Validation of a Z-Matrix Finite El P for Analyzing El ic Field

P. F. Barber T. S. Lauber E. D. Patterson

Department of Department of Department of

Electrical Engineering Electric Power Engineering Electrical Engineering

United States Military Academy Rensselaer Polytechnic Institute United States Military Academy

West Point, New Ycrk 10996 Troy, New York 12181 West Point, New York 10996
INTRODUCTION

Modern electrical equipment designs demand more compact, complex geometries
and require more stringent analyses of the associated three-dimensional
electrostatic fields. Analytical solutions of such fields are limited to relatively simple
geometries. Numerical solutions using the finite element method are limited by
available computer storage and processing time. Lauber posed an economical
method for solving three-dimensional finite element electrostatic fields by forming
the finite element system matrix using Brown's Z-matrix techniques. (Lauber, 1982)
(Brown, 1975) This method was implemented by a FORTRAN computer program.
(Barber and Lauber, 1986) (Barber, 1988) The purpose of this paper is to briefly
describe the present version of the program called FEWZ (Einite Elements using a
Window and the Z-matrix) and to show how it was validated.

THE FEWZ PROGRAM

The FEWZ program uses constant-stress tetrahedral finite elements to solve for
potentials, interelectrode capacitances, and dielectric stresses in Laplacian
electrostatic fields. A constant-stress tetrahedron has an assumed linear potential
variation within it. Constant-stress tetrahedral elements were used in the formul-
ation for several reasons. These simple, practical elements are well-known and
have accrued a good amount of computing experience. Typical field geometries
can be readily subdivided by a computer into tetrahedra. Zienkiewicz et al have
shown how the finite element relationships for a system of these elements are
obtained from the minimization of an appropriate functional. (Zienkiewicz et al,
1967) A close examination of the resulting finite element system matrix equation
reveals that it is mathematically analogous to the admittance matrix (Y-matrix)
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equation for an electrical network. The solution of either requires the inversion of a
sizeable coefficient matrix. The inverse of the electrical network Y-matrix is the
impedance matrix or Z-matrix. Techniques for building and solving Z-matrices
have been used for many years to solve large electrical network problems and are
illustrated in the Appendix. (Brown, 1975) A major advantage of the Z-matrix
method is that the potentials at a subset of nodes in a large problem can be
obtained using modest amounts of computer resources.

The FEWZ program is used to solve the electrostatic finite element problem in the
following manner. The three-dimensional problem space is divided into two
regions, one region of primary interest (referred to as the "solution window" or
simply the "window") where the solution of the field is desired, and another region
of secondary interest (referred to as the "external region”) from which effects on the
primary region are desired but where solution details are not needed. The problem
is solved in two passes analyzing the region first outside and then inside the
window as shown in Figure 1. In the first pass, the Z-matrix representing the effects
of the external region as observed at the window boundary nodes is assembled.
Z-matrix axes representing nodes not in the window and not part of an electrode
may be discarded as soon as all incident finite element connections are made;
thus, the size of the Z-matrix can be reduced. The Z-matrix with axes representing
nodes on the window surface and other axes representing electrodes is saved for
subsequent use. In the second pass, the space within the solution window is
modeled in the Z-matrix. When finished, the Z-matrix contains axes representing
every dielectric node in the window and every electrode in the problem. Using this
matrix and the specified electrode potentials, the solution is calculated. If design
changes are desired within the window, only a second pass (reusing the results of
the first pass) is required to obtain the new solution, giving significant economy of
computer processing time.

