wide-angle cone. The current shifts from axial
to almost radially directed.
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Table 3. Circuit Properties for Dipole Shapes

f=3 MHz, M=100 m, dipole length=2 m, NP=20. p, and z, are
the half-dipole profile description in meters. Ry, and

Z. are series equivalent circuit parameters. Q=X|/R.

m

Shape Name Py/ 24 Zn G Q

Thin Spheroid 0.067-j11,290 168k

2 mm feed dia.

Full Sphere 0.0142-j267 19k

Barrel 0.01 1 1 0 0.019-j233 12.1k
0] 0.2 0.9 1

Double 0.01 1 0 0.043-7)504 11.7k

Cone 0 0.5 1

Cone and 0.01 1 0 0.142-j673 4765

Cap 0 0.99 1

re 0.01 0.5 1 0 0.145-j679 4685

o 0.5 0.999 1

Concave ¢.01 0.5 1 0 0.188-3807 4293

Cone c 0.8 0.9991

Tube and 0.01 0.01 1 0 0.269-3925 3432

Cone 0 0.75 0.999 1

(T-C)

Table 4. Frequency Response of the T-C Dipole

£, MHz 3 6 10 15
Z;, 0 0.27-j925 1.09-j422 3.1-j195 7.32-j52
f, MHz 17.49 20 30

Z;, @ 10.28+j0.073 14+347 3943215
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run, and Figure 8 shows the plot of conductance for fa between 0
and 2.5. The parameters were NP=20 and the half-sphere profile
was divided into 20 equal segments. The curve has the same shape
as that from [12]. That’s nice, but why aren’t all the conduc-
tance data plotted? Because there’s a big wrinkle around ga=2.8
which would have obscured the shape of the lower-frequency curve.
The sphere has a series resonance at about pa=2.752, AN=2.283,

and a parallel resonance at about ga=2.882, A=2.18 m. Tinkering
with NP and segment number did not make the resonances go away so
they appear to be real. Fishing for the series resonance A was
interesting because the susceptance behaved reasonably, but the
conductance did strange things in magnitude and changed signs
close to the resonance. Since the conductance should get large
and the susceptance small at series resonance, perhaps the
impedance matrix was becoming difficult to invert. The parallel
resonance is smoother.

pa

Figure 8. Conductance for a 40-segment sphere dipole.

Since agreement with two classical cases of very different
shape is fair, it seems reasonable to gamble that the functions
and numerical procedures are generally working and reliable.

Ramo and Whinnery[12] said the series for the susceptance doesn’t
converge for the infinitesimal gap, so the mode analysis has the
basic defect that it can’t account for the circuit-element behav-
ior of the sphere. This may be why the mode analysis doesn’t
show up the resonances.
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0.25

Figure 9. Current on the T-C dipole at 3 MHz.

Real part in pA,
imaginary part is ma.

1.25

0.75

0.5.

Figure 10. The 2z components for Figure 9,
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Figure 11. Current on the T-C dipole at 17.49 MHz. Real part in
A, imaginary part in dA.
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Figure 12. Current on the T-C dipole at 30 MHz.
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VII. Development Time vs. Execution Time

This project was spread over a year and a half beginning in
January, 1989. Too much time was spent in the first quarter of
1990 in sorting out hardware and software problems in a move to a
32-bit pc and a 32-bit APL interpreter. Writing this paper has
taken three 7-day weeks. By comparison, the time spent in the
code development seems only a brief pleasant memory. The reader
has seen almost all the code written for this project in this
paper. Think about that. Realize how closely the code mirrors
the mathematics and how little overhead there is. In 1989, an 8
MHz 286/287 system with 2.7 Mb of RAM was being used for this
project. A few times cases were run that took about 5 hours.
With the move to the 20 MHz, 8 Mb, 32-bit system, the longest
case took about an hour. The 100-point admittance calculation
for Figure 8 took about 2 hours, during which markup on a stu-
dent’s thesis draft was started. Now this project, which is part
of a larger one, is over. This code may never run again. From
this perspective, even if the execution time of a compiled
program was zero, it would not compensate for the excess time
spent in coding and debugging the constituent functions in a
scalar programming language. Human time is too precious.

