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Abstract

In this article, a comparative analysis is given of various asymptotic
high frequency methods for the computation of the Radar Cross Section (RCS) of
complex targets. After a brief revue of their principle, the limitations of
the most popular methods and of their recent developments : Physical Optics
(PO), Physical Theory of Diffraction (PTD), Geometrical Theory of Diffraction
(GTD), Uniform Theory of Diffraction (UTD) and PTD extended to creeping waves,
are analysed in relation with their theoretical foundations and the critical
aspects of their application to the computation of RCS are discussed and

illustrated by some numerical examples.

INTRODUCTION
Asymptotic high frequency techniques (GTD/UTD, PO/PTD) remain essential

for the resolution of scattering problems involving large objects of arbitrary
shape like airplanes, helicopters, tanks and ships, at radar frequencies. But

at present, their implementation on a computer 1is rapidly changing.
Especially, the shapes to which high frequency techniques are applied are of
growing complexity and the need for general computer codes which manage
automatically the geometrical modeling and ray searching is more and more
pronounced. A question remaing however which haunts the engineer who is in
charge of the development of a general computer program for RCS calculations

what is the best choice GTD/UTD or PO/PTD?

In the past, the physical Optics (PO) approximation has generally been
prefered to the Geometrical Theory of Diffraction (GTD) for its capability to
calculate the field on caustics. However, at present, where the main objective
is to reduce the RCS of military targets, the accuracy of PO even when one
takes properly account of edge diffraction through the Physical Theory of

Diffraction (PTD), is not always satisfactory especially away from the
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direction of specular reflections. More refinements are needed like multiple
reflections or diffractions, creeping waves, whispering gallery modes etc...
Now, GTD augmented by the Uniform Theory of Diffraction (UTD) is well adapted
for treating such phenomena. Hence, the competition between the approaches
PO/PTD and GTD/UTD is again open and one of the main criteria for the choice
of a method, besides the suited accuracy, will be the easiness with which it
can be applied to complex objects modeled by Computer Aided Design (CAD)

techniques.

The main objective of this article is to analyse the arguments for and
against each of the above mentioned methods by taking into account their most
recent developments and especially the extension of PTD to creeping waves
(generalized PTD).

In chapter 1, we first consider the methods based on the asymptotic
expansion of surface currents. After having introduced some basic concepts
which are important for our analysis we give a brief description of PO, PTD
and generalized PTD.

In chapter 2 we consider the method based on the asymptotic expansion of
the field at large distances from the object. Our analysis will be focused on
the uniform GTD as a tool for RCS calculations of general complex targets.

The arguments for and against the uniform GTD and the generalized PTD are
presented and analyzed in chapter 3, and illustrated by some numerical

examples.

1 - ASYMPTOTIC DEVELOPMENT OF THE CURRENTS ON THE SURFACE OF A TARGET

1.1. Basic concepts

In a first step we assume that the exterior surface of the target is
regular and that the incident time harmonic field, with the time dependence

-1 . .
e . t, is represented by the asymptotic expansion

n=o (1)
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where the phase Si(?) verifies the eikonal equation of GO and where the vector
amplitudes Eh(f) and.'ﬁn(?) verify a system of coupled transport equations
resulting from the application of the method of perturbations to the vector
Helmholtz equation and the Gauss law, the small parameter being 1/kL where k
is the wave number in vacuun (k = 2973 , A = wavelength and where L is a
characteristic length of the obstacle). The surfaces Si(?) = Const. are called
wave fronts. They are orthogonal to the characteristics of the eikonal
equation which is a first order partial differential equation. These
characteristics or rays form a congruence in R3 and have therefore an
envelope also called a caustic.

For a fixed value of the small parameter 1/kL, there is an optimum value
of N in (1) for which the absolute value of the difference between the exact
field and its asymptotic expansion is mimimum. Unfortunetely, no general rule
exists which permits to predict the optimum value of N, and some experience
is needed in fixing the number of terms of an asymptotic expansion. However
since in most practical situations, it is not possible to construct more than
the first two terms of an asymptotic expansion, this question never arises.

In an homogeneous medium, the rays are straight lines in the direction of
Vgi. Some of them intercept the surface of the target and divide the space
into an illuminated region and a shadow region separated by a surface E:()
which is called the shadow boundary of the incident field (Fig. 1).

The shadow boundary is tangent to the surface S along the curve T
separating the 1lit region ?e.of S from the shadow region SO. In the 1lit
region, the incident field (El,ﬁl) gives rise to an extended reflected field
not strictly limited to  the GO reflected field (BE',A'), which can be
represented away from the shadow boundary and possible caustics, by an

asymptotic expansion similar to (1)

n=o r (2)
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where the phase SR(?) and the amplitudes (ER,HR) verify respectively the

eikonal equation of GO and the system of coupled transport equations together
with the Gauss law, resulting from the method of perturbations. As for the
incident field,the characteristics or rays of the eikonal equation are
orthogonal to the wave fronts SR(?) = Const. and form a congruence in R3,
They have therefore an envelope or caustic which can be located outside (real
caustic) or inside (virtual caustic) of the target. By analyzing the domain of
validity of the solutions of the transport equations, it can be shown that the
asymptotic expansions (1) and (2) are valid at every point in the illuminated
region of [R3 with the exception of those points located on or in the vicinity
of the shadow boundaries and caustics. It is possible to use (1) and (2) at
observation points located on the 1lit side Se of S which are not too close to
the curve ' and to possible caustics and apply the boundary conditions at
those points.

