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Abstract

The evaluation of eigenvalues for transcendental equations in the cylindrical coordi-
nate system is considered. A new code has been developed for this purpose. This is a
fast algorithm for finding contours of a real function of two variables. This algorithm
searches for the interval in which the function passes through the desired reference value
and subsequently automatically starts to trace the contour within a circular annulus re-
gion of interest. When the reference value is zero and the function represents the limiting
form of the Finite Hankel Transform kernel, the solution of the transcendental equation
for eigenvalues is obtained. For accurate values of proper numbers, another code provides
them within the desired uncertainty. Numerical results are presented and compared with
available data. The computed eigenvalues may be used to obtain solutions of boundary
value problems for circularly-symmetric electromagnetic waveguides, cables, cavities or
scatterers.
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1. Introduction

The solution of boundary value problems in multiply connected regions requires the
specification of boundary conditions on every surface. The simplest structures belonging
to this class are coaxial waveguides or cavities. The use of the finite integral transforms
with respect to space variables considerably simplifies the solution of the boundary value
problems. (The theoretical background is given in [1].) Appendix A provides more details
regarding properti;es of the Finite Hankel Transform. For problems described in cylindrical
coordinate systems, the Finite Hankel Transform offers a comparatively simple tool for
solving the mixed boundary value problem for the Helmholtz equation. In spite of this,
it has not obtained a wide enough dissemination. There is no known application of this
method to the solution of practical problems in electromagnetics. The method has been
used outside electromagnetics [2], but the applications have been limited. The reason
for this is a lack of tabulation of roots of transcendental equations associated with the
appropriate kernel of the Finite Hankel Transform [3]. However, as is shown in [4], there
is the lack of the complete tabulation of zeros of two basic transcendental equations for
the coaxial line. The existence, ordering and computation of these roots are necessary
for applications of dyadic Green’s functions for the coaxial line. Therefore, it is needed
to verify and extend the existing tables. The largest existing tables of Bessel functions
[5] are not sufficient to provide all needed values for computation of kernels of Finite
Hankel Transform for problems of interest; they do not contain Neumann functions and
are extremely laborious to use. Another problem to overcome is to compute Bessel and

Neumann functions with the desired accuracy for the required order and argument.

The modern applications require numerical results. A condition for this is to provide
the tables of roots xmn for the desired value of parameter £ = a/b. Parameter ¢ is a
limiting value of the normalized radius p = r/b of a circular annulus when r — a. The
normalization of the radius implies that £ < p < 1. For this domain, there are nine

possible combinations of boundary conditions which include: Dirichlet ¥ = 0, Neumann
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9V /9r = 0 and Cauchy 0¥/0r + a¥ = 0 [3]. In effect, nine transcendental equations
result. Two symmetric cases, Dirchlet-Dirichlet (D-D) and Neumann-Neumann (N-N),
are fundamental both from practical and theoretical points of view in electromagnetics.
The first gives rise to T Mpyy, modes while the second gives rise to T'Epmyn. Because of
the advent of optical fibre transmission technology, the higher order modes are again of

interest to researchers [6].

2. Formulation

For annular domains with symmetric Dirichlet boundary conditions (D-D), the fol-

lowing transcendental equation is obtained:

Jm(an)Ym(ang) - Ym(an)Jm(ang) =0. (1)

When symmetric Neumann boundary conditions (N-N) are applied, the transcendental
equation is ,

T (X ) Yon (xm ) = Tn (xm n0) Yo (xmn) = 0. (2)
In both equations, xumn is the eigenvalue and £ = a/b is the characteristic dimension of
the coaxial structure. Indexes m and n denote order of Bessel or Neumann functions and
number of root (or alternatively zero), respectively. These equations have the following

properties [7] as £ — 0:

¢ the eigen\}alues of (1) approach the corresponding root of

Im(x) =0; (3)
e and the eigenvalues of (2) approach the corresponding root of

Jn(x) = 0. (4)

The most extensive table of roots of (1) and (2) has been published [8]. In fact, (1)

is tabulated up to the order m = 3 of Bessel function and up to 5-th root for limited
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number of parameter £. This is not sufficient for rigorous application of the FHT. For this
reason, it is required that for any value of £ the eigenvalues be available, thus the points
of characteristic equation lying in x — £ plane be linked so as to create £(x) curves of zero

contours.

