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Abstract

Results are compared for scattering from a perfectly conducting
circular disk using three solutions: A closed form physical optics (PO)
solution, a Physical Theory of Diffraction (PTD) solution, and a com-
puter implementation of an exact eigenfunction solution. The far field
patterns are compared for various ka values as well and incidence an-
gles for both vertically and horizontally polarized electric fields. For
normal incidence, the solutions agree very well. For small ka the
agreement is remarkable. As ka increases, the agreement is still good
as long as the observation angle 6 does not exceed 45°.

The applicability of using the disk as a target to calibrate an RCS
measurement range is discussed. The disk calibration curve is a plot
of the specular return as a function of bistatic angle. This curve is
computed for both horizontal and vertical polarizations and various ka
values using the PO and eigenfunction solutions. The specular bistatic
RCS (calibration curve) is relatively invariant; hence, the disk is an
ideal candidate as a calibration standard for bistatic RCS measure-
ments. Agreement between the PO and eigenfunction solutions for
large ka means there is an easy method of generating the applicable
calibration curve for a particular disk as long as one remains within
the valid angular region for a proper size disk.
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1 INTRODUCTION

This report compares three circular disk solutions: A closed form physi-
cal optics (PO) solution, the RADC/Syracuse Research Corp. bistatic radar
cross-section (BSRCRCS) computer program that utilizes the physical theory
of diffraction (PTD), and a computer implementation of an exact eigenfunc-
tion solution discussed in references [1] through [4]. These are compared for
various xa values as well as incidence angles. The limitations of the PO solu-
tion are also discussed. As a by-product of this comparison, the BSRCRCS
scattering code solution for the disk is validated against an exact eigenfunc-
tion solution. Another issue addressed in this report is the curve, using the
disk as a target, used to calibrate an RCS measurement range. The disk
calibration curve is a plot of the specular return as a function of bistatic
angle. This curve will be computed for both horizontal and vertical polariza-
tions and various ka values using the PO and eigenfunction solutions. The
disk has become a possible calibration target for bistatic RCS measurement
ranges due to problems encountered using the sphere. The bistatic RCS of a
sphere has rapid fluctuations which make it difficult to use as a calibration
standard for bistatic radar cross section measurements.

The derivation of the PO solution is given Section 2. The PO solution cal-
culates the scattered field using the geometrical optics (GO) current, where
the GO current is denoted by Ufimtsev [5] as the uniform current. He also
calculates the field scattered due to the non-uniform current on the edge of
the disk. The superposition of fields scattered due to the uniform and non-
uniform currents yields the total scattered field. This method is called the
PTD. The BSRCRCS scattering code used in our comparison utilizes PTD
as its method of solution; however, it is not a closed form solution. The
BSRCRCS code is designed for arbitrarily shaped bodies and uses numeri-
cal techniques to perform the integrations required to implement the PTD
method.

The disk is a coordinate surface in the oblate spheroidal coordinate sys-
tem [1]; therefore, the exact eigenfunction solution can be found using the
degenerate case of the oblate spheroidal functions when they collapse to a
disk. Detailed discussions of this approach can be found in [1], [2], [3], and
[4]. Mithouard and Hodge [4] provide a computer program and subroutines
required to calculate the RCS based on the eigenfunction solution. This com-
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puter program was modified by Dominek [6] to allow its use for higher ka
values. The program, as modified by Dominek, is used in this analysis. In
addition, for grazing incidence of the horizontal polarization, this program
was run as a function of ka to determine when the eigenfunction was no
longer accurate due to numerical and convergence problems of the computer
implementation of the eigenfunction solution. This was done to provide an
upper bound on the electrical size of the disk solvable via the eigenfunc-
tion computer program. Results for the backscatter case were compared to
previously published measured results [1].

The details of the PTD and eigenfunction derivations are not discussed
any further in this report. The references provided give detailed analyses of
these methods. In the next section, we derive the PO based expression for
the bistatic scattered field of a disk illuminated by a plane wave.

2 BISTATIC PHYSICAL OPTICS SOLU-
TION

A version of this result is given without details in [1], and some of the details
can be found in [5]. The following result was derived independently because
the results of [1] and [5] have different assumptions and applicable geometry
(time convention, plane of incidence, direction of incidence, etc.) than the
eigenfunction and BSRCRCS scattering code solutions; therefore, to facili-
tate the comparisons, it was decided to rederive the result rather than to
make the requisite modifications to the previous results. It is included for
completeness.

