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ABRSTRACT

An alternative method is presented of considering, and of deriving
expressions for the fields generated by, an annular ring of magnetic current
{magnetic frill source). The magnetic frill appears to offer a means of
numerical model excitation that is more realistic than the pulse source and,
morecver, provides analytical expressions for fields in some cases. The
fields for the magnetic frill source were first derived by Tsai from the
electric vector potential produced by the magnetic current. The method
described shows the source to resemble a torcidal transformer and the field
expressions are derived from the magnetic vector potential produced by
electric currents. The expressions derived are, in essence, the same as those
of Tsai, but it is considered that the method yields greater physical insight
into the source and so facilitates modification to suit particular
applications. Tsai's expression which is of most interest for numerical
calculations is derived by inspection using the method described. For
calculations using point matching however, the benefits of using the frill
source seem more apparent than real.

INTRODUCTION

In the literature the fields due to the magnetic current frill scurce
are derived by calculating the electric vector potential via the magnetic
current. For coaxial apertures at which a TEM wave is presented this means of
calculation is mathematically convenient. This is a little unfortunate as the
apparent convenience is perhaps gained at the expense of physical insight and
understanding because of the Tunreal' nature of magnetic charges and currents.
Possibly this accounts in part for the comparative rarity of use for the
magnetic frill source, although, as indicated below, there appears to be a
difficulty in its application in those moment method calculations which use
point matching. However, as an assistance in understanding for the purpcse of
modification to specific requirements, the frill source can be shown to
resemble a transformer and the fields derived from electric conduction
currents.

The magnetic current frill source has been considered by several authors
(Tsail; Butler and Tsai?; Sakitani and Egashira®). This source appears to
offer a more realistic means of driving a mathematical model of a balanced
antenna than the usual pulse feed, or its limiting form, the delta gap
generator. Modelling a balanced antenna is, by utilizing the method of
images, equivalent to solving the problem of half the balanced antenna driven
above a flat perfectly conducting ground plane cof infinite extent: the
conducting plane and the gecometrical plane of current symmetry of the balanced
antenna being ceincident. Antennas mounted upon ground planes are very often
driven via coaxial apertures in the ground plane where the coaxial cable
feeding the aperture supports TEM propagation. Hence, the probliem of a
coaxially driven ground plane mounted antenna can be sclved by considering two
such systems (ie one antenna and ground plane plus the image of this
combination), discarding the ground planes (sc¢ solving the equivalent balanced
antenna problem) but retaining the features of coaxial driving. This is
indicated diagrammatically:
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Phis is the conventional view of the f£rill but in formulation this is still
essentially an aperture problem.

In aperture problems, sections of the boundary are frequently located
(quite arbitrarily and for reasons of convenience) in the plane of the
aperture. This requires the use of fields as sources rather than the real
sources of electric conduction current and electric charge which are, of
course, still the actual driving scurces, but because of the arbitrary
position of the boundary are exterior to the problem being solved. The
particular field configuration presented at the aperture can be made to be any
mode which is capable of being propagated along the cable or waveguide
connected to the generator side of the aperture. The TEM mode is the simplest
to treat for the coaxial cabkle. The aperture field (ie the field at the
boundary) is thus assumed known: inevitable distortions caused by the
discontinuity at the aperture are neglected. The arbitrary positioning of the
problem boundary cutting through a particular field configuration necessitates
the contrivance of fictitious charge distributions at the boundary. Such
distributions would be required if there were no actual driving sources
exterior to the problem. For the electric field this represents no conceptual
difficulty, but for the magnetic field it requires the invention of magnetic
charges (the time variation of the density of which produces magnetic
current). This fictitious magnetic current can be considered as preducing an
electric vector potential exactly analogously to electric conduction current
producing the more familiar magnetic vector potential. In this way the
electric and magnetic fields existing within the problem boundary can be
determined by considering the driving sources at the boundary as magnetic
charges and magnetic currents {(if this is convenient) rather than the more
familiar electric charges and electric currents. In the case of the
(electrically small) frill the convenience of doing so seems clear as there is
a closed ring of magnetic current (alternating magnetic flux) at the coaxial
aperture, and therefore no magnetic charge. If, on the other hand, the
aperture fields were described by electric sources, these would, for this
configuration, be a radial electric conduction current sheet from the inner
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conductor to the outer, starting and terminating in electric line charge
distributions of opposite sign at the inner and outer conductors forming the
aperture.