Each FEWZ pass requires two modular processes. A tetrahedral model of the
electrostatic field geometry is generated by the field geometry (FG) module. Using
this tetrahedral model, the Z-matrix building (ZM) module assembles the Z-matrix
and saves or solves it. As shown in Figure 2, the FEWZ program accomplishes this
using several data files with the two modules. The user must prepare the first- and
second-pass input files (IIN1 & 1IN2) which describe the boundaries of the problem
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and the window, the desired regular grid, the electrode and dielectric bodies in the
problem, and, in the second pass, the specified electrode potentials. Bodies are
described by one or more geometric components. General polyhedra and/or
convex polyhedra are used to describe dielectric bodies. Points, lines, polygons,
general polyhedra and/or convex polyhedra are used to describe electrodes. The
FG module develops the tetrahedral model for the user's problem using the
well-known three-dimensional geometric relationships between points, lines,
planes and tetrahedra. Various subprocedures contained within the FG module
read the input file, set up the regular Cartesian grid, relocate a number of the
regular grid points to conform to the electrode and dielectric body geometries, and
automatically decompose the problem into a numerically suitable set of tetrahedra.
The tetrahedra are numerically suitable if they provide an exclusive model for all
space within the problem limits and if all tetrahedra have volumes greater than
some minimum value (determined by the geometry of the problem). The tetrahedra
are described by compact data structures which are stored in an interface file (IFZ1
or IFZ2) for subsequent use by the ZM module. The ZM module builds the Z-matrix
for the space outside the window during the first pass and stores it in an interface
file (112). During the second pass, the ZM module completes the Z-matrix passed
in the interface file (112) and obtains the solution. The problem space is subdivided
into columns and blocks as shown in Figure 3. Z-matrix building subprocedures
contained within the ZM module evaluate the tetrahedra within each block of
space, build Z-matrices representing individual blocks of space using component
tetrahedron parameters, build Z-matrices representing columns of space by
combining component block Z-matrices, and finally build the Z-matrix which
represents the overall space by combining column Z-matrices. Columns that pass

Blocks

Columns

Overall Space

Figure 3 Space Subdivisions for Z-Matrix Assembly
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through the window may be truncated into one or two smaller pieces. Other sub-
procedures in the ZM module maintain the data arrays, find the unknown node
potentials, determine the interelectrode capacitances, and calculate the element
stresses. The results are saved in a solution file (ISL2). The FEWZ solution
satisfies Dirichlet boundary conditions because the potentials are explicitly
specified on electrode problem boundaries. Although FEWZ does not force
Neumann boundary conditions on dielectric problem boundaries, such conditions
are approximately satisfied by the formulation. Intermediate processing information
(progress reports, warnings, and error messages) generated by each module
during each pass is saved in files (IPIF1, IPIZ1, IPIF2 and IP1Z2). Printing control
codes regulate the amount of intermediate details provided; thus, process details
can be traced at will. During both passes, each module refers to fixed data arrays
read from the initialization files (IDT and ITB). These data arrays contain
information used for tetrahedron decomposition and tetrahedron identification.

Validity, numerical accuracy, processing speed, computer storage requirements,
and portability between computers were major considerations during development
of the FEWZ program. The original FEWZ code was developed on an IBM3081D
mainframe computer and subsequently moved with no changes to a PRIME 850
minicomputer. It was upgraded on the PRIME 850 and is now operating and being
maintained in a UNIX environment on a MASSCOMP minicomputer. A UNIX shell
script controls the processing by setting up the appropriate files in a problem
subdirectory and executing the FEWZ modules. Documentation for the FEWZ
program consists of the User's Manual, the Programmer's Manual and the FEWZ
FORTRAN source code listing. The Programmer's Manual gives the theoretical
basis and a detailed description of the data structures and processes for every
module and subprocedure. The User's Manual gives a brief overview of the
program, defines the human input requirements, describes the normal output
products, and identifies abnormal conditions and potential user remedies. The FG
and ZM modules contain about 1900 and 3200 lines of standard FORTRAN code
respectively. About 75% of the lines are executable statements; the remainder are
comment statements which help document the program. Most of the code uses
single-precision floating-point arithmetic but one subroutine uses double-precision
arithmetic to build the Z-matrix representing a block of space.
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THE VALIDATION PROCESS

Validation occurred throughout the development of the FEWZ program. The finite
element method is a well-known, valid method for solving field problems. Z-matrix
techniques are also well-known and widely used to solve large electrical network
problems. Careful development and some comparisons with various analytical
solutions indicate that the fundamental theory of the method is valid. For example,
since the tetrahedral elements were assumed to have a linear potential variation
within them, the solution of fields known to have a linear potential variation should
be exact except for computer roundoff error. FEWZ gives an exact solution to at
least four significant figures for the electric field between two parallel-plate
electrodes with a relatively coarse 4x4x8 grid.

The FEWZ program is organized and coded to enhance validation. Modules and
subroutines were designed to have a definitive theoretical function or process
operating on a distinct set of inputs to obtain a verifiable set of outputs such that the
code could be easily documented and tested. The files generated by each module
in each pass give intermediate information in a human-readable form. The inter-
face files are thoroughly labeled to identify the printed information. Printing control
codes implemented in the FEWZ program give added capability to print extra
intermediate results. These codes give nine levels of increasing detail in three
different categories. Comment statements identify the major decisions and steps in
each process and provide links to the FEWZ documentation. Recursive checks
were made between FEWZ documentation, code, and performance to verify the
correct performance of each subroutine and finally each module.