If i is the unit normal to S oriented to the outside of the volume
delimited by S, we have
- For a perfectly conducting body

T (4)
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where (Ef’ﬁt) is the total field on the surface S.

The asymptotic expansions (1) and (2) do not give the total field on S
but only an approximation of it. Other diffraction phenomena occur such as
creeping waves or waves diffracted by edges if the surface S is not regular.
But since the asymptotic expansions which are associated with this
diffraction phenomena are defined with respect to an asymptotic sequence
different from the power series 1/kn where n 1is an integer, the boundary
conditions (3) and (4) are separately verified by each species of waves.
This property holds on for multiple reflected or diffracted rays of the same
species, since in such a case the phase function of the asymptotic expansion
is different which implies that the boundary conditions must be verified
separately for each order of interaction.

Accordingly, we have for a perfectly conducting body
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where ﬁ; =B ER, ﬁé =0 o+ ﬁR with E' and ﬁR given by (1) and (2).

Similarly, for an imperfectly conducting body with a surface impedance Z we

can write
E -(A.E)p=2z2axH ,7Tes (6)

The conditions (5) or (6) involve the continuity of the phase at every point

on S
e

s = s'(P), Tes, (7)

It can be shown that (7) is equivalent to Fermat principle extended to
the reflection of a wave. Consequently, the congruence of the rays associated
with the generalized reflected field ER can be related to the congruence of
incident rays by applying the law of reflection on Se'

As a matter of fact, the conditions (5) or (6) define completely the
asymptotic expansion of ﬁR at any order n knowing the asymptotic expansion of
ﬁi. For n = 0, we find the reflected field of GO, which at a point on Se’ is
independent on the curvature of the surface at that point an can therefore be
calculated by replacing locally the surface and the incident wave front by
their tangent planes. On the other hand, at n = 1, the vector amplitudes

(E'R,HhR) on Se depend on the curvature of the surface and of the incident

n
wave front and for n>» 1, they depend on higher order derivatives, superior to
two, of the surface and the incident wave front.

The asymptotic expansion of the electric and magnetic currents on the

surface can be directly deduced from (1) and (2). If we set

‘J‘a(F) = A(P) x i{’a(i*) , Tes, (8)
M‘a(F) = E’a(f) x A(F) , Tes, (9)

and take into account (7), we get

N
- . ikS* (T -n »a ,-
T (F)ymet ST Eo(m 3 (F) , Fes, (10)
n=
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N
T (F)n 1S (F) Z (10TR (P, Tes (11)

a — e
where
3% (F) = aF) x ['ﬁp‘n(f’) + ﬁin(?)] (12)
@ = [ ® - (] x aE (13)

These expansions depend on the boundary conditions (5) or (6) through HR

L ()
and ERn(?). For a perfectly conducting body, it follows from (4) that ﬁ;(?) =
0 and ﬁan(F) = 0 so that it remains only an electric current given by (10).

As we have already mentioned, the currents T; and ﬂ; do not represent the
total currents on Se' Other waves of the same kind or not may reach a given
point on Se after a simple or a multiple interaction with the body. It is
possible to associate an asymptotic development with the currents
corresponding to each species of waves and the asymptotic expansion of the
total currents is equal to the sum of the asymptotic expansions of the
currents corresponding to each kind of waves.

With this basic concepts in mind, it is now possible to analyse the domain

of validity of PO.

1.2. Physical Optics (PO) approximation

The PO approximation is usually stated in the following way
(a) at every point M(T) on the lit side Se of a body, the Pysical Optics
currents EBP(F) and'ﬁbP(F) are equal to the currents that would exist at
the same point on a plane tangent to Se at that point and submitted to the
same boundary conditions.
(b) on the shadow side of the body the PO currents are zero.
This definition leads to the following expressions of the currents :

- For a perfectly conducting body

i

T (F) ={2a(F) x H(F) , Tes
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- For an imperfectly conducting body

-

A x[A(F) «~ TVD]

Top(T) = T e S,
0 , T € SO (15)
W, (F) = | @-E(®]xa(F) LT e s,
0 , T € SO
R

where (El,ﬁl) and (E ,ﬁR) are respectively the incident field on the surface

and the reflected field on the tangent plane.

From this definition and without any further background it 1is
difficult to find out general rules for the validity of the PO approximation.
For this reason, it seems useful to relate this method to the asymptotic
solutions introduced in § 1.1
It is easy to see from the asymptotic expansion (2) which is also known as
the Luneburg-kline expansion of the reflected field, that the PO approximation
corresponds to the leading term of the asymptotic expansions of the surface
currents (11) and (12). Owing to the domain of validity of the method of
perturbations described in § 1.1, we conclude therefore that PO is not valid
at points on Se located close to the shadow boundary I" (See Fig. 1) or close
to a real or virtual caustic of the incident or reflected field. For a convex
object, bounded by a regular surface and illuminated by a divergent incident
wave for instance, PO is not valid in the regions Se and SO close to the
shadow boundary I shown on figure 2 in consequence of the proximity of shadow
boundarythich is a surface tangent to S along I' and to the virtual caustic

of the reflected rays.

