A 2-D finite element model for wave propagation
into arbitrary inhomogeneous materials

E. Sumbar, F.S. Chute, and FE. Vermeulen

Applied Electromagnetics Laboratory
Department of Electrical Engineering
University of Alberta
Edmonton, Alberta, Canada T6G 2G7
(403) 492-3332

Abstract
A finite element program called reast, coded in FORTRAN, provides
a frequency domain (sinusoidal steady state) solution to Maxwell’s
equations in cylindrical coordinates. By imposing a radiation or
impedance boundary condition at the far boundary of the finite
element mesh, reasT models the near fields of axially symmetric
antennas in arbitrary inhomogeneous materials. The program has
been validated by reproducing the driving point impedances and
current distributions of several antenna configurations for which
theoretical and experimental results are available in the published

literature.

Introduction

Two numerical approaches for modelling
the electromagnetic radiation from isolated
wire antennas are the moment method
(MoM) (Harrington 1968) and the related
technique of boundary integral elements
(BEM or BIE) (Brebbia 1984). The applica-
tion of either of these procedures to the
study of bare antennas operating in an infi-
nite homogeneous environment is straight-
forward. To analyze radiating systems that
are inhomogeneous — an antenna with a
dielectric coating, for example — a method
is employed whereby the infifiite problem
domain is divided into two distinct regions
(McDougall and Webb 1989; Morgan et al.
1977; McDonald and Wexler 1972). Accord-
ingly, an artificial boundary is erected so as
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to collect all of the inhomogeneities associ-
ated with the problem into the boundary’s
interior zone, leaving the infinite exterior
region homogeneous. A solution to the in-
terior problem may be subsequently formu-
lated with an appropriate bounded method
such as finite elements; the exterior prob-
lem, meanwhile, may be handled with one
of the techniques mentioned above. Satis-
fying appropriate boundary conditions at
the interface between the two regions
couples the two expressions and permits a
solution to be calculated (for example,
Paulsen et al. 1988).

In this paper, we introduce an alternative
method for solving the near-field antenna
radiation problem which avoids the com-
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plication of coupling a bounded-problem
description to an unbounded-problem
description. Using finite elements, the
technique is applicable to azimuthally
symmetric antennas propagating into inho-
mogeneous lossy dielectrics. And rather
than use infinite elements to model the far-
field region, we have adopted radiation
boundary conditions.

A relatively compact implementation of the
method has been developed for use on
Macintosh II personal computers. The
program comprises approximately 5000
lines of FORTRAN and will be referred to
as reAsT. It yields a full field description
throughout the domain of the problem
from which the driving point admittance
and current distribution along the antenna
can be easily derived.

The following sections outline the finite
element approach implemented by reast
for the solution of antenna-radiation prob-
lems. In addition, the validity of the
method is demonstrated in a comparison
between certain published antenna charac-
teristics and the results obtained with FEasT.

Theory

Consider the antenna geometry depicted in
Fig. 1. We see a cylindrically symmetric
structure made of metal which may be
excited at one or more points along its
central axis by zdirected electric fields
impressed between a number of gaps. The
electrical properties of the material into
which the antenna is radiating are assumed
to be generally inhomogeneous and iso-
tropic.

Under these conditions, the electric field
will lie solely in the 7z plane and the
magnetic field will only have a ¢ compo-
nent. In the frequency domain (sinusoidal
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steady state), this situation is summarized
as

E= %e{E e/ },
H= %e{H e/ }, where

E=E (r,z)a, +E,(r,z)a,, and
H= H¢(r,Z)a¢.

The unit vectors in the 7, z, and ¢ direc-
tions area_, a, and a " respectively. As a
consequence, Maxwell’s equations take on
the following form.

VXE-= —j(l)u.Hq, a¢
= —ZH¢ a¢, and
oH
)
a, +
oz
=(c+ joe)E=Y"'E,

orH
VxH-=- l—‘1’-3

r or °

where Z and Y are both functions of the
space coordinates r and z. Eliminating E
from these two expressions results in the
following homogeneous equation for the
distribution of magnetic field H, (r,2).
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The problem is completely specified once
sufficient conditions on the boundary of
the domain are defined. A unique solution
is obtained provided some of the bound-
a nditions are of the Dirichlet type
with the remainder being Neumann bound-
ary conditions.

_9
or

d

0z

Z
+—rH, =0.
r 0

Yy orH,
r oz

Y aqu,
r or

(1)

The quantities in brackets in Eq. (1) are
seen to represent the components of the



Finite Element Program

The implementation of the finite element
method in reast is based on Burnett’s
unareMm code. The maximum number of
nodes, or degrees of freedom, which Feast
can accommodate is 950, distributed over a
450 elements.

To efficiently solve complex-valued sys-
tems of linear equations of this size, Feast
employs a sparse-matrix variation of
Gaussian elimination, without pivoting or
scaling, which is limited to a matrix band-
width of 100. An iterative refinement algo-
rithm (Burden and Faires 1985, p. 438) has
been incorporated into FEAST to improve
the results obtained with simple Gaussian
elimination.