THE MAGNETIC FRILL SOURCE AS A TRANSFORMER

The apparent advantage of considering the magnetic current as the source
vanishes when the generator is moved from the far end of the coaxial cable to
the aperture, the ground plane mounted antenna and the image of this
combination brought together, and the ground plane discarded.
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This arrangement now looks like a balanced antenna driven by a l-turn toroidal
transformer. There is still an annular ring of alternating magnetic flux (ie

magnetic current), but the origin of this is easier to appreciate. It arises

from a sheet of electric current flowing as the transformer primary. However,
recalling the elementary theory of transformers, it is necessary to note that

the total current flowing in this sheet comprises two parts:

(1) That part which produces a magneto-motive force (mmf) which every
where neutralizes exactly the mmf produced by the secondary
current.

{(ii) The magnetizing current: that current which alone produces the
mutual flux linking the primary and secondary circuits. It thereby
produces the back emf in the primary and the driving emf in the
secondary .

Thus to calculate the driving fields, it is necessary to postulate a
particular sheet (magnetizing) current in the primary and calculate the
resultant magnetic vector potential. Clearly, as the sheet is continucus and
electrically small, there are no free charges to contribute to the electric
scalar potential.

That this approach does produce the results given by Tsail! for the

magnetic frill (Tsai used the magnetic current as the source) is indicated by
a few examples in the Appendices.
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The expressicns for field components in the region that Tsai terms the
'far near zone' are derived in Appendix A. The 'far near zone' is defined to
be that region where the radial distance from the source centre is much
greater than the radius of the annular ring yet much smaller than the
radiation wavelength. Equations (A-1), (a-2} and (A-3)} (Appendix A) are to be
compared with expressions 19, 20 and 21 respectively in Tsai's paper (Ref 1).
It will be seen that there are minor discrepancies in the numerical
coefficients of the small correction terms. It is considered by the writer
that these are due to the different effects of the series approximations made
in the two approaches. Tsai deoes not give details and refers only to making
'suitable series approximations' in the calculation of the electric vector
potential integrand. It is nevertheless clear that the two sets of results
are, for all practical purposes, identical.

THE MAGNETIC FRILL AS AN EXCITATION SOURCE IN POINT-MATCHING
CALCULATIONS

Tsail gives a numerical procedure for calculating the near zone fields.
This is based upon the numerical differentiation of the electric vector
potential which is itself found by numerical integration of the contribution
of the incremental magnetic current sources. However, according to Tsai, this
procedure explicitly excludes calculation of the electric vector potential on
the frill surface. This may present a problem for some wire formulations
where, to avoid the Green's function singularity occurring in the electric
field integral egquation, the wire current is considered to flow on the axis
whilst the match points are located on the wire surface (and hence on the
frill inner surface) if the axial position of the frill coincides with a match
point.

As a practical means of calculating the driving electric field in the
source region, perhaps one of the more useful of Tsai's expressions is that
for the electric field along the wire axis (ie the z-axis). Using the
description of the frill as a transformer, this expression is derived very
simply: essentially by inspection. As indicated in Appendix B, the result
{equation (B-1)} is identical to that of Tsai (Ref 1, equation 25) and
produced without approximation.

An apparent difficulty with the frill when used in moment method
calculations, where delta function weighting is employed, is that the
expression for the axial electric field {equation (B-1)) represents a function
which, for practical coaxial aperture proportions, reaches a maximum value at
the frill centre and has a width of the order of the radius of the inner
conductor, a . For coaxial cables, a typical value for a 1is =102 m and
the radius of the outer ceonductor, b , is around 5-10 times this figure.
Hence for frequencies below 3 GHz, the width of the function is at least 100
times smaller than the wavelength and so at least 10 times smaller than a
typical distance between match points (wire segment length) for acceptable
sampling densities (ie =A/10).