When the illuminated part of the surface has edges, PO is also not valid
close to these edges. Moreover when the incident wave is convergent or when
the surface S is concave, it may happen that some parts of Se which are not
close to I are in the vicinity of a caustic of the incident or reflected
wave. PO is evidently not valid in such situations.

There exists a class of targets which, when illuminated by a plane wave,

have no caustic of the reflected field at finite distance and hence all
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points of Se are far from the caustic. It comprizes all targets built up with
flat polygonal plates. For such geometrical shapes, the asymptotic expansions
(11) and (12) are reduced to their first term n = O, the other terms n # 0,
being identically zero.

For this class of targets, PO is very well suited for RCS calculations
more especially as the other asymptotic methods founded on a direct
calculation of the diffracted field like GO or GTD are not valid near the
directions of specular reflections owing to the presence of a singular caustic
(focal points) at infinity.

However, the practical implementation of PO for RCS computations of a
complex target constituted by an assembly of plates or polyhedrals come up
against two difficulties : the determination of the shadow boundary on the
surface and the treatment of multiple interactions between plates.

The first difficulty can be surmounted by a refinement of the sampling of
the surface of those plates which are partly illuminated or by the calculation
of the intersection of the shadow boundary with the 1limits of a partly
illuminated plate.

The second difficulty is generally solved by an association of GO and PO.
However, this way to solve the problem is not completely satisfactory. It can
be shownn for instance that the result does not verify reciprocity. We will
come back to this problem in a more general framework in chapter 2.

The extension of PO to curved surfaces modeled by an assembly of flat
plates is possible under some restrictive conditions. For an incident plane
wave and an observation point at infinity, a general criteria valid for single
diffractions has been proposed by Klement et al (1988). It states that the
deviation between true and modeled surfaces should not exceed a value of %%.
This criteria which has some similarity with the far field condition in
antenna theory limits the maximum size of the panels which depend therefore
on the radii of curvature of the true surface. There is another restriction
more especially related to the asymptotic expansion of the reflected field
which can no longer be limited to the leading term when kpg 6 where f is the
smallest local radius of curvature of the true surface. Both rectrictions can

be summerized in

ASgg_Ae,e;,A

where S is the surface of an elementary pannel.
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For double diffractions, since the phase errors are additive, the
deviation between the true and modeled surface should not exceed a value of
A/32.

Under the preceding conditions, PO gives accurate results for observation
directions close to the direction of specular reflection. Away from these
directions the accuracy of PO deteriorates because edge diffraction is

incompletely taken into account.

1.3. The physical Theory of Diffraction (PTD)

PTD is a correction of PO which takes properly into account the edge
diffraction in the illuminated region.

In order to introduce the method, we suppose that the illuminated part Se
of the surface of a target has a discontinuity of the tangent plane (edge)
along the curve (C) and designate F(¥) and M(F), with T € S, the exact
currents on the surface S and I(EZﬁ}P) the radiation integral giving the field

radiated by these currents at an observation point P faraway from S. The

asymptotic expansion Ia of I comprizes the contribution IS of the stationary
points of Se’ corresponding to the GO field and an end point contribution Ib
giving the field diffracted by the edge. We state

J=JOP+JF,1\’I=OP+MF (16)

where JF and M% are corrections to the PO currents called fringe currents

which for a non grazing incidence are essentially concentrated in the vicinity
of (C) since, at high frequencies edge diffraction is found to be essentially
a localized phenomenon. When the stationary points are not close to (C), 3%

and TWF can be neglected in the stationary point contribution IS to the

radiation integral I, so that

(T,M;P) = Io(Jp,M

o P) (17)

Ig op’

since I(T;ﬁ;P) is a 1linear function of the currents T and M, we have

from(16)

I(J,M;P) = I(JOP’MoP’P) + I(JF,MF,P) (18)
and

Ib(J,M;P) = Ib(JOP’MOP’P) + Ib(JF’MF’P) (19)



Consequently

(T, M;P)= 1 (J,M;P) = I (T, M;P)+I (T,M;P)

a s b
= I, MopiPI I (Tgp M piP)+ I (T,M 3 P) (20)

The last equality shows that a correction to PO is given by the end point
contribution of the asymptotic development of the radiation integral of the
fringe currents. This method has been first proposed and applied to metallic
strips by Ufimtsev (1962) who designated it "Pysical Theory of Diffraction".
The term I (J ﬁ' ;P) is called the Ufimtsev correction of PO. It can be

F'F?

calculated w1thout knowing explicitly the fringe currents JF MF by noting that

Ib(J M: ;P) is the GTD solution for edge diffraction and according to (20)

——-—

(JpsMgs

(F..,M__;P) (21)

J,M;P) op*Mops

Iy P) = L Iy

The leading term of the asymptotic expansion Ib(j%,ﬁ%;P) has the same form as
for the GTD solution, except for the diffraction coefficients which are given
by the difference between the GID diffraction coefficients and the
corresponding PO diffraction coefficients. The latter hase been established by
Unfimtsev for a half plane. They keep the same form for each face of a curved
wedge, since alike the GTD solution, the tangent straight wedge approximation
is applicable to the leading term of the asymptotic expansion of the PO
radiation integral.
When the observation point is in the vicinity of a shadow boundary of the
curved wedge, the stationary phase point approaches the edge and the

asymptotic development
I (J,M:P) = IS(T,M;p) + Ib(f,'wT;P) (22)

is no longer valid since Ib tends to infinity.