The limits of the problem domain and the
associated boundary conditions appropriate
for the solution of the antenna-radiation
problem given by Egs. (3) and (5) are
illustrated in Fig. 2. The Dirichlet condition
7 =0 is set on the rotational axis of sym-
metry, and the generalized Neumann
condition, E_ .y, = E, * k.% on the re-
mainder, where kand E_are constants.
With & = 0, the Neumann condition
Ecew = 018 applied to the horizontal
symmetry plane and the antenna surfaces.
Antenna excitation is specified at the feed
point by defining E_ .y, = £, there. With
E =0and k=-, where 1 is the complex
intrinsic wave impedance, the problem do-
main is terminated at an absorptive surface
on the far boundary. This radiation or im-
pedance boundary must be sufficiently
distant from the antenna. Three wave-
lengths in the medium was found to be
adequate when analyzing antennas with
overall lengths comparable to half the
wavelength in the propagation medium.
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Engquist and Majda (1977) describe a
highly absorbing boundary condition for
use in wave-type equations. The radiation
condition used in FeasT is equivalent to
their first-approximation form. It is also
similar to the order-1 recursion of the
radiation boundary condition given by Bay-
liss and Turkel (1980). Engquist and Majda
remark that only the first approximation
condition has a physical interpretation
which in our case is E=(Hxn)/n, n being
the direction of propagation. Judging from
the good agreement between the program
results and the reference data as reported
in the following section, a higher order ab-
sorbing boundary condition is not neces-
sary to model the particular antenna sys-
tems that were analyzed. With E cowm =
-1 }[¢ and }[q, given by ZaN, the radiation
boundary condition is implemented by
transferring the additional terms in a4, from
the right to the left hand side of the global
system of equations.

A representative sample of the finite ele-
ment mesh is also shown in Fig. 2. The
actual mesh comprises 424 quadratic isop-
arametric triangular and quadrilateral ele-
ments which are continuous across ele-
ment boundaries and are made up of 943
nodes. The nodal coordinates are normal-
ized. In this way, antennas of varying
length can be easily accommodated with
the application of a geometrical scale
factor. A region near the antenna is pro-
vided in which groups of nodes can be
translated independently of the larger mesh
to facilitate rapid modelling of a range of
antenna diameters and coating thicknesses.

To model a half-wave dipole for example,
the factor by which the normalized mesh

would be scaled is 1A, that is, the numeri-
cal value of one wavelength in the propa-



gation medium, expressed in meters. Using
a scale factor which is near the value of
one wavelength ensures that a sufficient
density of nodes spans one wavelength of
the electromagnetic field quantities. If the
scale factor is exactly one wavelength,
there will be no fewer than 10 nodes per
wavelength. Modelling antennas with FeasT
whose total lengths are larger than about
one wavelength produces generally less ac-
curate data because the sparsity of the
nodes does not allow an accurate descrip-
tion of the field variations in space. Scale
factors smaller than about 0.25A, however,
bring the radiation boundary too close to
the antenna which may also lead to inaccu-
rate results.

A version of reast has been compiled on a
Macintosh II computer using Language
Systems FORTRAN version 1.2.1 and the
Macintosh Programmer’s Workshop (MPW)
version 3.0. A typical run on a 943 node
system requires approximately six minutes
to execute.

Validation Resulls

Four antenna configurations, modelled
with reast, are considered in this paper: (1)
a bare monopole over a perfectly conduct-
ing ground plane operating in air, (2) a
bare center—fed dipole operating in a
dissipative medium, (3) a dielectrically
coated monopole in air, and (4) a dielectri-
cally coated monopole in a lossy material.
Cases (1) and (2) are examples of an an-
tenna operating in a homogeneous me-
dium, while cases (3) and (4) are examples
of an antenna in an inhomogeneous me-
dium. All four configurations are shown
schematically in Fig. 3.

The output which reasT generated for
specific examples of these cases was com-
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pared to published data. Antenna current /
was calculated from the field quantity ﬂ{¢
by evaluating the boundary condition for
the tangential magnetic field at the surface
of a perfect conductor, namely, nxH =],
where J is a surface current density. As
such, 7= 21t9[¢, at the antenna surface. The
driving point admittance of dipoles was
obtained by dividing the value of I nearest
the feed point by the applied gap voltage,
which is the product of gap distance and
electric field. In the case of monopoles, the
current and voltage were evaluated at a
point on the antenna which is level with
the plane of the ground. A numerical inte-
gration of the r-directed electric field esti-
mated the voltage at that point.

Figure 4(a) shows the driving point admit-
tance obtained with reasT for a monopole
antenna operating at 114 MHz in air for
which a/A_ is 0.0064 and b/ais 1.189 (A is
the free space wavelength). The data from
FEAST is compared to a theoretical transmis-
sion line model published by King (1971,
p. 11). For the most part, agreement is
excellent. Some deviation is apparent for
longer antenna lengths due to the reduc-
tion in node density which results when
necessarily large scaling factors are applied
to the normalized mesh. This is not a defi-
ciency in the finite element method but 2
consequence of how the finite element
mesh is generated in FEAST.

