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ABSTRACT

A computer code has been developed to predict radar return from two-dimensional cylindrical targets com-
posed of anisotropic, lossy, and inhomogeneous materials. A moment method formulation uses point match-
ing with rectangular domains of pulse basis functions for volumetric elements. Targets may also be composed
of thin films including conducting sheets. Particular attention is paid to problems associated with close cou-
pling which involve numerical integration over neighboring domains of basis functions, rectangles which may
be very close together as in the case of thin layers of material.

. Examples are used to show that analytical integration of singularities associated with close coupling
gives results which are superior to the numerical approximations used in typical moment method codes.

The results are of interest for problems involving isotropic as well as anisotropic targets. For exam-
ple, when a code which calculates close couplings with numerical approximations is applied to a hollow,
conducting cylinder, computed radar return may be distorted by introducing conducting elements close to
the interior wall of the cylinder. With analytical treatment of singularities, however, there is no distortion.
In another example results from codes are compared for the case of a right circular cylinder coated with
anisotropic material. Results in good agreement with a series solution taken from the hterature are achicved
whern analytical treatment of singularities is considered. Finally, for the example of a conducting plate it is

shown how analytical treatment of singularities makes good results possible for a minimum number of basis
functions.

INTRODUCTION

A two-dimensional moment method code ANISO has been writen to predict the radar cross section of targets
composed of linear, anisotropic, dielectric and magnetic materials. Special attention is paid to the choice of
basis functions and the problem of calculating the couplings between neighboring domains of basis functions,
problems which arise in the modeling of typically thin, anisotropic coatings on conducting targets.

To illustrate the problem of choosing basis functions with appropriate domains, consider the thin contour in
Figure la. This contour is thicker than a thin film but, say, is only one tenth of a wavelength thick. Contours
like this, unlike thin films, may support current flow (electric or magnetic) in a direction perpendicular to
the contour. Most moment method codes employ the technique developed in [1-2] to approximate such a
contour with right circular cylinders (Figure 1b), as a field contribution from a uniform current on a cylinder
can be calculated analytically. However, it is desirable to have the option of using rectangular cells which
are often more appropriate in approximating layers of materials (Figure 1c). We will see how to accurately

calculate field contributions from currents on rectangles.

A case where special attention must be paid to the calculation of couplings between neighboring domains
arises when two parallel rectangles each with small thickness compared to width are close together. The
coupling involves evaluation of an integral with an integrand which becomes nearly singular as distances
between points on the rectangles become close to zero.

Results for a conducting right circular cylinder with an anisotropic coating which is approximated by par-
allel layers of rectangular cells are shown to be in good agreement with a series solution taken from the
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Figure 1a. Thin contour with current flow in tangential and radial directions.

literature. In this example the importance of accurate calculation of coupling between neighboring elements
is demonstrated. Another example shows that accurate calculation of couplings is important in isotropic

problems such as conducting targets.

ANALYSIS
ANISO is based on two coupled integral equations.
E"(r') = E(r') + A // {-—1—[(.1 V)V +k2J|F - MxVF} ds (1)
4 Jweg
H™ (') = H(r') + %// {ﬁ[(M - V)V + kgM]F + JxVF} ds (2)
0

The permittivity and permeability of free space are denoted by € and po, respectively, and w is the angular

frequency. Here F = H((,z)(kor) is the zero-order Hankel function of the second kind, ko = w./€ofio is the
wave number , and r = |r — r'| is the distance between a fixed observation point P’ and a variable point
P on the target. Also E*¢ and H*"¢ are incident electric and magnetic fields, whereas E and H are the
total fields. The electric and magnetic current densities J and M are related to E and H by the following
constitutive equations, i.e we have assumed materials to be linear.

J = jwe(E— 1)E (3)
M = jwpo(F — 1)H 4

In the isotropic case the tensors € and & correspond to the familiar complex scalar permittivity ¢ and per-
meability p.

Figure 1b. Thin contour approximated by circular cylinders.