A uniform asymptotic expansion of the radiation integral as given by the

Uniform Asymptotic Theory or UAT (See Lee and Deschamps (1976)) is
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e -

1 (3,Mp) = 1 (3", M5P) [F(3) - F(5)] + 1, °(T,H;P) (23)

a

where Ibe is the partial non uniform edge contribution associated with the

illuminated face and where IS is the stationary phase contribution on the
regular surface obtained by extending continuously the illuminated face of the
wedge behind the edge, the continuity of the first and second derivatives

being essential. The first term of the asymptotic expansion of the currents

(3',ﬁ“) which appear in the expression of IS are therefore J' = EOP’.ﬁ' =.MOP
while the correction terms 7% and ﬁ} are zero since the surface is regular.

The functions % and &' in (23) are respectively the Fresnel function and
the second term of its asymptotic expansion. They depend on a parameter
which is completely defined by the position of the stationary phase point on
the illuminated face and its virtual extension and on the position of the

diffraction point on the edge.

By taking into account these remarks in (23), we get

- —

I (3, W:P) = I_(Jop,MpiP) [F3) - F3)]

(24)
e —

v 1 (JOP OP’P) + 1° L (TpoH

b F’ F’P)

We recognize in the first two terms of the right hand side of (24), the

uniform asymptotic expansion of I(J P). Hence, if we designate by

op’ OP’
Ie(J,M;P) the radiation integral of the currents on the illuminated face, we

have
- - - e,6 -
I(T,MP) = T (JypMopsP) + I 7 (5, MpiP) (25)
where
e, =~ — e, - = e, > -
Ib (JF’MF’P) = Ib (J,M;P) - Ib (JOP,MOP,P) (26)

Since the first term on the right hand side of (26) is the non uniform edge
contribution associated with the illuminated face, its expression is given by
GTD. The second term has the same expression as before when the observation

point P was far from the shadow boundary. When P crosses the transition
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region, each of these two terms becomes infinite, however, their difference
remains finite and continuous. This property is a consequence of the
continuity of the solution (23) and of the continuity of the uniform
asymptotic expansion of the radiation integral of the PO currents . When the
second face is in the shadow region, the radiation integral IO(EZMEP) of the

currents on that face, reduces to

> = o+ = _ ;0 == _ 10 > =

and since I° ) = 0 on SO, we have, for both faces

I(T,M;P) = Ie(j’,M’;P) + IO(T,M;P) (28)
with : ~ I(JOP, OP,F’) + I (JF MF’P)

where Ib(flﬁ}P) is the total edge diffracted field given by GTD.

By comparing (29) and (26) we see that Ufimtsev's correction has
the same form whether the observation point 1lies inside or outside the
transition regions at the shadow boundaries of the direct and reflected
fields. The generalization of this result to the case when both faces are
illuminated, is straightforward. Its extension to grazing incidence 1is also
possible if the target is constituted by an assembly of flat plates.

Since I,(J.

b F’ F’
contributions, it is locally a conical wave emanating from the edge. Hence, it

P) is equal to the difference between two non uniform edge

is possible to define modified equivalent edge currents by identifying the
first term of the asymptotic expansion of its radiation integral to
Ib(f%,M%;P). The modified equivalent edge currents have been first introduced
by Knott and Senior. These currents can be used to extend PTD to observation
points lying in the vicinity of caustics of the edge diffracted rays. Explicit
expressions of Ufimtsev's correction and for the equivalent modified currents
can be found in the articles by Knott and Senior (1973, 1974).

After this brief introduction on the foundations of PTD, we are now in a

position to discuss the advantages and limitations of this method.
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PTD has the following advantages

- It gives a finite field on the caustics of the G.O. rays.

- It takes properly into account edge diffraction by a correction term to PO
which remains valid within the transition regions at the shadow boundaries
of the direct and:reflected waves.

- It gives a finite field on the caustics of edge diffracted rays through the
modified equivalent current method (MECM).

- It avoids the difficult problem of ray searching in the treatment of single
interactions (reflection or edge diffraction)

The limitations of PTD are :

- It is not valid near grazing incidence on curved surfaces having edges or
close to the shadow boundaries on a regular surface.

- It presents the same difficulties as PO for the treatment of multiple
interactions. '

- It is not adapted to targets without edges, of low RCS.

Twenty years ago, owing to the advantages mentioned before, PTD has been
considered as the method which was best suitable for the computation of RCS
and various computer codes founded on this technique have been developed in
different laboratories around the world. Nowadays, 1t remains a popular
method, but its domain of application is much more 1limited. Indeed the
diffraction problems which are frequently encountered at present, concern
targets which can roughly be separated into two classes
(a) Complex targets the RCS of which is dominated by reflection and edge

diffraction.

(b) Targets of low RCS at least in some directions of operational importance,
resulting from weaker diffraction phenomena like creeping waves, edge
diffracted creeping waves, tip diffraction, diffraction by a curvature

discontinuity, etc...