In addition to the parallel-plate electrode geometry, the FEWZ program was applied
to other electrostatic field geometries. One such geometry was used by
Zienkiewicz et al to demonstrate the validity of their constant-stress tetrahedral
finite element formulation. (Zienkiewicz et al, 1967) They considered a uniform
dielectric cube with one face at a fixed potential of 1000 volts and all other faces at
zero potential. Considering symmetry, only the quarter section shown in Figure 4
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Figure 4 Dielectric Cube Geometry

needed to be analyzed. The general analytical solution for a potential in this
geometry is given by
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For the specific conditions shown in Figure 4 (ie, V = 1000, a = b = 4 and ¢ = 8), the
potential can be calculated using
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Zienkiewicz et al obtained four numerical solutions shown in Table I. Their finite
element solutions (under the columns labeled Z FE) and finite difference solutions
(under the columns labeled Z FD) may be compared with the analytical solution
(under the column labeled ANSL). The numerical solutions were obtained using
grid spacings of 2 (L/4) and then 1 (L/8). The FEWZ program was applied to the
same geometry with grid spacings of 2 (L/4), 1 (L/8) and 0.5 (L/16). The potentials
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Table | Dielectric Cube Potentials
Coord FEWZ FEWZ FEWZ ZFE ZFE ZFD ZFD
X.¥. 2 4 _1/8  _LN6  ANSL L8 L4 L8 L4
0,0,6 439.4 454.2 457.0 458.1 454 444 450 436
2,0,6 367.9 370.8 372.3 372.9 371 365 369 362
0,2,6 367.9 370.8 3723 372.9 371 365 369 362
2,26 304.1 306.1 307.0 307.2 307 303 306 304
0,04 164.6 166.4 166.6 166.7 167 166 166 167
2,04 124.4 123.3 122.9 122.7 124 125 124 128
0,2,4 124.4 123.3 122.9 122.7 123 125 124 128
2,2,4 88.96 91.52 90.96 90.64 92 94 93 98
0,0,2 51.44  51.46 51.16 51.02 52 53 52 55
2,0,2 36.01 36.90 36.64 36.50 37 38 37 40
0,2,2 36.01 36.90 36.64 36.50 37 38 37 40
222 26.83 26.45 26.25 26.13 27 28 27 30

obtained by FEWZ are also shown in Table | (under columns labeled FEWZ) and
compare quite favorably with the numerical results obtained by Zienkiewicz et al
and the analytical solution. Table | also shows how the error is reduced by
successively finer grid spacings. A grid spacing of 2 gave a maximum error less
than 4.1% while grid spacings of 1 and 0.5 gave maximum errors less than 1.3%
and 0.5% respectively. The program is not presently dimensioned to handle finer
grids such as L/32 or L/64 so stability problems arising from finer grids remain
undiscovered. It can be concluded from these results that the FEWZ program
provided a reasonably accurate solution for potentials in the dielectric cube.

Three situations involving a coaxial electrode geometry were also analyzed using
the FEWZ program. This geometry was chosen because it has a well-known
analytical solution and it exercised other capabilities of the FEWZ program. The
radii of the inner and outer electrodes were 8 cm and 16 cm respectively. The
length of the electrodes considered was 65 cm. A quarter section of the coaxial
electrode geometry was modeled as shown in Figure 5. Since the problem
boundary coincides with the ends, no fringing was present at the ends. The inner
electrode was represented by a convex polyhedron while the outer electrode was
modeled by a general polyhedron. The 0.5 cm x 1 cm x 1 ¢cm conductive particle
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which was included in one of the FEWZ computations was located with its centroid
at (x, y, z) = (0.25 cm, 8.5 cm, 7.5 cm) approximately 12 cm from the inner electrode
centerline; it was represented by a convex polyhedron. A 10 x 18 x 18 regular grid
with the window located as shown in Figure 6 was used in the solution.