Under such clrcumstances, the decision as to where on the z-axis of the
conductor to locate the centre of the frill is not evident: the value of the
axial electric field at the driving point is dependent upon the frill axial
position. Clearly then, the location of the frill with respect to the driving
match point will significantly affect the solution. It is not immediately
obvious how this problem can be surmounted other than by reducing wire segment
lengths in the regicn of the drive point to the order of, and preferably
rather less than, a . However, in many problems of practical interest this
would require impossibly short segment lengths. To avoid this difficulty
using some form of electric field averaging in the vicinity of the drive point
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would tend te remove any advantages of realism claimed for the frill. One

means of axial electric field averaging, for example, is to perform a line

integration of equation (B-1) along the z~axis and divide the result by the
distance between the integration limits. Hence, taking practical values of
a and b to be much smaller than the wavelength, ie

ka , kb << 1,

arbitrarily putting z' = 0 , and noting that the value of E; is only
significantly different from zerc when =z = a , allows the exponential terms
in equation (B-l) to be approximated by unity. The integral between the

limits =z = -d and =z = d then becomes:
¢ D 1
I E d = lm j 5 dz
—a z z 2 ln(b/a) ‘/ \/ 5 5
z + a
2 2 2 2
1 md d + d + b d + d + a
= —lin - 1ln
2 1n (b/a) 2 2 2 2
-d+yd + b -d+Yd + a

{(Ref 6, entry 200.01).

For the case where

d>>a, b

the above expression (using the binomial expansion) reduces to:

d 2 2
- iwmd 1+ 4(d /a)
Iea, = shoa e )
—d n(b/a) 1+ 4(d /b))
= - ioP,

for d sufficiently large. This is, of course, expected when considering the
frill as a transformer: the driving voltage induced in the secondary circuit
is the rate of change of flux linking it. Although trivial, this result could
be used to give an indication of the size of d necessary to ensure, in
effect, that sufficient of the prescribed magnetizing flux is included in the
calculaticon of the voltage driving the secondary circuit. Hence, performing
the integration over a sufficiently large axial distance and dividing by 2d
gives a mean driving axial electric field:

- imd
z 2d

Not surprisingly, all configurational details of the frill are lost in this
process. If the axial electric field of the frill is averaged in this way
around the drive point then an equivalence of the frill and pulse sources is
therefore indicated.
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A minor problem with equation (B-1l) which will be manifest in some
moment method formulations concerns the fact that, strictly, this egquation
represents the z-component ¢of the electric field on the frill {and hence wire}
axis. As remarked above, match peoints are frequently located on the wire
surface whilst the wire current is considered to flow on the axis. Hence for
simple implementation, it is either necessary to assume that the electric
field has the same value at the axis as at the surface, or alter the
formulation locally and arrange for the (driving) match point to lie on the
wire axis rather than the surface.

Generally it seems reasonable to suppose that in order to calculate
accurately quantities which depend upcn the near field it is necessary to
enforce the boundary conditions of the problem as precisely as possible. That
this is the case is supported by the experimental studies of Brown and
Woodward? who note that 'the exact conditions at the (antenna) terminals are
extremely important in determining the impedance conditions'. The theoretical
work of Albert and Synge5 adds further credance by showing the importance of
the geometry of the feed regicn in the determinaticon of antenna reactance.
Clearly numerical calculations must reflect this requirement and in practice
increasing sampling density is usually necessary to achieve it. Thus, the
procedure to make the commonly used and easily implemented pulse feed a more
realistic and acceptable form of driving appears no different to that for the
frill (as indicated above). It 1s, therefore, nct easy to see any immediate
advantage for the frill in point matching calculations.

CONCLUSIONS

Considering the magnetic current annular ring as a one turn torecidal
transformer makes this excitation source easier to understand and, thereby, to
modify to particular requirements. However, for point matching calculations
at least, the source is not free from difficulties which offset the advantage
of its realism.
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Appendix A
FIELD EXPRESSIONS FOR THE ‘'FAR NEAR ZONE'

In this Appendix Tsai's expressions for the 'far near zone' are derived
using the description of the frill as a one-turn toroidal transformer.

{i) The radial (p) component of the electric field in the
‘far near zone'

Consider an elemental source consisting of two oppositely sensed current
moments a distance t (the axial thickness of the frill) apart as indicated.