Targets of class (a) generally involve multiple diffractions due to
dihedral or trihedral angles which need the development of ray searching
techniques. For targets of class (b) the extension of PTD to creeping waves is
necessary.

In order to illustrate the importance of Ufimtsev's correction in PO we
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show on figure 3 the monostatic RCS at 9,5 GHz of a flat perfectly conducting
rectangular plate with dimensions 1 m x 0,5 m when the observation direction
moves in the symetry plane perpendicular to the smallest side from © = 0
(normal incidence) to @ = 90° (grazing incidence), the direction of the
incident electric field being perpendicular to this plane. The dashed 1line
corresponds to the PO result whereas the solid line gives the PTD result. We
see that for 6> 60°, the difference between the maxima given by PTD and PO is
larger than 10 dB and for grazing incidence the difference is about 30 dB. The
contribution of the correction term in the same angular domain is shown on
figure 4,

A shape for which PTD is well suited is shown on figure 5. It is a tank
modeled by about 100 flat plates with a total of 350 edges. On figure 5b only

the plates illuminated by the incident field are represented.

1.4, The generalized Physical Theory of Diffraction

The generalized PTD consists in completing the PO current on the
lit side and on the shadow side of a target by adding other contibutions of
the same order or of higher order and to generalize Ufimtsev's procedure to
correct the radiation of these currents at edges.

Multiple reflections give rise to additive currents of the same order as
the PO currents since the 1leading term of the corresponding asymptotic
expansion is given by GO. Extension of Ufimtsev's correction to the radiation
of these currents at edges 1is straightforward. It consists simply in
substituting to the direct incident field, the field reaching the surface and
the edges after multiple reflections. However, in order to get an expression
of the total radiated field verifying reciprocity, it is necessary to add to
these currents those corresponding to incident waves which undergo multiple
reflections and one single edge diffraction before reaching the point on the
surface where additive terms of the PO currents are calculated.

A more difficult problem is the generalization of PTD to creeping wave
currents. In order to show how this problem can be solved, we consider first a
two dimensional geometry having an ogival cross section as shown on figure 6.
We assume that the incident electric (or magnetic) field is parallel to the
generatrixes and that its direction of propagation lies in the symetry plane

of this geometry and is perpendicular to the generatrixes.
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For monostatic diffraction, the ordinary PTD gives correctly the
diffraction by the edge A but gives not the contribution of the edge B which
is located in the shadow region where the PO currents are =zero. This
deficiency of PTD still exists for bistatic diffraction where it is even more
pronounced for large bistatic angles. It can be overcome by replacing the PO
currents by those currents that would exist on the same surface if the edges A
and B were absent. More precisely, the currents on the upper and Ilower
surfaces are calculated by assuming that these surfaces are extended
continuously behind the points A and B. The field on a regular, perfectly
conducting curved surface and hence the currents, are well known and can be
expressed by a Fock integral which reduces to the GO field and to the PO
currents on the illuminated side of the surface away from the shadow
boundaries Ql and Q2 and to the creeping wave field and creeping wave currents
in the deep shadow. We have now to extend Ufimtsev's correction to these
currents. Since edge A is in the illuminated region far away from the shadow
boundaries, the classical Ufimtsev's correction apply as 1long as the
observation direction AP shown on figure 7 does not cross the surface and is
not situated inside the transition region close to the tangents AT1 and AT2 to
wedge A, where edge diffraction and surface diffraction can no longer be
separated. Elsewhere Ufimtsev's correction remains formally the same and is
given by (21) or (29), but now the total edge diffracted GTD field Ib(EZN&P)
must be calculated by taking into account surface diffraction. General
formulas for edge diffraction, valid in the transition regions of edge
diffracted rays, have been recently published by Michaeli (1989 b, c¢) for a
perflectly conducting curved wedge. Improved solutions which tend uniformly to
the GTD solution outside the transition regions of edge diffracted rays have
also been established by Liang (1990), Liang, Chuang and Pathak (1990). By
using these solutions, a generalized Ufimtsev's correction for the edge A can
be performed.

The field close to a regular, perflectly conducting curved surface has
been given by Pathak (1979) and put in the form of a spectrum of
inhomogeneous local plane waves by Michaeli (1989 b). Following this procedure
which has been extended to coated surfaces by Molinet (1990), we can apply
Ufimtsev's correction at edge B to each component of the spectrum and obtain a
correction term in the form of a spectral integral. This procedure belongs to
the technique of the Spectral Theory of Diffraction (STD) developed by Rhamat-
Samii and Mittra (1977).
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When the observation point cannot be reached by direct space waves
emanating from the wedge, but only by a creeping wave it is necessary to
modify Ufimtsev's correction by multiplying it by a factor taking intc account
surface diffraction. This factor is the same as the one which arises in the
expression of the diffracted field, between an edge diffracted space wave and
an edge diffracted creeping wave.

It is also possible to extend the generalized PTD to observation points
lying in the vicinity of caustics of edge diffracted space or creeping rays,
by introducing modified equivalent currents.