Figure lc. Thin contour approximated by rectangles.
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We may consider the transverse electric (TE) case where the magnetic vectors H'® and H are parallel to
the long axis of the cylinder in our two-dimensional problem. The transverse magnetic {TM) case follows
by interchanging ¢ and g and considering some sign changes in the calculations. We will consider only
rectangular cells as approximating elements. Mutual couplings between rectangles will be analyzed, and the
problem of close couplings between rectangles will be discussed in detail. Rectangles of small thickness may
be used to model thin films, and in this case the calculated currents in the direction of the thickness will
be zero. This result could be anticipated in the analysis, reducing the number of degrees of freedom in the
problem. However, this was not done as only basis rectangles with finite thickness have been considered.
Current density vectors are assumed to be constant over basis rectangles.

Figure 2 shows how natural coordinate systems are associated with a basis rectangle and a test rectangle.
Vectors in the figure are unit vectors. In the TE case terms corresponding to coupling between a basis and
test rectangle can be arranged in a matrix TE.

H, TEQ1,1) TE(Q1,2) TE(Q,3)\ [ M,
E-l, | = [ TE@2,1) TE@2,2) TEQ23) D (5)
E.t, TE(3,1) TE(3,2) TE(3,3)) \ J

Here H, is the magnitude of the vector H which points in the direction of the long axis of the cylinder.
Similarly, M, is the only component of M. Also J; and J; are coordinates of J in the natural coordinte
system associated with the basis rectangle. Elements of the 3 X 3 matrix TE are obtained by substituting
pulse basis functions into equations (1) and (2), and the elements in the vector on the left hand side of the
equation are field evaluations at the center of the test strip. Coupling terms for all rectangles are arranged
in a large system matrix composed of submatrices of the type TE in (5).

TEST RECTANGLE

t
/ \/t\n

BASIS RECTANGLE

o>

A

Ly
Figure 2. Pair of basis and test rectangles.

We will assume € and 7 can be represented by diagonal matrices in natural coordinate systems associated
with basis elements. This is a restriction on € and 7 which, nevertheless, includes an important class of
problems.

The following calculations will deal first with self terms, i.e. the case where basis and test rectangles coincide
(observation point at the center of the basis rectangle), and then with non-self terms. The off-diagonal
elements are all zero in the case of self terms and will be considered first.
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Since iXxVF = t - VF3, integrating first in the t-direction shows TE(2,1)=0. Similar arguments show the
remaining off-diagonal elements are zero.

The difficulty in calculating diagonal terms is that the Hankel function Héz) becomes singular at the origin.

To integrate H, 82) we may write

/ / H® (ko /P2 +12)dl dt =
/ ] {HP (ko V12 +12) + '27% log(koV/I2 +t2/2) + 0.5722} dl dt (6)
- 2?] //{bg(km/ﬂ +12/2)+ 05772} dl dt

The first integral on the right hand side of (6) can be evaluated numerically. In fact, the value of the
integrand is unity at the origin. Due to symmetry of the rectangle, only three Hankel function evaluations
are required when a 3 point Simpson’s rule is used in each direction. The second integrand on the right hand
side is the small argument approximation to the Hankel function and can be evaluated analytically. Here it
is necessary to compute the indefinite integral

/ log(1% +t%) dl dt

First use the integration-by-parts substitution
log(? +t*)=u dv=dl

!
I-zi-—tz-dlzdu v=1

Then integrate in the ¢-direction using the parts substitution

tan‘l(-i-) =u dv=tdt

-1 t2
m dt = du v = 3
The indefinite integral is
t
// log(1* + %) dl dt = It log(i® +¢*) — 8lt + P'tan™(7) + tztan'l(é) (7)

The desired definite integral for a rectangle of width L and thickness T is

2j L/2 pT/2
= [log(ko /(% +£2)/2 + 0.5772] dt dI
T J.rj2J-T/2
= -%rl[o.smLT + {LTlog(ko /(L2 T (T/2)7/2) (8)
2 2
S 3o Tt (B)+ Stan™ ()]
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To calculate TE(1,1) use (4) in (2) with a 3 point Simpson’s rule applied to the integrand to be evaluated

numerically to get

1
(quo(uz -1)