Particle
\@

(o]

Figure 5 Coaxial Electrode Model

Figure 6 Regular Finite Element Grid and Solution Window
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For the first test, the FEWZ program was used to solve for potentials, capacitance
and stresses for the coaxial electrode geometry without the particle. The applied
voltages on the inner and outer electrodes were 1 and 0 volts respectively. The
potentials at a representative set of nodes are listed in Table Il under the column
labeled FEWZ Base Case. They may be compared with the analytical values listed
under the column labeled Analytical Base Case. The potentials calculated by

Table Il Selected Coaxial Electrode Potentials

Coord Analytical FEWZ FEWZ FEWZ
X Y Z Base Case Base Case OtherV_ Particle
0 0 6 0.6781 0.6700 16.70 0.6698
050 6 0.6781 0.6700 16.70 0.6698
1 0 6 0.6781 0.6697 16.70 0.6696
2 0 6 0.6781 0.6693 16.69 0.6692
3 0 6 0.6781 0.6692 16.69 0.6691
5 0 6 0.6781 0.6691 16.69 0.6691
0 10 6 0.1781 0.1738 11.74 0.1869
0 0 7 0.8301 0.8243 18.24 0.8242
0 9 7 0.3301 0.3252 13.25 0.4080"
0 10 7 0.2501 0.2450 12.45 0.2725
0O 8 8 0.5000 0.4956 14.96 0.4080"
010 8 0.3212 0.3160 13.16 0.3218
0 7 9 0.6926 0.6894 16.89 0.6752
010 9 0.3904 0.3852 13.85 0.3853
0 1010 0.4563 0.4512 14.51 0.4500
0 10 11 0.5171 0.5118 15.12 0.5107
0 1012 0.5710 0.5654 15.65 0.5647
0 1013 0.6159 0.6098 16.10 0.6094
0 1014 0.6498 0.6416 16.42 0.6413
0 1015 0.6709 0.6618 16.62 0.6616
0 916 0.8301 0.8243 18.24 0.8242
0 1016 0.6781 0.6700 16.70 0.6698

* These two potentials are located on corners of the particle.
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FEWZ were within 2.5% of the analytical values. The FEWZ program calculated a
capacitance factor (C/e) of 147.91 for this geometry. The analytical value of this
factor for the quarter section is 147.30. The FEWZ result is within 0.5% of the
analytical result. The maximum dielectric stress of 0.2316 V/cm reported by the
FEWZ program occurred in a tetrahedron adjacent to the inner electrode. The
analytical solution shows that a maximum stress of 0.18033 V/cm occurs at the
surface of the inner electrode. This indicates an error of about 28%. It should be
noted that the dielectric stresses are found by considering partial derivatives of the
potential variations. Derivatives of data having a particular error are subject to
having greater error. A better indication of the maximum dielectric stress can be
obtained by considering the average stress in the block containing the most
stressed tetrahedron. In this case, the average block stress was 0.1882 volts/cm
which is within 5% of the analytical result. These results indicate that the FEWZ
program produces a valid solution.

Another test was made to verify that the finite element model gave correct results
under other electrode voltage specifications. The same coaxial electrode geometry
was used but the inner and outer electrodes were specified at potentials of 20 volts
and 10 volts respectively (a dilation and then translation from the base case
potentials in the first test). The resulting potentials are listed in Table Il under the
column labeled FEWZ OtherV and can be compared with the analytical and FEWZ
base case solutions to verify the correct processing of other potential specifications.
For example, the potential at (0,0,6) was 0.6700V from the FEWZ Base Case and
(10(0.6700) + 10 =) 16.70V in this test. As expected, the capacitance and dielectric
stress results were also consistent with the base case.

The third test used the same coaxial electrode geometry as in the first test but
included the conductive particle without a specified voltage. Although an analytical
solution is not available for this geometry, the FEWZ potentials listed in Table Il
under the column labeled FEWZ Particle can be compared with the results of the
first test to identify expected variations and/or unexpected discrepancies. The two
points on the particle shown in Table |l had potentials of 0.3252 and 0.4956 volts in
the first test; the potential on the floating particle was intermediate at 0.4080 volts.
The interelectrode capacitance factors (C/e) were calculated by the FEWZ program.
Figure 7 shows the FEWZ values and an equivalent which can be compared with
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the result of the first test. The equivalent capacitance factor between the inner and
outer electrodes is slightly larger when the particle is present. These results are
consistent with what was expected and, thus, verify the processing of multiple
electrodes and floating conductors.