One of the main advantages of the generalized PTD is its capability to
give the correct RCS on regular or degenerated caustics of the reflected field
and to recover the GTD results away from these caustics. Other advantages
occur in overlapping transition regions where the generalized PTD gives always
a finite result whereas uniform GTD may have numerical difficulties,
especially for bistatic diffraction. A typical example is shown on figures 8a
to 8c. It corresponds to a plane wave illuminating the front edge of a two-
dimensional wing represented on figure 8a. The echo width has been computed at
40 GHz by the uniform GTD (Fig. 8b) and the generalized PTD (Fig. 8c) at
bistatic observation angles varying from 90° to 180°. We see that if we
disregard the fine structure of the lobes which is not present in the GTD
diagram due to undersampling, the results obtained by both methods are close
except for a bistatic angle approaching 180° where the GTD result blows up, in
spite of the fact that the GTD formulas are uniform. It is a numerical problem
which could be avoided by extracting analytically the limit or by augmenting
the precision of the computer. However, analytical extraction of the limits
is not always possible a priori, especially on a complex target.

The extension of the formulas of the generalized PTD to three-dimensional
bodies is straightforward. But the practical implementation of the method is
much more cumbersome since it is necessary to determine the geodesics followed
by the creeping rays to reach an arbitrary point on the shadowy side of the
surface and on its edges. This is the main difficulty in the application of
the generalized PTD to complex targets. But as will be seen in chapter 2
techniques for searching geodesics on a complex target, the geometry of which
being described by a computer, are now developed for the application of

GTD/UTD.
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2 - ASYMPTOTIC EXPANSION OF THE FIELD AT LARGE DISTANCES
2.1. Geometrical Theory of Diffraction (GTD)

Geometrical Theory of Diffraction has been developed by Keller in the
early 1950. We give only a brief synthesis on the method since more detailed
descriptions of GTD are given in several articles and textbooks the references
of which may be found in a feature article on GTD written by Molinet (1987).

The field scattered by a target at large distance from it compared to the
wavelength can be thought of as being the sum of different asymptotic
expansions corresponding to different asymptotic sequences. As we have shown
in § 1.1, the incident and the reflected fields can be represented by an
asymptotic expansion with respect to the sequence k_n (n =0, 1,...) of powers
of the small parameter k_l. Similarly, it can be shown that the field

diffracted by an edge may be represented by an asymptotic expansion with

n-z

respect to the sequence kK and more generally, the appropriate sequence for

the diffraction by a line discontinuity in the mth derivative of the surface
is found to be xR -1

In order that these asymptotic expansions be solutions of Maxwell
equations, they must verify the eikonal and transport equations obtained by
substituting them into the vector Helmholtz equation. In addition they must
verify the Gauss law V. T = 0.

It follows as a consequence of these equations, that the field propagates
along rays which are orthogonal to the surfaces of constant phase S(T) =
const. called wavefronts and that once its value is known on an initial
surface So(?) = Const., it can be calculated in space along all rays crossing
this surface except on their envelope called caustic, where the transport
equation is singular. Moreover, by imposing the continuity of the phase S(T)
on the surface of the object which scatters the incident field, it is possible
to relate the congruence of diffracted rays to the incident rays and to
establish the law of reflection and diffraction (Keller's cone). Now, owing to
these properties and without further specifications on the nature of the
diffraction phenomenon and on the boundary conditions on the surface of the
scatterer, we can formally relate the field along a reflected or diffracted
ray to the field of the corresponding incident ray at its point of interaction
with the scatterer by an operator which can be put in the form of a
diffraction dyadic and which is independent of the position of the observer
along the reflected or diffracted ray. Generally the diffraction dyadic has

only be constructed for the leading term of the asymptotic expansion of the
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diffracted field. It depends on the diffraction phenomenon and on the boundary
conditions which occur through polarization dependent diffraction
coefficients. Explicit expressions of the diffraction dyadic and of the
associated diffraction cofficients may be found for the diffraction by the
edge of a curved wedge or by a smooth surface in the original work of Keller
and his co-workers (Keller 1958), Levy and Keller (1959). At present most of
the diffraction coefficients which are needed for the computation of the
diffracted field are available for a perfectly conducting body and with some
restrictions for a coated body. However, the asymptotic expansions introduced
so far are not uniform. They break down near caustics and in the transition

regions adjacent to shadow and reflection boundaries of incoming rays.

2.2. Uniform asymptotic solutions

The shortcomings of GTD near shadow boundaries and caustics have
been recognized in the early state of development of the theory. They have
been progressively surmounted by the construction of uniform expansions with
the aid of boundary layer theory or by direct generalization of uniform
asymptotic expansions of exact solutions of canonical problems. This last
procedure is generally much simpler since it does not involve stretched
boundary layer coordinates, but its complexity grows rapidly if a large number
of caustic regions and transition regions are to be covered. In addition,
since the asymptotic expansion depends on the asymptotic sequence wused,
different uniform expansions may be obtained for the same canonical problem.

This happened for the wedge problem for which two different asymptotic
solutions have been developed : The Uniform Theory of Diffraction (UTD) due to
Kouyoumjian and Pathak (1974) and the UNiform Asymptotic Theory (UAT) proposed
by Lee and Deschamps (1976). When UTD is augmented by the "Slope Diffraction
Coefficient"”, both UAT and UTD provide very similar numerical results, the
observed differences being of no practical importance (Boersma and Rhamat-
Samii (1980)).

