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ABSTRACT
We have obtained a general, numerical solution of an ideal biconical

transmitting antenna, with arbitrary arm length and conic angle. We
evaluate all necessary spherical functions, including Legendre functions
of integer and noninteger degrees, spherical Bessel functions of
noninteger degrees, and spherical Hankel functions of integer degrees.
Using Schelkunoff’s solution, field coefficients appear as an infinite set
of unknowns that satisfy a Tinear equation. We truncate the infinite set
at 16: for a 5° antenna the Legendre functions have maximum degree 33.3 in
the interior region and 31 in the exterior region. To minimize the error,
we discard the last two terms in all field, power, and impedance
calculations. Solutions are checked 1in several ways for consistency,
inciuding evaluating and comparing calculated fields across the antenna
aperture. Results obtained are input impedance, radiation pattern, all
fields including near and far ones, and antenna surface current and charge
density. Representative plots of all results are included.
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INTRODUCTION

Although finite element solutions are available for symmetric
radiating and scattering elements, and are both useful and
informative, still there are things to be gained from a modal
analysis. The presence of an electromagnetically exact solution
assures that the full set of needed modes are included. The relative
importance of the different higher order modes may be noted; they
provide physical meaning for the different radiative units and add to
the general knowledge of radiative processes. The result, for this
particular case, appears to be a standard against which {o measure the
accuracy of other, non-exact solutions that are applicable to a much
wider variety of radiation problems.

During the decades since Schelkunoff published the first full
radiation solution of biconical transmitting antennas (Schelkunoff,
1946) there have been significant further developments. (Schelkunoff,
1952), (Tai, 1948), (Smith, 1948)}. More recently other, perhaps more
readable, analyses were added, (Tai, 1984), (Wait, 1969). Grimes
(Grimes, 1982) extended the work to include the full modal scattering
solution of biconical receiving antennas with arbitrary loads.

Although the field equations are complete, they have the
practical difficulty of being 1in the form of infinite sums over
spherical special functions: functions of fractional or integer
degree, respectively, in the interior or exterior antenna region.
When the equations were first derived, both they and the functions
they contain were so complex that a general numerical evaluation was
simply impractical. Only the special cases of extreme cone angles
(Schelkunoff, 1946} or fortuitous numerical combinations (Tai, 1949)
were evatuated.

Progress hoth in digital computers and in techniques for
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numerical analysis have provided the capability of obtaining a
complete and reasonably accurate numeric solution for a biconical
antenna over a wide range of sizes. We have obtained such a solution
for transmitting antennas.

The method is detailed, then internal checks are applied and
discussed. Results o¢btained include all fields, including near and
far ones, from which we obtain the current and charge density on the
arms and caps, and the radiated power. Qur power plots versus
normalized arm length made using the input parameters and again using

the far fields are indistinguishable.

BOUNDARY CONDITIONS
The Schelkunoff solution, without

loss of generality, makes the z axis the - >~
// “\_REGION 1 r>a
antenna axis, thereby restricting the // \\
/ \
solution to zero order Legendre it REGION 2 \
I
functions and their derivatives. T h e | REGON3 }
~,
origin of coordinates lies between cone \\ '\{‘//
N /
tips, thereby 1limiting the general N PR
solution to odd degree Legendre CAP.

. . Figure 1. Model of Biconical Antenna used. Cone

functions. The geometry is sketched in arm length is "a", and conical half angle is * v".
Region 3 is a spherical driving point region,

centered at the origin. Region 1, the exterior

Figure 1 ’ with Re 9 fon 1 bein 9 the region, is all space al distance r>a. Region 2, the
. , . interior region, is with radius ber<az and angle <
axterior region, Region 2 being the Be(m-y).

interior region, and Region 3 the source
or input. The cone angle is W, arm radius is a, and source radius is
b. We take b to be vanishingly small.

With r representing the distance from the origin and 8 the polar

angle, space is divided into three regions:
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Region 1. r > a.
Region 2. a>r > b ; 7m-¢ > 8> U,
Region 3. b » r.
The boundary conditions, with o=zkr, are:
I Eg = exp(-i0)/o  as r= o
II Hy == exp(-ic)/6 as r = o

111 Eg(b,8) integrable over 8 as b = 0

Iv He(b,B) integrable over 8 as b = 0
v E (W) = E(m-u) = 0 b<r<a
VI E.(a) = E.(a") Yehem-y
VII Hpla™) = Hylat) PCES £V
VIII Eg(a~) = Eg(at) WCBCT=1
IX Eg(a) = 0 Qu=@¢w ; m-w¢BM

REGION 1 FIELDS

A complete description of the fields in Region 1 requires a sum

over an infinite set of TM modes. With eiwt time dependence,
Boundary Conditions I and II require spherical Hankel functions of the
second kind:

hp(o) = j (o) - iy (a9) (1)

where hn(o), jn(o), and yn(o) are, respectively, spherical

Hankel, Bessel and Neumann functions. Commonly occuring, associated

derivative functions, are denoted by
Hn(o) = Jn(o) - iYn(o) (2)

where capital letters indicate tha differential operation, such as
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d{oh,(9)]
4
H(9) = 5 ——gg—