Inner Electrode EQUIVALENT
Inner
5 56 == Electrode
146.45 7~ Particle > T 147.97
3.71 7 Outer
Electrode

Outer Electrode
Figure 7 Interelectrode Capacitance Factors from FEWZ

RESULTS

The FEWZ program obtained good numerical solutions for these test cases with
reasonable economy of computing resources. The coaxial electrode problem was
solved by the FEWZ program on both a PRIME 850 minicomputer and a
MASSCOMP minicomputer. Typical CPU times are shown in Table Ill below. The
three coaxial electrode test cases posed differences within the window but used
the same geometry outside of the window. Thus, to solve the three cases required
execution of one Pass 1 process and three Pass 2 processes for a total of 111 CPU
minutes on the PRIME 850 or 38 CPU minutes on the MASSCOMP. The Z-matrix
required a maximum of 360 axes during the processing.

An earlier version of FEWZ was successfully used to analyze critical electric fields
around the base insulator of a high voltage, low frequency antenna. (Barber and
Lauber, 1986) (Barber, 1988) Some details of this practical problem are provided
as follows. A 15 x 21 x 14 grid was used to model a tower electrode, a pedestal
electrode and supporting insulators. A 6 x 6 x 4 window was selected in a region of
known corona activity under the tower electrode rainshield corona ring. Potentials
and stresses were obtained on an IBM3081D mainframe computer using about
30.5 minutes of CPU time. The Z-matrix required a maximum of 452 axes.
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Table lll Typical FEWZ CPU Times on the Coaxial Electrode Problem

PRIME 850 MASSCOMP

Pass 1 36 min 14 min

Pass 2 25 min 8 min
CONCLUSIONS

The FEWZ program obtains a finite element solution of electrostatic fields using a
solution window and Z-matrix techniques. The solution includes potentials,
interelectrode capacitances and dielectric stresses. The program consists of two
FORTRAN modules. The FG module analyzes the field geometry and creates the
tetrahedron model. The ZM module builds the Z-matrix which is either saved for
subsequent passes or solved.

The FEWZ program was validated for rectilinear and cylindrical geometries using
analytical solutions and output from other programs. It gives good numerical
results within reasonable computing times. The FEWZ program has been tested
and operated on three different computers.
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APPENDIX
Z-MATRIX TECHNIQUES

Using Brown's techniques, the Z-matrix representing an electrical network may be
assembled directly. The assembly starts from a reference node. A branch leading
to a new node is incorporated into the Z-matrix using the radial branch addition
process illustrated in Figure A.1. Other branches leading to other new nodes are
processed in the same manner. Branches which connect between nodes already
included in the Z-matrix are incorporated using the loop-closing branch addition
process illustrated in Figure A.2. The Z-matrix at any stage represents the network

Radial Branch Addition
of branch impedance z
from existent node P
to new node Q

PQ

 Add an axis for node Q to Z-matrix =
where Z(Q,Q)=Z (P.P) + 2, reference
and, foralli=Q, Z(i,Q)=2Z(Q,i)=2,(i,P)

» When P is the reference node, let ZO(P,P) = ZO(i,P) =0

Figure A.1

Loop-Closing Branch Addition
of branch impedance z Q

from existent node P r
to existent node Q A Zpa
+ Add a "loop" axis L to Z-matrix = reference

where Z(LL)=Z (P,P)+Z,(Q,Q)-2 Z,(P.Q) + 7,
and, foralli=L, Z(iL)=Z(L,)=2Zi,P)-Z,i.Q)
» When P is the reference node, let ZO(P,P) = Zo(i,P) =0
« When Q is the reference node, let ZO(Q,Q)= Zo(i,Q) =0

« Finally, eliminate the "loop" axis using Kron reduction where,
forallizLandj=L, Z'(i,j) = Z(i,j) — [Z(i,L) Z(L.j) / Z(L,L)]

Figure A.2
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included up to that point. It is a full, diagonally symmetric matrix. These assembly
techniques can be extended using submatrices to incorporate whole subnetworks
at a time. A carefully crafted strategy for forming and assembling submatrices can
significantly reduce both program complexity and computing time. In FEWZ,
submatrices representing blocks of space are combined to assemble submatrices
representing columns of space. Column submatrices are then combined to
assemble the Z-matrix representing the overall problem space. After all branches
have been processed, the final Z-matrix may be used in a matrix equation to solve
for node potentials as illustrated in Figure A.3. Since there are few potentials
specified in a typical problem, the matrix inversion and matrix multiplications
required in the solution are usually modest.

Node Potential Solution from the Z-Matrix
+ Partition the Z-matrix according to specified and unknown node

potentials - -
[ZUU ZUS] [0 } - q) u
ZSU ZSS Q ¢ S

* Solve for unknown node potentials

[0.] = [2] [2]"[e,

Figure A.3
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