The uniform UTD and UAT mentioned so far are only valid in the regions 1,2
and 3 of figure 9. In the transition regions of the diffracted rays (regions 4
and 5), and in the deep shadow of those rays, surface diffraction cannot be
neglected. In these regions, the field may be described by hybrid diffraction
coefficients expressed in terms of products of edge diffraction coefficients
and launching coefficients of creeping waves as proposed by Albertsen and

Christiansen (1978). A more rigorous justification of this procedure has been
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given by Michaeli (1989 a) who developed in addition new solutions valid in
overlapping transition regions when the incident field grazes one of the faces
of a curved wedge.

Uniform solutions have also been established in caustic regions. Ludwig
(1966) first succeeded in the construction of a uniform expansion at a smooth
convex caustic and a cusped caustic. The universal founction appearing in his
expansion for a smooth caustic 1is the Airy function and its derivative.
Ludwig's solution reduces to the GO solution away from the caustic in the
illuminated region and remains finite at the caustic. This solution has been
recently extended to the dark side of a regular caustic by Pathak and Liang
(1990) using complex ray theory developed by Felsen and his co-workers (Ikuno
and Felsen (1988)). However since complex ray theory is difficult to
implement on a three-dimensional object, an approximate method has been
tested by the author for an observation point crossing a branch of a cautic
at infinity. It consists in computing the field at a point M in the shadow
region of the caustic by modifying the wuniform solution wvalid in the
illuminated ragion as follows : the point M is replaced by its symetric with
respect to the caustic and the sign of the argument of the Airy function and
of its derivative is changed into its opposite.

In RCS calculations it happens frequently that the caustic is degenerated
into a line or a focal point. For a flat plate for instance the caustic is
degenerated into a focal point at infinity. In this case, where the field is
strongly affected by the presence of the caustic, a modified ray solution is
not adequate. Other methods have been developed. One of them consists
basically in finding an integral form of the solution, having the same
asymptotic expansion as the solution given by GO or GTD away from the caustic.
At observation points located on the caustic and its neighbourhood, the field
is then determined by a numerical evaluation of that integral. However, such a
method is not applicable to RCS computation of a complex target since it
needs, an a priori knowledge of the asymptotic solution away from the caustic.
A more efficient method on a computer consists in applying the generalized PTD
or at least PO in the angular domain influenced by the presence of the

caustic.

2.3. Conception of a general computer program founded on GTD/UTD

The basic ideas underlying the construction og a general computer

program founded on GTD/UTD have ©Dbeen presented together with some
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illustrations in an Agard Lecture Series by Molinet (1989). First, it seems
necessary to separate all the algorithms depending on the geometrical modeling
of the target from those depending on the GTD/UTD solutions since they concern
two different types of specialists. Secondly, the computer Aided Design of the
geometry being performed by existing codes like CATIA, EUCLID etc, which do
not exactly compute the geometrical parameters needed for RCS computation, a
special set of geoemtrical data must be extracted from the CAD code and
arranged in order to optimize the computer time needed for ray searching.

These concepts led to the construction by MOTHESIM of a general computer
library for GTD/UTD applications called PROMETHEE. The library was first
coupled to ray searching algorithms on targets modeled by simple shapes,
developed by THOMSON-CSF and integrated in an interactive code called
SARGASSES which simulates the radiation of antennas on structures such as an
aircraft or a spacecraft. At present, the targets are modeled by a
biparametric polynomial representation with restrictions (Bezier
polynomials). Figure 10 shows a theoretical target consisting of a rotational
symetric body having a concave convex shape to which two wings of variable
thickness are attached. This shape is modeled by 32 Bézier squares (24 for the
body and 8 for the wings). They can be subdivided in smaller domains if
necessary. Ray searching techniques are also developed for such
representations. There is no difficulty in finding singly reflected or edge
diffracted rays. However the search for multiplying reflected rays becomes
rapidly cumbersome and carefully tested elimination procedures must be
developed in order to reduce the complexity of computer calculation.

The determination of the geodesic curves followed by the creeping rays on
a surface described by Bézier polynomials presents also some difficulties,
especially when the geodesic crosses a limit of a Bézier square. But this
problem has already been solved and efficient algorithms for creeping rays
searching are now developed by MOTHESIM in collaboration with another French

firm CORETECH specialized in CAD.

3 - COMPARISON BETWEEN GTD/UTD AND GENERALIZED PTD FOR RCS COMPUTATION

In the preceeding chapters we have seen that both methods need ray
searching techniques and asymptotic solutions up to a given order which we
will now analyse in more detail. ‘

For GTD/UTD, following classes of rays are generally sufficient for most

practical applications
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a) multiple reflections limited to 3 interactions,

b) edge diffraction limited to 2 interactions,

c) creeping rays on two separate regular surfaces,

d) edge excited creeping rays limited to 2 interactions,

e) combinations of an edge excited creeping wave and a creeping wave excited
at a regular shadow boundary,

f) single tip and corner diffractions,

g) all combinations of rays of classes b, ¢, d , e , f with three or less

reflections.

These rays correspond to an asymptotic solution limited at the order k
When edge diffraction is limited to one interaction and tip and corner
diffractions are suppressed, we get a solution limited to the order k_%. In
many applications such a model in which (c¢) 1s also limited to one
interaction, is sufficient. However for balistic forms or otheg geometries
where no edges are present, an asymptotic solution of order k 2 is needed
which implies that single diffraction by a curvature discontinuity must be
taken into account.