7(log(ko VI(T/2)? + (L/2)2)2) + 0.5772))+

B8(Ho(koT/2) + -2 (log(keT/4) + 0.5772))+

TE(L,1) = + 208 {2 (ko TP+ TP+

) (9)
4(2(HokoL/2) + %{(log(koL /4) +0.5772)) + 4))—

93
—;—(LT(—O.9228 + log(ko/(L/2)% + (T/2)%/2))+
L? T?
—2—tan—1 (%) + -2—tcm_1 (%))}

To calculate TE(2,2) first calculate

i // v VF)ds = kD//—dldt —2ko/cos 9H D (ko/(L/2)? + £2) dt (10)

di?

where 6 is the angle between a vector parallel to the basis strip and a vector from the center of the strip to
a point on the strip. Numerical integration of (10) with a 3 point Simpson’s rule in the ¢-direction gives

koTL L (2) (2)
i / / V(. VF)ds = { \/(L/2)2+(T/2)2H1 (ko/(L/2)% + (T/2)? + 4H (koL/2))} (11)

Next, calculate the integral of the zero-order Hankel function as in TE(1,1). The total result is

1
Goeola —1))

koTL L (2) )
- 1;(‘)50 { \/(L/Q )2 + (T/2)? H12 (ko\ﬁm)? +(T/2)%) +4H12 (koL/2)}

4 Whol wl“’T { QHP (ko /(L72)2 + (T/2)2 ) + 4HSD (ko L/2)) (12

4 ['6(2H‘(’2)(k°L/2) + f(log(koL/z;) +0.5772) + 4)

TE(2,2) =

_%Z(L log(koL/4) + 0.4228L)] }

Here ¢; is the permittivity corresponding to the l-direction.
TE(3,3) is similar to TE(2,2) except with L and T interchanged and 1 replaced bt €

Next, we indicate how to calculate non-self terms. Here the observation point is on the test rectangle which
is away from the basis rectangle as depicted in Figure 2.

TE(1,1) is calculated as in the self term. The numerical integration involves several computations of the
Hankel function, and the small argument approximation has the indefinite integral (7).

TE(1,2)=— Llcoz If H(z)(kor)l X fdl dt where i is the gradient of . This integral may be evaluated by
considering the small argument expression and integrating the resulting integrand analyically. As in the case
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| of self terms the remaining contribution can be integrated numerically. The vector 1, may be expressed in
: terms of the basis vectors t and 1in Figure 2. Then the vector product will include two terms , one involving
cos 0 and one involving sin @ where 6 is the angle between # and 1. The small argument approximation times

the cosine term is b - ko(lo — 1 ol — 1
{0r+l_}C056: 0(0—)'|"i (0_) (13)

9 mker 2 m  kor?

Here Iy is the l-coordinate of the observation point. The indefinite double integral is
ko(l = 10)%t j
kol —10)% o) N f gL — oY + (& — taY ) dt
4 7l'k0

= kU= T)®  J [ 1) log((I - lo)? + (t — t))- (14)
4 wko

2((1-@)—(/—/0)“ '1(13-;1?»}

The terms TE(1,3), TE(3,1), and TE(2,1) are similar.
For TE(2,2) we have
Whos 2 1 1. / “
2,2) = —1-1, H t — ——1, - V(l1-VF
TE(2,2) 7] 1 // o(kor) dld 4w€01 ( )
= 280y 4, / Ho(kor) di dt
ko -
i, [ (B |- 1)

4w€0
—H(ko |+ 31)) } pdt

(15)

Here Hfz) is the first-order Hankel function and 1 = LI. We have been able to integrate in the [-direction
using properties of the gradient. Notice I p— %l| is the distance from the observation point to a point sliding
along the edge of the test rectangle in the t-direction. This calculation of TE(2,2) differs from a previous
approach taken in Boeing codes. For example, in the isotropic code LINKS ([3-4] properties of the gradient
have not been exploited to integrate in the I-direction, rather a second order difference involving the zero
order Hankel function is used. It is this second order difference which creates havoc with close coupling. An
example illustrating this point is included at the end of the section on validation.