Legendre functions are present and denoted by Pn(cosB). Ta

match our notation with others (Grimes, 1982) we 2also use the modal
dependent coefficient Dpy» whare

D. = 2'§2n+11 ni

N7 2%n(nt) ([(n-1)/2]1)
With the above definitions, the complete set of Region 1 fields
may be written

2 hy(0)
Er = & nint1) Dan 4] Pn(cosﬂ)
«Q dP,_{cosB)
~ n
Eg = 55 PnPnHn(o) db
0 dP . (cosb)
- o & -_n--""
MHy = -1 &5 Dnﬁnhn(o) db

where Bn denotes the external field coefficients to be obtained and

"no” that n is the set of odd, positive integers.

REGION 2 FIELDS

A complete description of the fields in Region 2 requires a
single TEM mode and an infinite set of TM ones.

The TEM voltage and current are, by definition,

Tt

vir) j reEg(r,cosd) dé
b

I{r) anr H¢(r,cosw)

Boundary Conditions III and IV assure that (8) and (9) remain finite

as radius r approaches source radius b, even though the fields Ey

and Hg increase without 1imit for vanishingly smail b.
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To describe the TEM mode, it is convenient to introduce the

biconical wave admittance, G, where
%9 1n(cot%) = 1
and M is the impedance of space. The admittance Y(r) is

Y(r) = ot

In these terms, the input admittance YL is

Yy, = 1(0)
L = v(o)

It follows that

V(r) = !%?J{Gcos[k(a—r)] + iY(a)sin[k(a-r)1}
I(r) = v(a){Y(a)cos[k(a-r)] + iGsin[k(a-r)]}

where Y(a), the terminal admittance, is evaluated at r=a. The input

and terminal admittances are related by:

v, = g Y(a) + iGtan(ka)
LY G+ iY(a)tan(ka)

In these terms, the TEM admittance at each field point is given by

YL - {Gtan(kr)
Y(r) = 6 g =iy tan(kr)

Turning to the TM modes, descriptive Legendre functions are
necessarily odd and the functions needed to match Boundary Condition V
are of fractional degree. Since fractional degree Legendre functions

are of mixed parity, it is convenient to form functions of definite
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parity, M, (cosB) and L,(cosB), where:

HV(COSB) [Pp(cosﬁ) - Pv(-cose)}/z

"

L,(cosB) = [P, (cosB) + P, (~cosB)}/2

The boundary conditions at the source, r=b, Boundary Conditions

III and IV, determine that spherical Neumann functions of positive
degree are not present. Incorporating this result, the complete set

of fields in Region 2 are described by the following equations:

. dMV(cosB)
Tpd, (0 —gg—

X J. (o)
Er = & (1Y, g— M (cosb)
) nGI(r) de(cosB)
Eg = 27ry(r)sinB *

Q
= T]',J . (g} T

o)

) 4 € o) N,

Mo = Znrsing ~ 1§
wheare Tv denotes the internal field coefficients to be obtained
and v the infinite set of real numbers for which Mv(cosw):o, in

accordance with Boundary Condition V.

SPECIAL FUNCTIONS
Legendre Functions. Legendre functions of the first kind

may be expressed in a number of ways. An expansion valid for 0<¢Bem

is (Schelkunoff, 1965)

$ [(riirs) (=1)°  1-cosbys
gzp T(+1-8) (2 2

P,{cosb) =

where v may have either integer or noninteger values. For integer
degree functions, v=n, the series terminates at s=n. Equation (22)
is an expansion in powers of sin{(8/2).

Two alternative forms found to be useful are:
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1 L (2s)i(2n-28)!

p.(cosB) = cos{n-2s)H
n 22n 5=0 3!2(n—s)!2
in{21  (-1)5(2n-2s)!
) = > S 3] n-2s
P (cost) s=p 2"s!(n-s)!(n-2s)! (cost)

Equation (23) is an expansion in cos(n-2s)8, and (24) an expansion in
powers of cosf; (n/2| indicates the largest integer in n/2.
For Eq. (22), in the limit of large values of s the ratio of

successive coefficients, say for s=k+1{ and s=k, is

R = (v+k+1) (k-v) 1-cosH
(k+1)2
a ratio that alternates in sign for v>k. For large values of v, the
ratio is large and the series converges only because the angular term
decreases rapidly with s for most angles. As @ approaches 180°,
however, the angular portion approaches unity and the series converges
very slowly. Using double precision we terminated the series, whose

lead term is equal to one, when successive terms changed results no

more than 1071, For (22) we found that 531 terms were needed
at 08=150° and about 500,000,000 at 179°.