R, =vpZelz=2)?
Frill centre

¢>\

Pianar current
density J (r,¢b)

r2ep2-21p cosl@- )

z-z
point .
; Observation
(r.¢,z ) \pﬂint

/ ';"(P,G,z)

R=\/r2+p2—2rpcos(9-¢>)*{z"2)2

By the nature of the current sheets producing the frill, the direction of
these currents are radially inwards and outwards respectively with respect to
the frill centre. At the observation point, the contributions to the magnetic
vector potential due to this elemental source are &3p and ©&Ag in the
radial and tangential directions respectively. With reference to the
following figure:
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ar * t (R+t/2 sin @) (R — £/2 sin a)
and
j.l.O —-ik(R + t/2 sin o) -ik(R - t£/2 sin o)
8n = ~— J.8pd sin(0 - ¢ € _E
e ar ¢ T (R + t/2 sin o) (R - £/2 sin o)

The total inward and outward radial currents are both I , sc¢ that

and the total radial and tangential magnetic vector potentials due to the
equivalent frill currents in planes parallel to the x, y plane are therefore
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d=n 5 . _ )
uOI kR -i(kt/2) sin @ +i{kt/2)sin O
Ay = — cos B-Pe ! = - - = - dgdr
an’ (R + t/2 sin @) (R - £/2 sin )
p=—7t r=a

and

o=
LLOI R ~-i(kt/?) sin +ikt/2 sin o
-1
Ag = — sin (0 - Qe € - € dedr .
an
¢

(R + t/2 sin o) (R -~ t/2 sin )

=—M r=a

It is clear that the integrand in the expression for Ag is an odd function
of ¢ so that, as expected from physical considerations, integrating with
respect to ¢ between the limits -m to +1 makes

It can be predicted with a fair degree of confidence that the integral for
Ap cannot, in ail cases, be evaluated in closed form. However for the near

field, ie

where
a<r<h
and
b, p << A
and when 9 >> b , (that is, what Tsai! refers to as 'the far near zone'): the
expression for R , ie
RZE = r2 + p2 - 2rp cos(® - @) + (z' - zy?2 ,
may be expanded:
1) 2
- O i_i.)
R Ry (1l + q) R0(1+-2 .

where Ry , the distance of the observation peint from the frill centre, is

clearly
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and

2
r - 2rp cos{f - @)

2
RO

For axially thin frills (t—0) the integrand in the expression for Ap may be

expanded:
T o )
U-oI cos (B8 - @) e_lkR (( ikt sin a) ( t sin (I)
Ay = —— 1w e 2o V] ——
P 332 R 2 2R
®p=-N r=a
- (1 4 2kt sin o 0L) (1 g L2280 O‘)) dedr,
2 2R
ie
T b kR
pn.I 6 - -1 .
Ap = —= J J 205! R(P) = (—-—t 510 % _ ikt sin o) dgdr
2 R
8 s v
o b .
-ikR
pIt(z' - 2) _ i .
_ _‘o cosi(® - Qe (1 + ikR) agdr
B 2 3
n R
=-T 1r=-a
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Using the above approximation for R and expanding:

-ikR, o <
uOIt(z'— z)e 0 o ikROq IkRoq2 (1 3q + 15 q2
. _ _ v i - 29, 129
Ap — cos (80 - @) {1 > 5 . P

2
ikR g ikR g
1+ ikR, + ——— - — )d‘Pdf
0 2 8

As this expression for Ap is an expression in Ry

;, in this approximation
terms beyond R7

will be neglected; that is, terms beyond RB3

in the
integrand. Alsc, odd powers of cos(B - @) can be ignored as they integrate
to zero between the limits - to = Hence
-ikR
L.It{z'-z)e 0 2 2 2 2
Bp = 0 Tp (o a ) k lx - 1 2_+(b + a )3k
2.3 2 2 k 2
8w R, Ro
2
3 15k
_l?{———(b"'a) 3 4R
0 Ry ©

But, the magnetic flux @
theory as

nIt
o = 2 ln-E
2T a
so that substituting for Ityg ,
5 -ikRg 5 5
A= P2 - o - a)e @) 1 (3+(b+a,3k)
P i m - 5
8 1n(b/a)R] ¢ R k 2
3 15k
~il— - (b +a) 3 4R !
R0 Ro 0

where ¢ 1is the velccity of light in free space.
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But as there are no electric charges (the current sheets are electrically
small and continuocous)

E = - i®A
p P
or
2 5 —ikR, ) 5
E i | - -
_gEn_icAp=_(md>)(z z) pb’ - a)e L L (3+ (b +a)3k)
k 3 2 k 2
2 2
vil-2 + a2 - 2.
R, 4R03 aR_

The term i®w®P is recognised as the magnetic current, usually made equal to 1
volt for convenience.