Table 5 shows the execution times for various parts of a
case computation. The blank entries are for cases that won’t fit
in 8 Mb. While these times are for a particular case, a simple
shape and long wavelength, there is considerable variation from
case to case. Shorter wavelengths seem to take longer, as much
as 10 % on the dynamic calculations. This effect has not been
investigated. The array sizes don’t depend on wavelength, nor
are there any loops which test on relative size for termination.
The maximum problem that will fit with row looping is NP=150 (600
samples), and looping on ten-element bites out of a row allows
the problem to run on a 640 kb machine with the 16-bit interpret-
er. The times for the G functions with ten-element-bite loops
are double those for no loops on the same machine. One can see

that the times generally follow an NP? law. The difference
between total case time and time for a new frequency is a little
deceiving, if one is considering whether to fill a separate
static matrix or not. If the static and dynamic G functions are
added and then used to fill only one impedance matrix, the time
to fill that matrix would be only slightly longer than the times
given for the dynamic matrix £ill. In such a scheme, the time
for a new frequency point in a response run would be the same,
and the saving per frequency would be the time to compute the
static G functions. The circuit-element reactance was calculated
separately, for cases with new geometry or number of samples, for
interest. The utility of this data is unclear, so it wasn’t
included in this paper.
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Table 5. Execution Times

All times are in seconds. Cases were run on an ATronics 386B/20
(20 MHz clock) w. 64k cache card, 8 Mb RAM, Intel ’387. The
interpreter is STSC’s APL*PLUS II, release 2.

Sample point, 4xNP. 20 40 80 200 400
Static G; and G, without loops. 1.16 3.4 11.3 63.5
Static G, and G; with row loop. 1.49 4.12 13.5 66.8 249

Static matrix fill and invert. i 4 16.2 103 426

Dynamic G, and G, without loops. 2.9 11.4 45
Dynamic G, and G, with row loop. 3.1 12 47.4 284 1140

Dynamic matrix £ill and invert. 1.4 5.1 22.2 157 789

Total, without G loops. ' 6.5 24 95
Total, with G loops. 7 25 100 511 2704

Time for a new frequency. 4.5 17 70 441 1929
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Appendix: APL Syntax, Symbols and Functions

This appendix will present only as much APL as is used in
the paper. APL is fundamentally an interactive array-processing
language. To be interactive, it must be an interpreter. It is
economical of time in development and execution because it uses
an extended symbol set from which over 80 functions and operators
can be called by one or two keystrokes each. There are no data
type statements, a variable is given its type by the way the user
assigns data to it, and the interpreter keeps track of the type,
not the user. Arithmetic is double-precision, or better. A
variable may be a scalar, a vector, or an array of any number of
axes (dimensions). Execution of a statement proceeds from right
to left, except when interrupted by parentheses. AxB+C is not
equal to C+AxB. Thus, a typical statement execution begins
with the interpreter reading data (explicitly or in a variable
name) at the right end and finishing either with a screen display
or an assignment to a variable at the left end. Customarily,
only uppercase letters are used in names for variables and
user-defined functions, but the interpreter is case-sensitive so
that lowercase letters can also be used. The ¢ is a statement
separator, so that more than one statement can be placed on the
same line. The intepreter passes from one statement to the next
in the usual left-to-right manner, as if the succesive statements
did have line numbers. Multiple-statement lines is a feature of
STSC’s APL¥PLUS systems, but it is not standard. 1In the
following listing, related symbols are grouped together to save
space. S is a scalar, N is an integer, V is a vector, M is a
matrix, f and g represent any built-in (primitive) function.
Primitive scalar functions operate on a variable in an
element-by-element manner, fM does f to each element in M and the
result has the same shape as M. There are also array functions
which rearrange arrays or extract blocks of data from then.
Operators modify the way functions are applied to data.
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APL Symbols

LABEL:
oX

NoX

VepX AeVpX

X xX

VEM @EM
X V1,V2
V1,[0.5]V2

a ¢ 8

ViM VIiM

£/M  £4M

M1f.gM2

X1le ., £X2

Meanings
Basic arithmetic functions.
e, X', 1n(X).
X is assigned the shape and values of Y.
Open or close (toggle) function-definition mode.
A vector of integers from 1 to N.

Go to. -o(test)/line_label. If ‘test’ is true
control passes to the statement line beginning

with ‘line_label’.

A line label is identified by the colon.
7 times X.

N=1 is sinX, =2 is cosX, etc.

Shape is the number of elements along each axis
of an array. pX gives the shape of X, a vector.
With a vector left argument the funtion p re-
shapes the data in X, taking it row by row, to
the shape specified by the vector.

Magnitude of, sign of, each element in X.
M'v, M.

Make X a vector, make V1 and V2 a vector.
Place V1 over V2 in a two-row matrix.

Matrix rearrange. Transpose, reverse left to
right, reverse top to bottom.

Take and Drop. V specifies how many rows and
columns of M are affected.

Reduction. Apply f between the elements of each
row (column) of M.

Inner product. f/MlgeM2.

outer product. f is applied between each ele-
ment of X1 and every element of X2. The shape
equals the joining of the shapes of X1 and X2.
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