Large-angle c¢onvergence problems may be avoided by use of a
different series. For large angles, we used the expansion (Robin,
1966)

P, (cos8) = %% .W_Lﬁi§)i,_§ [-cos2(8/2)]% X
=0 {v-s)!i(st)

w

=

{cosvr + sinvm [1n cot(B/2) + ¥(v)- ¥(s)]}

where

V() = g%(1n vy

This alternative formula for P,(cosB) is an infinite sum with

individual terms that decrease as 0032(8/2), a value much less than

one as B approaches 1800. This guarentees quick convergence for
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Targe angles.
Boundary Condition V calls for an evaluation of the roots of the

function M,(cosB). Figure 2 shows plots of M, (cosB) versus v

for two values of 0, and shows that the function as written contains

alternating trivial and desired roots (Badii, 1988). The trivial
roots are roots for which the function vanishes for all values of
angle; when v is an even integer the function is equal to zero. We

used this property to bracket noninteger roots. The bracket’s end

points are the integer roots, and inside any bracket there can be at

most a single root.

g=5° 1o f=20°
1.0 "
- Y
fe o] [\/\ [2;]
W [=]
8 Mg 20, i
— a
E:‘O‘O y—y lU v =00 7 UAWVAU[\" ’
0 8 12 18 24 0 6 12 18 24

v Vv
Figure 2. Plots of the antisymmetric L egendre function Mv(oosw) as a function of v for w=5° and
w=20°,iustrating root positions.

A difficulty was finding a non-integer root very close to an

integer one. To remedy the problem, we confined our search to the

interval (2k+€, 2k+2-£), where k is an integer and € 1is a "small”
number within the tolerance of our computation. This ensures that the
determined root is at least € away from a trivial one. The scheme
used, outlined elsewhere (Badii, 1988}, 1is a modified regula
falsi method adapted to our situation. Since the computaticon

was done in quadruple precision, the value of € used was 10'30.

when no root was found in two consecutive intervals the routine
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set a flag to indicate the existence of a pair of roots. The integer
number in the middie of the interval of length four is assumed to be
the root. In addition to bracketing the root, and in order to avoid
round-off errors, the search terminates if a new iteration does not
change the value of v. The value of v at that point 1is taken to be
the root. Table 1 shows the first 16 roots of Mv(cosso).

¥ % *
Table 1. Values of 1 at the first 16 roots of M, (cosB). 8=59,

The first t1 may be seen from the graphical dispiay of

Figure 2.
1. 1.444 484 007 709 9. 18.513 754 995 276
2. 3.609 447 464 872 10. 20.635 248 501 739
3. 5.752 872 182 354 1. 22.756 152 409 445
4. 7.887 328 149 568 12. 24.876 591 378 223
5. 10.016 936 971 261 13. 26.996 657 288 190
6. 12.142 571 291 069 14, 29.116 419 379 140
7. 14,268 228 363 554 15, 31.235 930 827 959
8. 16.391 498 226 300 16. 33.355 233 151 029

% * k4

Radial Functions. As noted earlier, Boundary Conditions I

and II require use of spherical Hankel functions of the second kind in
Region 1 and these require the evaluation of spherical Bessel and

Neumann functions. The series used for evaluation are

oy = 2 (=1)%2Y T(vasri)ottes
3,000 = oo SIT{2142542)

where v is either integer or noninteger, and (Grimes, 1986)

rES (2n-2g) 1g2s~N~1 ) %% (-1)Sg1g2Stn—1

) =~ T Msi(n-s)! s=0 2M(2s)!(n+s)!
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The radial functions Jv(o) and Hn(o) were computed from

jv(a) and hn(u) by using the equalities

J,(0)

Hy(0)

Jy-1(0) - 5 3,(9) (28)

v
g
ho-1(0) = § h,(0) (29)

1t

PARAMETER DETERMINATION
Linear Equations. The use of Boundary Conditions VI

through IX, the integral expressions of Table 2, and the definitions
of Table 3 gives the following set of linear equations:

[84]
n(N+1)D B InaHn(ka) = RN+ S TyIn,d, (ka) - TEHAL b (cosw) (30)
v1)T, 1,5, (ka) = §% n(n+1)D8, 10N, (ka) (31)
Y(a) = %%g% é% DB hy, (ka)P,(cosw) (32)

Fquations (30) and (31) contain both 8n and Y. They may

be combined to give equations involving one coefficient set only:

(n+1)D, 1.8 h (K )H”(ka) ( 1)2»{i (s+1)D_6_h_(ka) S Tl Jutke)
nin+ a)yi—rt-v — n(n+1) > s(s+ a)y . :
ntnn”n"'n h,, (ka) o s s''s m u(u+1)quJu(ka)
= - Bg%égl P, (cosy) (33)
o J,(ka) @ I.,1 h.(ka)
. . 1 sr sl 's
viv+DT, I 3 (ka) = Z T, i (ka)T oy = s(s+1)
vivpdy " ndy Ju(ka) - Igg Hg(ka)
@ 1..h.(ka)
- - dVla) s _svs (cosy) (34)
am | = T A (ka) 'S

Equations (33) and (34) are exact if the running indicies s and
4 have no upper bound. For programming purposes, it is necessary to
1imit both. The programs written for computing ﬁn and T,

are flexible and can be solved for up to 16 values of nor v,
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Table 2. A Table of Integrals of Legendre functions. &(a,b) is the
Kronecker delta function of a and b. In all cases,
numerical evaluations are made using the right hand side of

the equatity.