The plane of incidence chosen is the xz plane (¢* = 0). The geometry for
the disk is shown in Figure 1, and the geometry for horizontal and vertical
polarization are shown in Figure 2 and Figure 3. For our given plane of
incidence, the incident E* and H' fields are given by

B ={ § 1)
where the bracketed term represents the two possible polarizations. The
incident magnetic field, H?, is given by

Hi(r') = Yor' x Ei(r). (2)
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Figure 2: Incident Plane Geometry for Horizontal Polarization (Pol=90)
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Figure 3: Incident Plane Geometry for Vertical Polarization (Pol=0)
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where

Yo = \Ea (3)
27

k= 3 (4)

7 = —zsinf — scosé, (5)

K = ki, (6)

§i = icosf— zsiné, (7)

F = 4, (8)
and

r = z+yy+zz. (9)

The upper and lower terms in Eq.(1) are for parallel (vertical or theta) and
perpendicular (horizontal or phi) polarizations respectively. The polarization
of the incident field is parallel/perpendicular with respect to our plane of
incidence. In general, the GO current is given by

n _ { 22 x H(r') in the lit region, and
Jgo(r') = { 0 in the shadow region. (10)
hence,
Toale) = 200 { g pe e (1)

Using this current (making the usual far field approximations) yields an ex-
pression for the scattered field given by

s e FoxF o x2
Epo(r) = k{5 3T X E  } D(0,6.0) (12)
where,
l a 27 s , . ,
D(0.¢,f) — ___/ pl/ eIk [sin 6 cos(¢— )+sm{cos¢]d¢ldpll (13)
2w Jo 0

We can then write the phase term of the integrand in the form

sin f cos(¢ — ¢') + sin € cos ¢' = Qcos(y — ¢') (14)
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such that

Qcosy = sinf + sinf cos @, (15)
Qsiny = sinfsing, (16)
0 = \/sin205in2¢+ (sin € + sin  cos ¢)2. (17)

Therefore, we write

a 1 2, ,
D(,6,6) = [ o5 [ ot Sdglay (18)
o 2mJo
however,
]. 2" ; ! '
o [ e ag = (k) (19)

where Jo(-) is the Bessel function of order zero. In addition,

a Jl(kaﬂ)
' ' ' _
/(; p'Jo(k2p")dp' = e—a (20)

Hence, the PO scattered field is given by

< Iy e 9% J1(kaf) —fcosbcosp + dsing
Epo(r) = ja r 0 { —cosé (0 cosfsin ¢ + ¢ cos qS) ) (21)

We want to identify specific input/output polarization pairs; that is, what is
the theta polarized scattered field for a phi polarized incident field. We write
this as Ej, . Therefore, we have the following:

- jkr k

E, = _jae Jl(Qaﬂ)cosﬂcosqﬁ, (22)
’

3kt Jy(k

E = jas —I(—Qaﬂ—)sinfﬁa (23)
— gkt kafl

E¢y = —jae Ji(ka )cosécosﬂsiné, (24)
—jkr k

Ey = _jae J—l(ﬁa—@cosfcosé. (25)
T

Performing appropriate modifications on these expressions yields those given
by Ufimtsev [5] for the uniform current.
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In general, the scattering cross section is defined by

Es 2
o= r]i_'l'{.lo 4rr? I{E: ‘.2

(26)
Additionally, if we desire the polarization dependent cross section, we define

Es 2
Oap = lim 47.'7“2‘——.1’—
r—00 IE!bIZ

(27)

where a and b represent either the theta or phi polarizations. Therefore, the
input /output polarization dependent cross section based on Eq.(22) through
Eq.(25) is given by

2

oee = A4ma’ ':l_l%gf_ll. cos? 8 cos® ¢, (28)
oo = 4ma’ —J-‘%-a—n—) 2 sin® @, (29)
Opp = 47a’ LZI(—I;—@ 2 cos® £ cos® @sin® @, (30)
ops = 4ma’ -J_l(lcnaaﬂ)- 2 cos? £ cos® ¢. (31)

When the argument of the Bessel function goes to zero we have

. Ji(kaQ) ke ke

This will be used when evaluating certain limiting cases of the expression.
Two special cases worth discussing are backscatter and specular. In the

case of backscatter,
o = ma® [J;(2kasin 8))° cot? 4, (33)
and for the specular case,

o= = ('lm2 cos 0)2 . (34)
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This has the proper form for specular scattering given by

47
T spec — —A_Z

A? (35)

where A is the projected area of the scatterer. Note, both the backscatter
and specular expressions are independent of polarization.

These expressions were programmed and used for comparison with both
the BSRCRCS scattering code and eigenfunction code. The plots in Section
3 show where the bistatic PO solution for the disk breaks down. In addi-
tion, comparisons for the specular response using the PO and eigenfunction
solutions will be shown. For our plane of incidence (xz plane), the horizon-
tal polarization has a component parallel to the edge; therefore, for edge-on
incidence (incidence angle nearly 90), the scattered field is not zero. The ver-
tical polarization for edge-on incidence, does not have a component parallel
to the edge and hence the scattered field is zero. The eigenfunction satifies
the proper edge condition; therefore, we expect the proper behavior at the
edge. This will be evident in our plots.

3 RESULTS

In this section, plots that compare the three solutions previously described
are shown. In addition, calibration curves computed using the PO and eigen-
function solutions are also shown. However, before beginning the compar-
isons, it is of interest to determine, as a function of electrical circum{erence
of the disk (ka), when the numerical implementation of the eigenfunction
solution is valid and when it breaks down. For horizontal polarization, we
plotted backscatter and foward scatter for grazing incidence. As expected,
the backscatter case accounts for the creeping wave around the disk edge;
hence, we see the interference lobes. On the other hand, the forward scatter
is not affected by this mechanism and is therefore a smoother curve. Figure 4
shows this behavior. This was accomplished to verify the eigenfunction com-
puter program before using it as a comparison standard. The backscatter
case was also compared to published measured results given in [1]. We can
see that the numerical implementation of the eigenfunction solution breaks
down beyond ka=22 due to numerical convergence problems of the code im-
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Figure 4: Grazing Incidence ka Plot

plementation. Therefore, we only used the eigenfunction computer code up
to ka=20.