For the same level of accuracy the generalized PTD differ from GTD/UTD by
the fact that only two reflections are needed, all other classes of rays
remaining identical. An economy of one interaction in edge diffraction can
also be obtained by using equivalent edge currents in GTD/UTD or modified
equivalent edge currents in the generalized PTD, but this is not always
practical, especially when the radiation of the equivalent currents is
intercepted by another part of the target.

In a (k_%)- GTD/UTD model, limited to two reflections, the gain in the
complexity of the ray searching algorithms when one passes from two
reflections to one reflection, is appreciable and constitutes a serious
advantage for the generalized PTD. However, this advantage is not so important
when three reflections are needed in the GTD/UTD model since for more than
one reflection, new concepts must be found for ray searching which avoid the
exponential behaviour of combinatory techniques. Generally these concepts use

framing procedures which can be easily extended to more than two reflections.

Another important parameter is the number of observation points where the
field associated with each ray species has to be computed. In the generalized

PTD, the field must be determined at every point on the surface of the target.
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We must therefore choose a repartition of points adapted to its geometry and
use interpolation algorithms for calculating the field at other points on
the surface. When the target is described by Bézier polynomials, we can choose
for instance the four corners of each elementary Bézier square. Anyway, the
number of points where the rays have to be found is very large and constitutes
a disavantage of the generalized PTD compared to GTD/UTD for monostatic
diffraction. However this assertion does not hold for bistatic diffraction
since in the generalized PTD the rays reaching a regular point of the surface
depend only on the incident field.

A main difficulty in the implementation of a GTD/UTD program is the
correction of the field near caustics or rays which encounter single or
multiple reflections. The solution of this problem comprizes two steps : the
detection of the caustic and the calculation of the field. When the caustic is
regular, it can easily been detected by a test on the curvature of the
reflected wave since in the illuminated region of a regular caustic ray
searching algorithms converge even if the observation point is very close to
the caustic. When the caustic is degenerated other tests must be used
involving the curvature of the Bezier square and the curvature of the wave
front reaching that square after having encountered one or more reflections or
diffractions. Proper delimitation of caustic regions especially when they are
degenerated is a complicated problem which is still under investigation, for
multiply reflected rays. However the probability of the occurrence of caustics
of multiply reflected rays is generally weak, so they can be ignored in a
first step and corrected after inspection of the scattering diagram.

Once the caustic regions are detected GTD/UTD must be replaced by other
techniques in order to get the correct value of the field in these regions.
For a regular caustic, Ludwig's method extended in the region on the shadow
side of the caustic by the method described in § 2.3 is adequate. For a
degenerated caustic it 1is necessary to use PO or generalized PTD. At that
state of the discussion, the following question arises : why do not use
generalized PTD troughout the observation space ? In order to answer this
question, we consider first the different operations which are needed to apply
PO to a target described by Bezier polynomials. The first step consists in
dividing the initial Bezier squares into smaller squares the dimensions of
which are approximativelyj%= XJ%% as mentioned in § 1.2.

Then after having approximated the elementary Bezier squares by two flat

triangles having the same extremities as the Bezier squares, as shown on
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figures (11) and (12), a test is made on each triangle in order to know if it
is in the shadow or not of the incident rays reaching it. Owing to the large
number of triangles which is needed to describe a complex target (about 10
for an airplane at 10 GHz) these tests are very time consuming on a computer.

Hence, since generalized PTD rather than PO must be used for an accurate
computation of the RCS of a target, this method is not practicable with a
reasonable computer time on very large targets compared to the wavelength
(several hundreds of wavelengths in both dimensions). For these targets, the
best suited method is GTD/UTD completed by the generalized PTD in caustic
regions. Since ray searching algorithms for edge diffraction are identical in
GTD/UTD and in the generalized PTD, it is possible to use this last method in
caustic regions instead of PO, without augmenting drastically the computer
time, the advantage being a better continuity of the diagram at the periphery
of the caustic region.

Another advantage of GTID/UTD is the possibility to reduce the number of
points necessary to construct the RCS diagram. Indeed, since outside caustics
and shadow boundaries, the GTD field is a superposition of local plane waves,
interpolation algorithms can be used for the phase and amplitude of the field
associated with each individual ray before summing all the contributions.

This property is particularly important for very large targets for which

it leads to a computer time saving by a factor of 10 to 100.

For targets of moderate size (several tens of wavelengths in both
dimensions) like missiles, the generalized PTD seems to Dbe the best suited
method since besides its advantages in caustic regions where no tests are
needed, it has some other interesting properties like its capability to give

better results than GTD limited to real rays on concave convex surfaces, on
surfaces with small radii of curvature (ke ~ 1) on surfaces with sharéyblunt

corners etc...
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Fig. 9 : Domains of validity of various
uniform edge solutions

Fig. 10 : Typical shape modeled

with Bezier polynomials

Fig. 11 : Subdivision of Bezier squares
in flat triangles.Direction of
incidence perpendicular to the
symetry axis. Only those triangles

which are illuminated are represented

Fig. 12 : Same legend as in Fig. 11 with a
direction of incidence making an

angle of 30 with the symetry axis.
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