Ty
1. I Pn(cosB)Mv(cosﬂ) sinfdl = Inv
Wy

) 2Pn(cosw)
T r(v+1) - n(ntl)

5(n, odd integer)

2. j M,(cosB)M, (cos8) sinBd8 = I,
¥

_— dM,, (cosu)
" 2s5iny v
== et LperlcosV) g 8(v,N)

3. 7 Pn(cosB)Pm(cosﬁ) sinBdd = 1

0 nn

. _2
T o2n+1

5(n,m)

TV dp_(cos®) dM,(cos8)

4. i 5 3 sindds

n(n+1)1nv

“}w dM,,(cosB) dMy (cosB)
U a8 a0 s

in8do v(r+ 1)1,

? dP (cos8) dP(cosd)
0

dB a8 sinBdo n(n+1)Inn
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Table 3. Integral expressions used 1in aperture to match Boundary
Conditions VI through IX. Each of the following integrals

are evaluated and equated at a- and at.

@ dr, (cosh)
1. é d6 Eg(cose)—‘ﬂﬁgg———
i dM,, (cosh)

2. I{J do H(D(COSB)T

m-y
3. | dB Hg(cosh)
v

raspectively.

Preliminary trials showed that the sequence Bn decreased by
many orders of magnitude as n changed from ¢ to 31, Since wide range
in magnitude of solutions 1is generally a numerically destabilizing
factor, we scaled our unknowns to avoid it.

Equation (33), with the unknown variable Xn defined by

Xp = ﬁnhn(ka)

may be written in the form

21L-1 .
MpXn * ;% NhgXs = By

The coefficients of (36) follow by comparison with (33},
There are L. unknowns to be determined using (36). Each of the

unknowns has coefficient an, except for n=s whose coefficient
is M, + None
Comparison of (33) and (36) shows that each B is proportional

to V(a)/a. A1l field calculations are normalized to
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v(a) = a

Although we desire field evaluation for V(0)=za, it was convenient
first to do calculations based upon (37} and then to use (13) to
transition to the desired result, Putting V(0)=a in (13) shows that

) aG
V(@) = Tacos(ka)+iv(a)sin(ka)]

Initial results, chtained using (37), were multiplied by (38) to shift
to the desired normalization.

We take as an example an antenna with parameters Kka=2 and

v=59. In the exterior region, Table 4 shows comparative values of

Xn and Bn calculated using 16 terms; the maximum modal number is

n=31. Comparison dramatically illustrates the need to use the
normalized variable L and not ﬂn, since the magnitude range of
X is about 10 and that of ﬁn about 1035. The first two

columns of Table 5 shows percentage difference in X, as calculated

using 10 and 16 terms, n=19 and 31 respectively. Generally speaking,
the differences are small until the last two terms when they become
quite large; we attribute the increase to round off error 1in the ten
term truncation. For our work, we regard the last two terms obtained
in this way as being so inaccurate that we do not incorporate their
values into subsequent calculations.

In the 1interior region we assign the symbol u, as the unknown

variable:

u, = ijv(ka)
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Table 4.

01
03
05
o7

09
11
13
15

17
19
21
23

25
27
31
33

R W o

X

.006
202
.193
.138

.574
.214
.588
. 6587

129
.882
.843
. 963

.210
.560
.937
.885

X, and B, values, Exterior Region, L=16, w=5°%, ka=2.

Results obtained by solving Equation (33)

real

16
25
64
17

55
13
41
23

53
92
37
3

27
36
02
92

D-0t
D-02
D-02
D-02

D-02
D-02
D-03
D-03

0-03
D-03
D-03

D-03

D-03
D-03
D-04

D-04

Xn

-1.606
-1.947
=1.016
-7.334

~-5.646
—-4,486
~3.6822
~-2.944

-2.392
-1.931
-1.539
=-1,202

~-9,099
-6.539
~-4.279
-2.239

59
65
51
99

58
57
82
73

67
66
B0
61

02
56
89
91

reactive

D-01
D-02
D-02
D-03

D-03
D-03
D-03
D-03

D-03
D-03
D-03
D-03

D-04
D-04
D-04
D-04
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B

.006
.139
.465
. 188

.490
.214
.928
. 909

.321
.339
.690
.605

.003
.070
. 960
.223

real

65
27
19
71

30
57
7
29

03
71
39
64

12
19
27
96

D~02
D-02
D-04
D~05

D-07
D-09
D-12
D-14

D-17
D-19
D-22
D-25

D-27
D-30
D-34
D-37

Bn

. 367
.224
117
. 456

. 155
.286
.833
.565

. 387
.914
.170
874

L4386
.563
.080
. 139

reactive

29
99
a8
12

71
79
30
06

86
41
73
09

71
52
39
50

D-01
D-02
D03
D-05

D-07
D-09
D-11
D-14

D-16
D-19
D-21
D-24

D-27
D-30
D-33
D-36



Table 5. Percentage difference in caiculated values of Xp and u,

between use of L=16 and L=10, w=5%, ka=2.