(ii) The axial (z) component of electric field in the
"far near zone'

The z component of the magnetic wector potential off the z-axis is
evaluated with reference to the feollowing figure for a circle of axially
directed current at radius r

Source point

{r,¢,2" / Observation
_Je2, a2 _ 2 Point
Blanar R_\/r_-pp 2rp cos(B-p)+(2'-2) (p,6,2)

current -
density Y
J,{r)
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The planar current density (as taken to be uniform) J, is given by

and hence the z component of the magnetic vector potential is given by

w
e LKK trﬁm

H,
A (f} = —
ir

Where the axial thickness of the source, t i3 assumed very small, ie

t << R

Making previous approximations for R and using the same notation,

iR n 2 2 2 2
H,Ite 2 3 ikR ikR k'R
Az=_o_—3_ J. (1_.g.+.:3i._5_q) (1— 20q+ od_ _ BOq dep
8ﬂ2R - 2 8 16 8

Integrating, re-arranging, and taking account of the sign convention for the
currents indicated above, this becomes

-ikR
2 2 2 2
UL Ite k(b -a) 1 (b+a)(3+3ikR0—kR0)
A = - -i- + =
8"2R02 kR, 4KkR,
. 2., 2
2 3ikR k°R 2 2 2
. 2 (3+ o 0+6k(b+a))
2
kR3 2 2 8

Substituting for Itpy; as before and noting that

E = - iMA r
Z
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. z 2 22
“ikR; 2 2 b +a’) (3 + 3ikR_ - k R
B dode b -a) |, 2,0 ) ( 0 o
kR 3
k 8 1n(b/a) R, 0 4kR,
i
2 3 3i 3k(b2-+ 2)
2 a
e TR TR T T
R, kRy 0 2R,
...... {A-2)
(iii) The tangential (¢) component of the magnetic £field in the

‘far near zone'

For currents of the crientation indicated,

the @-component of flux

density Bg is the only component which is non-zero in this (cylindrical)
coordinate system. By Maxwell's third equation:
curlE = - EE R
Jt
so that
dE dE JE JE dr JE JE_ dR
B = 1 i _ 1 4y D 0 z z o
@ iw dz dp i dz BRO dz dp aRO dp
Hence, after a lengthy process of differentiation and re-arranging, it can be

shown that, in terms of the magnetic field Hg ,

5 5 ~ikRg . 2 2

B . Mo _ _ itiodkwm -alipe 2 ;b ral
Lk k 2 kRo R2
0 1Z20m 8 ln(b/a)R0 0
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Appendix B
ELECTRIC FIELD ALONG THE WIRE AXIS

The electric field along the z-axis is found very simply and without approxi-
mation when considering the friil as a one-turn toroidal transformer:

Jiz-212.2  Viz-z'12+a2 |k z

\ / -— QObservation point (0,0,z}
’ {” ’Eriil centre

W)

i0,0,2')
} "y
« —
AN
b

Sheet/ ]

current

directions -

X
ik'J {z )2+ 2 'kJ{ z)2+b2
u_ - -z a -1 z"'-

AZ(O,O,z) _ o It e _ Ite

in ‘/ 2 2 J 2 2
{z'- z) + a {z'- z) + b

R 2 2
—ikJ(z' - z) +a —ikJ(z' -z} +b
D e

e
2 1ln(b/a) 5 N 2 2
(z'— 2}y + a {(z'- z}y + b

(substituting for HeIt as before),

so that
il (2= 20+ 6 iy ( Vv al
: -1 [ i L1_ a
E (0,0,z) = - iwA (0,0,2) = (ioD P _
z z 2 1n (b/a} > > - =
(z'— z) +b {z'- z) +a
...... (B-1)
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