Figure 5 through Figure 8 show the bistatic radar cross-section (RCS) of
a disk illuminated by a plane wave at normal incidence. The plots shown
are for both horizontal and vertical polarization at several ka values. For all
these cases the phi observation angle, ¢°, equals zero (¢' = ¢* = 0). For
horizontal polarization (Pol=90), the agreement is better than for vertical
polarization (Pol=0). As the disk ka increases and the observation angle §
exceeds 45°, the PO solution begins to break down; however, the agreement
between the BSRCRCS code and the eigenfunction code remains reasonable
for larger angles, especially for horizontal polarization. The figures included
only show this comparison for ka=5 and ka=10; however, the codes were run
up to ka=20 and the same trend was observed.

Letting ¢ = 180°, we are in the quadrant where the specular lies for
our given plane of incidence. We see that regardless of how diflerent the
results are in general, they agree (within a few dB) at specular (§* = 6°).
Figure 9 through Figure 14 show these results for several incident angles.
The agreement at specular gives us hope the calibration curve using the disk
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Figure 5: Bistatic Scattering: ka=>5: §°=0: Horiz Pol: ¢~ 0: ¢°=0
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Figure 6: Bistatic Scattering: ka=5: §'=0: Vert Pol: ¢'=0: $*=0
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Figure 7: Bistatic Scattering: ka=10: 6*=0: Horiz Pol: ¢'=0: ¢*=0
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Figure 8: Bistatic Scattering: ka=10: 68'=0: Vert Pol: qbi:O: =0
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Figure 9: Bistatic Scattering: ka=10: §°=15: Horiz Pol: ¢ =0: ¢*=180
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Figure 10: Bistatic Scattering: ka=10: §i=15: Vert Pol: ¢"'=0: ¢*=180
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Figure 11: Bistatic Scattering: ka=10: §'=45: Horiz Pol: ¢*=0: ¢*=180
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Figure 12: Bistatic Scattering: ka=10: 6*=45: Vert Pol: ¢'=0: ¢*=180
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Figure 13: Bistatic Scattering: ka=10: #*=70: Horiz Pol: ¢'=0: ¢*=180
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Figure 14: Bistatic Scattering: ka=10: ' =70: Vert Pol: ¢'=0: ¢$*=180
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Figure 16: Specular Scattering: ka=>5: Vert Pol
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Figure 17: Specular Scattering: ka=10: Horiz Pol
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Figure 18: Specular Scattering: ka=10: Vert Pol
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as a target will agree over a wide range of bistatic angles. The determination
of the calibration curve with a disk target was the primary reason for this
analysis.

Plotting the calibration curve, we see that the calibration curve calculated
using PO goes to zero for both polarizations; however, the calibration curve
calculated using the eigenfunction, as expected, does not. We see reasonable
agreement for both polarizations over bistatic angles less than 140°. Figure
15 through Figure 20 show this comparison for several ka values. As ka
increases, the agreement between the PO and eigenfunction solutions for
specular improves. As we see in Figure 20, for ka = 20 the difference is
negligible for 0° < § < 140° .

4 CONCLUSIONS

The numerical implementation of the eigenfunction solution is only useable
up to ka=20. This was the determined by observing the behavior of this
code as a function of ka. Figure 4 only shows this up to ka=25; however, this
code was exercised up to ka=40. In addition, comparison of the backscatter
curve from Fig. 4 with published measured results [1] verifies the validity of
the this code for lower ka values. Use of this code should be limited to this
maximum electrical circumference.

We saw that the PO solution for normal incidence agreed very well over
the main lobe and a significant number of side lobes. For small ka the
agreement is remarkable. As ka increased, the agreement was still good as
long as the observation angle 6 did not exceed 45°.

When we concentrate on the specular return from the disk. PO does a
good job for incidence angles as large as 70°. This is really not suprising since
the specular return is an optics quantity governed by geometrical optics. In
fact, the stationary phase evaluation of the PO integral gives, in general, the
GO reflected field. As we saw in the calibration curves (specular response),
the PO and eigenfunction solutions agree very well for large ka; however, for
small ka a correction factor would be needed to use the PO derived curve for
calibration.

The bistatic RCS (calibration curve) of the disk is relatively invariant
and has no rapid fluctuations. This makes the disk an ideal candidate as a
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calibration standard for bistatic RCS measurements. We also saw that the
PO and eigenfunction solutions generate equivalent curves over a wide range
of bistatic angles (0° < 8 < 140° ) for large ka. This means there exists an
easy method of generating the applicable calibration curve for a particular
disk as long as one remains within the valid angular region for a proper size

disk.
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