n x, real X, react v u, real u, react

01 0.010 €.101 t.444 -0.808 0.026

03 0.158 0.237 3.609 -0.435 ~0.142

05 0.141 0.162 5.7563 -0.935 -0.559

07 0.046 0.005 7.887 -1.66 -1.17

09 -0.133 -0.223 10.017 -~2.72 -2.10

11 -0.412 -0.572 12.143 -4.36 -3.58

13 -1.14 -1.05 14.268 -7.10 -6.07

i5 =~1.456 -1.74 16.391 -12.3 -10.9

17 -2.46 -2.83 18.514 -26.5 -24.0

19 -4.40 -4.87 20.635 -194 -181

* * ¥

and use a linear equation in the form of (36) to solve for the u,.

Coefficients may bDe seen by comparison with (34}, Table 6 shows
comparative values of u,, and TV calculated using 16 terms; the
maximum modal number is about v=33.355. The magnitude range in u,

035

is about 103 and that for Tv about 1 , once again

showing the need to wuse a normalized vartable. The Tlast two columns

of Table 5 show percentage difference in u, as calculated using 10

and 16 terms; about v=20.635 and 33.355 respectively. In nearly all
cases, Region 2 differences are larger than comparative ones of

Region 1. Accuracy conclusions parallel those for Region 1.
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Table 6.

01,
03.
05.
07.

10.
12.
14.
16.

18,
20,
22.
24.

26.
29,

AN

33.

444
609
753
887

017
143
268
3N

514
635
156
877

997
116

.236

355

u

k

u

+4.

+3.

+2.
+2.

1

a=2.

v

338
681
233
599

.083

.B96

.574

.950

.244

.B03

740
.520

.B14

.482
.525
.311

real

24
70
79
71

48
11
76
95

46
10
37
14

B2
56
09

and T,

D-02
D-02
D-02
D-02

D-01
D-03
D-03
D-03

D-03
D-04
D-04
D-04

D-04
D-04
D-04
D-04

u

‘l

values, Interior

reactive

.759

371

.176

275

+5.

+4,
. 605

+1

+8,

+5,
+3.

+2.

+2.

+2.
.854
.854

+1

+1

2.

104
077

627

432

800

880

337

019

239

63
317
34
71

27
74
94
55

31
04
61
08

34
o7
07
27

D-01
b-02
b-02
D-02

D-02
D-03
D-03
0-04

D-04
D-04
D-04
D-04

D-04
D-04
D-04
0-04
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+1

+1

+3.
+3.

T

. 328
.436

365
042

.653
.672
.982
Q72

.870
.044
.806
. 407

. 191
. 745
.530
.090

real

36
44
o7
13

06
94
97
22

69
03
46
56

58
88
85
87

Region, [=16,

D-01
D-00
D+01
D+03

D+06
D+07
D+09
D+11

D+ 14
D+16
D+19
D+22

D+25
D+28
D+31
D+35

Results obtained by sglving Equation (34)

=59,

Tv reactive

+7.

+1

+1

+2.

+8.
+3.

+

+1

+1.

+1

+2.
+4,

. 387
.252
Jd72
.493

787

.225
.340

685

165
472

. 968
.442

338

.5565

265
599

97
04
09
10

56
20
09
28

96
38
65
63

75
64
93
33

D01
D-G1
D+01
D+03

D+05
D+07
D+09
D+11

D+13
D+16
D+19
D+22

D+25
D+28
D+31
D+34



Separate calculations of Xy and u, permit an internal check on

consistency, for the u permit calculation of x

v using (30).

n
Simlarly the Xn permit calculation of u, using (31). Percentage
differences for both using this indirect method are listed 1in Table 7.
Percentage difference with the u, 1s about 0.069% throughout the
range, for both real and reactive parts. We consider the agreement to
be adequate for our purposes.

Regression Analysis. 5till another testing of the values was

performed using regression analysis. By this method, instead of direct

solution of a linear system the program attempts to minimize a cost

function. First we define the individual error ”en" using Eqg. (33)
with v(a)=a:
Hn(ka) {3
e, = n(n+1)DnInanhn(ka)ﬁ;TEET* - I’l(n+1)§.(5 s(s+1)D B hg(ka) X
o 1.1 J,(ka}
s ksl By T8 b (cosw) (40)
N u(U+1)Iull Ju(ka) n n

we define the cost function J to be minimized as:

2L~1 5
J(X1,x2,...X2L_1) = n?‘] en (41)

and utilize a routine that minimizes J with respect to the x, using

79



Table 7.
n
01 -0
03 +0
05 +0
Q7 -0
09 -0
11 -0
13 -0
15 -0
17 -0
19 -0
21 -0
23 -0
25 -0
27 -0
29 -0
3 -0

Percentage difference

soltution

L=16, ¥=59, ka=2.