The first integral in the expression for TE(2,2) can be evaluated as before. The idea of integrating a term
involving the small argument of a Hankel function can be applied to the second integral, too. For example,

the indefinite integral of the small argument approximation of H gz)(kop) multiplied by cos 8 is

ko(l -1 25 (I-1 ko(1—lo)t 25 —
J s o ()

Similarly for H 52)(k0p) sin 6 we get

/ [@(—t{—?—"u %Q—;t—“)} at = 2 Il T jogi(1 - 1o+ (¢~ o) (17)

The integrand in the second integral in the expression for TE(2,2) is the sum of the Hankel functions
multiplied by sin 8 and cos @, each multiplied by a constant.
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The remaining terms are similar to TE(2,2), involving the possible combinations obtained by replacing 1or
t by 1, or t,, where the latter two vectors are associated with the observation strip.

Although the calculations we have discussed are important in the case of close coupling, cheaper calculations
should be made when the basis rectangle and test rectangle are not close together. In ANISO a test is
performed to see if the coupling involves arguments in Hankel functions which are small enough to warrant
refined calculations. A rule of thumb for making this decision follows. If p; and p, are the minimum and
maximum distances from the obsevation point to grid points on the basis rectangle, and if po is the distance
between centers of rectangles, crude integration is performed when kopy > 1 and |kops — kop1| < 0.1 . In
this case the first inequality guarantees the large argument approximation to the Hankel function may be
used:

2 . T
ng)(kop) 2 ‘/7r_p e:cp(—y(kopI;—r - Z)), kop>1, v=0,1 (18)

The second inequality guarantees that H,(,z)(kop) can be considered constant over the strip.
EXAMPLES AND VALIDATION

The following examples test the close coupling equations of ANISO. The first example which is an isotropic
case is a configuration of conducting sheets. This example compares the radar cross section of a flat plate
with a conducting, hollow, rectangular cylinder and a cylinder containing a conducting sheet. Comparisons
of the radar cross section of these targets for both crude and refined evaluations of integrals are broken
down into four test cases. Refined integration involves extraction of singularities, whereas crude integration
involves only evaluations of the Hankel functions. In all cases surfaces are uniformly subdivided with ten

basis rectangles per wavelength.
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Figure 3. Flat plate versus hollow cylinder.
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Figure 3 shows the flat plate verses the hollow conducting cylinder for refined integration. Figure 4 compares
crude and refined integration for the hollow cylinder with an interior conduction sheet close to the cylinder
wall. From the standpoint of physics the interior metal should make no contribution to the radar cross
section. Indeed, for refined evaluation the plots of the hollow cylinder and the cylinder containing the sheet

are virtually coincident.

Figure 5 shows an annular configuration of anisotropic material which has been partitioned into rectangles,
the inner surface being a thin conducting contour. The angle in the figure is the bistatic angle. Also ¢; = 6
and ¢ = 1.5 with g, = 2. Also included in Figure 5 is the bistatic return resulting from the crude and
refined integration as well as a few points obtained from a code based on a series solution [6]. It is clear that

refined integration improves accuracy.

Finally, we will include an example from the LINKS code which illustrates the problem associated with the
finite difference calculation of certain matrix elements. (TE(2,2) is the culprit in the following example.)
Figure 6a shows the monostatic return for a flat conducting plate eight wavelengths in width. Two uniform
subdivisions of ten and twenty-five strips per wavelength are considered. The points per wavelength required
to get a good solution is unsatisfactory. In particular, the extreme side lobes are not high enough. Figure 6b
shows LINKS with thirty-five strips per wavelength versus ANISO with ten strips per wavelength. ANISO
gives a good result for a reasonable number of strips per wavelength whereas LINKS does not.
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CONCLUSION

The two-dimensional code ANISO has been validated with isotropic and anisotropic test cases. The im-
portance of accurate computation of close couplings has been demonstrated. Computations of this type,
which involve integration of functions near singularities, always arise in moment method codes, isotropic or
anisotropic, with either polarization.

Another enhancement to the code might include special treatment of thin films (including conducting sheets)
which reduce the number of degrees of freedom in the problem by introducing basis strips which do not allow
for current flow in the normal direction. A further enhancement might provide for basis functions with
triangular domains, since triangles may be used to approximate two-dimensional regions.
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Figure 6a. LINKS result for flat plate.
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Figure 6b. ANISO versus LINKS results for flat plate.
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