The data in Fig. 4(b) represents the nor-
malized current distribution on a monopole
in air with bA_= 0.375, a/A = 0.0254, and
b/a = 1.189. Because the antenna length in
this case permits a near optimal node
density, reasT’s prediction is almost identi-
cal to the transmission-line-model theory
given by King (1971, p. 17).
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Driving point admittances for a dipole
immersed in two different homogeneous
lossy media are illustrated in Figs. 5(a) and
5(b). The frequency of operation is

114 MHz with the relative antenna radius
given by a/A = 0.003175, where A is the
wavelength in the lossy material. In one
case, Fig. 5(a), the medium is character-
ized by an electrical conductivity of
18x1073 S/m and in the other case,

Fig. 5(b), by an electrical conductivity of
200x1073 S/m. The same dielectric
constant, € =47, is used in both. The output
from reasT correlates quite well with the
theory of Wu (1961) as presented by King
(1971 p. 55). (King warns that Wu'’s theory
is most accurate for antennas that are much
longer than one wavelength.) The effect of
reduced node density on calculation accu-
racy for antennas of longer length is appar-
ent in Fig. 5(a). Figure 5(b), on the other
hand, manifests another symptom of mod-
elling error. In simulating a dipole antenna
immersed in a homogeneous medium,
rEAST includes the gap region as part of the
problem domain: a gap of 0.4 mm was
used in these trials. In contrast, the theo-
retical analysis of Wu uses a delta-function
generator. As such, the losses in the gap
which are modelled by reasT tend to over-
estimate antenna driving point admittance,
particularly for high loss media as in

Fig. 5(b).

Figure 5(c) depicts the distribution of
antenna current which is calculated by
reasT for a dipole operating at 114 MHz
and whose dimensions are: a/A = 0.0028,

g = 0.4 mm, and Bh = 2.809. (Here, B rep-
resents 21t/A, where A is the wavelength in
the lossy medium.) The lossy medium into
which the antenna is propagating has an
electrical conductivity of 200107 S/m and
a dielectric constant of 47. The numerical
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results are compared to experimental data
published by King and Smith (1981,
p. 166).

In testing reasT on dielectrically coated
monopoles in air, the experimental work of
Lamensdorf (1967) was used as the refer-
ence. Figures 6(a) and 6(b) show the re-
sults for two antennas of identical physical
dimensions, 2a = 6.35 mm and

D = 23.77 mm, operating at 600 MHz. In
one instance, the dielectric constant of the
coating is 9.0, and in the other, 15.0. Once
again, the agreement is good except for
longer antennas where the effects of re-
duced node density come into play.

The normalized antenna current distribu-
tion which corresponds to an antenna of
length A/A = 0.5 and for which the dielec-
tric constant of the coating is 9.0 is illus-
trated in Fig. 6(c). The data of Lamensdorf
(1967) and the results obtained with FEasT
for magnitude and phase match reasonably
well.

Limited success was realized in duplicating
the experimental data of lizuka (1963) for a
dielectrically coated dipole in a lossy me-
dium. Figure 7(a) demonstrates that, pro-
vided the antenna length is relatively small,
the driving point admittance can be reliably
predicted. Nothwithstanding the absolute
error between lizuka’s data and the results
obtained with reast, the general shape of
the admittance profiles is replicated with
only a lateral shift in the peaks. In this par-
ticular simulation, the frequency was

114 MHz with an antenna diameter 2a of
6.35 mm and D/2a equal 1.25. The dielec-
tric constant of the lossy medium was
taken as 78 and that of the coating as 2.46.

An electrical conductivity of 18x1073 S/m
was employed.



The normalized current distribution shown
in Fig. 7(b) is for an antenna whose length
Bhis n/2, 2a = 6.35 mm, and D2a= 4. In
this test, the conductivity of the medium
was 18x107 S/m with a dielectric constant
of 78, while the dielectric constant of the
coating was 1.0. The imaginary part of the
current is seen to be predicted quite accu-
rately by reast. There is no adequate expla-
nation for the lack of correlation exhibited
by the real part of the current, however.
Other sources of experimental data are
being sought against which output from
FEAST can be compared.
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Conclusion

The generally good results demonstrated
by reasT in replicating the electrical charac-
teristics of simple propagating wire anten-
nas suggest that the program can model a
variety of azimuthally symmetric antenna
configurations. Dielectrically coated anten-
nas operating in air or in the presence of a
dissipative medium are handled equally
well. reasT is continually being validated
against published antenna results and is
being used to explore the characteristics of
various configurations including partially
coated and nonuniformly coated antennas
immersed in inhomogeneous layered
media.
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Figure 1

General, cylindrically symmetric antenna structure
and coordinate system.
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Figure 2

Qutline of the normalized finite element mesh used by FEAST
to simulate metal-wire dipole and monopole antennas. The
appropriate boundary conditions are also shown.
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Figure 3

The four antenna configurations
which were modelled with FEAST
for the purpose of validation.
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