(DS) of Eqg.

in

X

n

(33) or

or u

{34), and

v

between direct

indirect solution

(IS) obtained by putting solution of Eq. (34) or (33) in Eq.

(30) or (31).

real

.053
.045
.008
.006

.016
.021
.027
.033

.038
.042
. 047
.053

. 060
.069
.084
.123

X

react

015
.028
. 069
L077

.069
.069
.069
.089

.069
.069
.069
.069

.069
.089
.069
.070

-~ o W

10,
12.
14,
16.

18.
20.
22.
24.

26.
29.

31

33.

v

. 444
. 609
.763
.887

017
143
268
391

514
635
156
877

997
116

.236

3556

r

<o o o o o o o O o o o O

o o O o
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eal

.069
.069
.069
.069

.069
.069
.069
.069

.069
.070
. 069
.069

.069
.069
.069
.069

u

c o o o o O o O o O O ©O

oo o o

react

.069
.069
. 069
.069

.069
. 069
.069
. 069

.069
.069
.069
.069

.069
.069
.070
. 086

Percentages are (100)[(DS)-(IS)]/(DS)



gradient information, aJ/axn. The zero vector is used as an

initial estimate of x Results are the same as shown in Table 4

ne
for all significant digits. Although this 1is expected since
regression analysis of an L equation, L unknown Tlinear system as
outlined should result in the solution found when the L by L system is

solved directly, the fact that the sequence X, converges to the

solution sequence shows that the system of linear equations is well

conditioned.,

BICON2 Program. The FORTRAN program, BICON2, written to

generate the tables shown in this section is detailed elsewhere
(Badii, 1988). The program computes the unknown parameters and the
physical characteristics of the antenna. BICON2 must be supplied with
the value of ¢ and with a field of Y-dependent constants. This

field is produced using program GENER. Roots of Mv(cosw),

integrals I, and I,., and other constants may be

computed once and then stored for repeated use by BICON2.

BICON2 is dedicated to solving 1linear equations (33) and (34).
One of the subroutines in the IMSL package is used to solve sytems of
equations with complex coefficients; this subroutine package is
regarded as the best high precision version available at the time
(Badii, 1988). It solves the linear system and it performs helpful
solution refinements.

As previously discussed, the accuracy of unknowns calculated
using up to the highest 1indices is poor, and therefore we did not use
them in the calculations that follow. The computed values of unknowns
with lower indices, as jllustrated earlier, depend upon the number of
terms used in the summations. The solution stabilizes once this
number exceeds ten and in all cases we used from twelve to sixteen

terms.
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In the exterior region, the L=16 term corresponds to modal number
31; in the interior region it depends upon ¥ and for w=59 it is
about 33.355, see Table 1. The difficulty with holding numerical
accuracy may be seen from the exterior functions. Legendre polynomial

P31(cosB) has 31 roots over the angular range of interest. It

is an odd, alternating series in powers of cos; the coefficient of

the 31st and 23rd powers of cosf are, respectively, about 2 and 150

x 109, Resulting extreme changes with angle make holding
acceptable accuracy with increasing modal number difficult and

ultimately not possible; we truncated our work at L=16.

RESULTS
Admittance. Knowledge of the set of Bn permits

calculation of terminal admittance Y(a) using Equation (32). In turn,
Y(a) and (15) determine the input admittance and/or impedance.
Figures 3, 4 and 5 show the resistive and reactive portions of the
input impedance as a function of arm length. Figure 3 is for =59,
It illustrates the number of modes needed for accurate impedance
values. The long-dash line uses the first mode only. The medium-dash
1ine includes the first three modes, and the short-dash 1ine includes
the first six modes. Plots of the first ten modes and the first
thirteen modes, shown by the solid line, are not distinguishabie.
Figures 4 and 5 show the resistive and reactive portions of the input
impedance as a function of arm length using thirteen modes,
respectively for conic angles v=1° and w=20°,

Figure 6 is of special importance for historical reasons (Tai,
1949). It is a piot of inverse radiation impedance, R + jX versus arm

length.
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Figure 3. With conic angle w=5%, plcts of input ] / \ /
resislance and reactance versus arm length. The — J / | /
long-dash curve uses the first mada only, the [e] 4 / :
medivm-dash curve uses the lirst three modes, — g / \ /
the short-dash curve uses tha first six modes, and 2 D_}‘ i
the solid curve uses the first ten mades. The latter c / '
curve is indistinguishable from a similar curve % q ! '
using Ihe first thiteen modes. 9 J / ‘.\ ; /
g L \
L oo f’ \ / /
WY
i
. f
@ K ! | |
W= 20° - 1000 — T T T T T
0 2 4 [ B
300 ka

Figura 4 Input impedance with conic angle w= 17 as a funetion of normalized
arm length ka.
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Figure 6  With conic angle w= 35.23°, plois of inverse radiation impedanca
versus arm length. Tha solid curve uses the lirst mode only. The vashed
curve uses seven lerms and is indistinguishable from a similar curve using
thirteen terms. The dashed curve appears fo be in good agreement with
Tai's two term curve.

Figura 5. input impedance with conic angle y=26°
as a function of normalized arm length ka.
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Figures 7 through 11 show the complex impedance versus arm length for
five different values of ¥. 1In each figure asterisks mark ka values
from 0.5 through 8.0 in 0.5 steps. They 1illustrate the increasing
bandwidth with increasing cone angle as well as, 1in our opinion,

increasing the plausibility of numerical results.

The =12 results are in general agreement with others
{Schelkunoff, 1952), (Papas and King, 1943), {Brown and Woodward,
1952), (Bevensee, 1973), (Tai, 1984). Schelkunoff (Schelkunoff, 1952)
gives tabular data for the thin antenna case against which we can
directly compare; his results are based upon the interior modal
numbers being integers. Since integer values are approached only very
slowly as ¥ decreases toward zero (Grimes, 1982), we expect and

obtain similar shapes with significant differences in detail hetween

very thin and ¥=12 antennas. Figure 12 shows the inverse radiation

impedance (V(a)/Gz) versus antenna arm length for the two cases.

E * *

300
g )
] » 200 4
£ 2
: :
E 8 100 +
o [+ 4
0

Figure 12. Plots of the inverse radialion impedance, Y(a}/Gz , versus antenna arm fength.
The solid fines represent values computed by Schelkunoff [2, Table V, 180°] for the thin
anlenna case: the dashed curves show our computations far a 1° cone.

¥ * ¥

Surface Current and Charge Density. Knowledge of

Hy(r,cosw) in Region 2 and Hgy(a,cosB) in Region 1 permits

calculation of the surface current density. The currents are
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[.(r,¥) = 2Mrsin¥ Hy(r,cos¥)T on the arms and I4(a,8) = -2Tasind

Hm(a,cosﬂlﬁ on the caps. Since by Boundary Condition VII the

magnetic field is continuous through the interface, it follows that

I{a",w) + Igia.w—) =0 (42)
An example of current magnitude is 0018
. ) o 0.014-
shown in Figure 13 for the case Wwsh ]
0.0121
and ka=l. Sigma values less than ka 00'&
represent points on the antenna arm in 0.0081
= i
Region 2, and sigma values greater than 0.006-
ka represent points on the caps in 0004
Region 1. The glitch shown at kr=ka is 0.002-
0.000%— L — T L
due to differences in round off error of 00 02 04 06 08 1.0
. . . kr
the Region 1 and Region 2 solutions. ~
Figure 13. Current magnitude on arm and cap,
For this antenna, the current w=5% ka=1.

decreases monotonically with increasing radius on the antenna arm and
across the cap, becoming equal to zero on the axis.

Knowledge of normal electric field intensities permits

calculation of the surface charge 2 BE- 10 .
(+]
density. Charge per unit length are 2.5E-10 z;;i
2.2E- 101
Q(r,v) = 2mErsinw Eg{r,cos¥) on |.9E- 10
. | BE-101
the arms and, correspondingly, Q(a,f) = o ;
% 1.3E-10-
2T€asinh Er(a,cosﬁ) on the caps. 1.0E-10
] ‘ ) 7.0E-1 14
Both quantities are plotted in Figure 4.0E-1 1]
- ) IR P —
14 for the special case ¥=H and 00 0% o4 0% o5 1o
ka=l., The figure shows that, for this kr
i . Figure 14.  Charge magnitud it
antenna, charge density increases anmamﬁmw%%k&ipﬂumrwwm
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monotonically with increasing path distance from the origin.

Aperture Fields. Boundary conditions ¥V through IX were

applied to obtain the field soiutions. A check of the accuracy of the

solutions may be made by comparing them across the aperture. Although

matching throughout the region is reasonably good, the discontinuity

We calculated mean

at (a,¥) makes a match there difficult. square

differences both of the angular and the radial electric fields across
the interface, as a function of the number of expansion terms used in

both Region 1 and Region 2. Best fits were obtained for the

combination of 14 and 11 terms in Regions t and 2, respectively n=27
v=22.756; terms and the

and decreasing accuracy of higher order

additional accuracy obtained from them appear to compensate at these
modal values. Figures 15 and 16 show such comparisons for v=5° and

a=1 using the normalization V(a)=a. Region 2 fields are put equal to

zero for B¢y, In Region 1 the angular electric field EB vanishes

on the cap but the radial field E, does not.

40 60 80
THETA

Figure 15, Azimuth eloctric fiald in aperture,
as calculated. Solid line, Region 1, uses
14 term expansion. Dashed line, Region
2, uses 11 term expansion.
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Average Power. Using the normalization V(a)=a, the average

radiated power Pav may be calcuiated from the input parameters

as
1 a2
Pay = 7 Re{V(a)I(a)} = 5 Re{Y(a)} (43)
and, using the radiative field in Region 1, from the equation
_ 8m D (2n+1) 12
Pav - nkz A h{n+1) 'Dnﬁn' (44)
Plots obtained using the two equations were indistinguishabie. Plots
of power versus arm length are shown in Figure 17 as a function of ka,
for v equal to 5°, 10°, 20°, and 30°: normallization is
V(0)}=1. There are three sharp resonances at w=5° and one at
v=30°,
0.018
0014 y=5° | ] y=10° | ] y=20° |1 y=30°
0.0121 . 9 |
— . -4 -4 -
@ 0.0101 1 1 4
; E - E P
O 0.008- - - ]
m . - - =
0.006 ] . . 1
0.004 ; ] ]
0.0021 . } - 1
000 T T T T T 1 ¥ T ¥ T Li T T 1 T 1 T 3 ¥ T T F 1 T 1 T T T T T
0t 23 4 58678 D123 4567801234 5678 01234508678
ka ka ka ka
Figure 17.  Time average power flow versus normalized arm length ka for constant V{a). Curves obtained by using
the lar-field expressions or by using the input parameters are indistinguishable. Conic angles
arey=52:10%:20°30°.
X * *
Radiation Patterns. Region t fields may be used to

calculate the far field radiation pattern. For our calculations we

put
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h+1 -0
h(o) = —F— (45)

then took the product

P(A) = J Rel{EgH,"} (46)

Results are shown in Figure 18 for an antenna with w=5%, and ka
taken at each of the first three resonances: ka=1.11, 4.06, and 7.04.
In contrast with near field calculations, the series converges rapidly
and only the first few values of n are needed. The far field modal
field Ep is proportional to oﬁn and Bn decreases rapdily

with increasing n, see Table 4, Patterns are not distinguishable

between three or more modes.

1.00 1.00 1.00

0.75 075 0.75

0.50 050 0.50

0.25 0.25 0.25

g.g: ka=1.10 0.00 ka=1.59 0.00 ka=2.59
} 0.25 0.25

0.50 y=3° 050 W=5° 0.50 y=5°

075 0.7% 075

1.00 100 1.00

Figure 18. Far fieid radiation palterns for the first three resonant lengths, w=59. (A}, ka=1.10, maximum gain 1.58.
(Bj, ka=2.59, maximum gain 2.17, (C}, ka=4.06, gain 2.15 with side lobe maxima at 40° and 140°, gain 1.20.

CONCLUSIONS

A numerical analysis of biconical transmitting antennas is
described that, although subject to round-off and truncation errors,
is complete from an electromagnetic pceint of view. Techniques and
methods are discussed, detailed, and evaluated. We use the
Schelkunoff solution and evaluate all necessary spherical functions,

necessarily using a truncated set of field coefficients. Although in
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principle all physically possible values of conic angle "¥" and arm

length “a” may be included, machine accuracies in fact 1imit useable
range. In general, the shorter the arm length the less the number of
terms needed for an accurate solution, and the greater the accuracy
needed on the Jlargest terms. The shortest length analyzed was ka =
0.4,

The full solution finds the input impedance and all fields,
including both near and far ones. From the fields we obtain antenna
syrface current and charge density, and the radiation field pattern.

The Schelkunoff method applies a conductive-antenna boundary
condition to Maxwell’s equations, and yields field expressions as sums
over an infinite number of linear, 2z directed, electric multipolar
moments: each moment with its own magnitude and phase. The interior
region contains a TEM field component and the exterior region does
not. Field continuity across the regional interface relates the two
sets.

The relative values of field coefficients are determined by
values of spherical radial functions and integrals of Legendre
functions. A root-finding program was used to obtain the degrees of
interior region spherical functions. Methods for numerical
computation of Legendre functions with convergence speed-up schemes
were found, as were methods for finding integrals over products of
Legendre functions. Numerical evaluation of spherical Bessel
functions both of integer and noninteger degree were made and are
described, as were evaluations of integer degree spherical Hankel
fucntions.

Within each coefficient set, the ratio of coefficient magnitudes
amongst coefficients important to the solution 1is very large. With

the antenna parameters used the ratio was typically about 1035.
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Therefore scaling was needed to stay within a tractable range and to
permit stable numerical evaluation. Using this approach, first the
parameter sets were obtained by solving the linear eguations, then the
sensitivity of the coefficients to truncated set size examined. The
solution was then verified using linear regression, and results
compared. A solution check was made by comparing fields in the two
regions at the antenna aperture. A1l computations were evaluated for
several different arm lengths and cone angles,

Input impedance is graphed for several cohe angles and arm
lengths. Surface currents and charges on the arms and caps are
discussed and sketched. Radiated power is shown for several antennas
using the voltage and current at the antenna terminals and again using
the far field terms; results are indistinguishable. Several radiation
patterns are included.

The work emphasizes that the number of terms necessary 1in the
expansion to accurately describe a particular quantity depends upon
the quantity. For example, even with keeping 16 terms, that 1is
external Legendre functions through order 31, we cannot accurately
obtain the fields near the arm-junction singularity. On the cother
hand, only the first few terms are needed to accurately describe far
field phenomena.

We conclude that this method provides the correct parameter sets
and that it may be used with confidence to compute physical properties

of transmitting biconical antennas.
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