3. The Algorithms

The nonlinear equations defined by (1) and (2) are also limiting forms of a kernel of

the Finite Hankel Transform which is written in simplified form as

Jm(x,£) =0 (5)

with constrained arguments 0 < X < Xmaz < 00 and 0 < £ < 1. The detailed description

of function (5) is given in Appendix A.

Two mutually-related codes were developed to accomplish this purpose: the first: for
zero-contour determination £(x) of equation (5); the second: for high accuracy eigenvalue

Xmn determination at constant value of £.

The first one deals with 3-dimensional problems and allows us to determine properties
of the characteristic dimension-eigenvalue domain £ — x and to obtain information about
behavior of the function (and approximate location of all eigenvalues). This code uses
a searching procedure (concept is described in [10], however, the details of the solution
are different). Once bounds are imposed on both variables at boundaries of the region,
in the parameter statement, the search procedure begins by examining values of function
(5) on the perimeter of the x — £ plane. Each point on the perimeter is controlled by a
component of a logical vector of which values are set to “true” at the beginning of the
search process. For the search process along the boundary £ = 0, the equations (3) and
(4) are used. When brackets of the first eigenvalue are detected, the automatic search

process is carried out.

The search procedure combines the Horn clause and state-space problem solving meth-
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ods [9]. A logical grid function of two variables Gp 4 describes each grid. This function is
defined as
Gpg = Cp&eSy (6)

The first argument Cp is generated by four logical node values n, for s = 1, 2, 3, 4 defined

as

_ 0, i fi(x,£) <0
s = {1, if fm(x,€) > 0. (7)

In order to determine Cj, the values of function f, are examined at four vertices of the
current grid. In effect, vector C) may have sixteen distinct components, each of them

associated with a combination of nj, na, n3, ng at vertices of a grid.

The second vector Sy has four components, each component is associated with each
side of the grid. Components corresponding to the intersection of a grid side and the
contour path assume logical value 1. The relation between components S;_l of the last
grid and components S; of the present grid describes direction of the search process. The
present value of the grid function G;yq represents the goal state while its past value G;}l
represents the initial state. The goal state is determined from the initial state and actual
values of Cp, and S, of a grid. The goal state of the present grid is identical to the initial
state of the next grid. Only two states are permitted for every grid so as there is no
ambiguity in determination of a goal state. The goal state determines the next grid to be
examined, corresponding to values of the nodal variables ¢, 7, and values of the contour
coordinates xj and ;. These values are determined by an interpolation procedure using
values of function f,,(x,¢) at points of the grid associated with its side corresponding to
the new value of argument S;. Function G, ; describes the search strategy in a systematic

way. A demonstration of the grid function (Gp 4 is shown in Fig. 1.

In this method, no rotation of a grid is required in contrast to code described in [10].
When the zero-contour is determined and its end point lies on the perimeter, a component
of the logical vector controlling each perimeter point is set to false. The search procedure

is then resumed on the perimeter from the following point from which the last eigenvalue
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contour started. The detailed description of all aspects of the program will be presented

by the author in a future article. The accuracy of the method is affected by the grid size.

The second code utilizes a similar technique of search, however, search strategy is

carried out on components of a vector

fm(x, ) = fm(x) ~ for €= const (8)

where Xmin < X < Xmaz- When the eigenvalue is bracketed, the iterative process starts.
It uses a subroutine based on the modified Van Wijingaarden-Dekker-Brent Method [11].
This method combines root bracketing, bisection, and inverse quadratic interpolation.
The program is capable of finding eigenvalues with the uncertainty of 1078 at the expense
of increase of computation time. The convergence of the code has been proven by numer-
ical experiment, although, for large eigenvalues presented in Tab. 1.1 and Tab. 1.2, the

number of iterations exceeds 200.

4. Computation

Computations ascertained by these two codes were performed on the Amdahl 5860,
main University of Ottawa computer with the VM/CMS 4.2 operating system. Subrou-
tines were written in VS/FORTRAN (FORTRAN-77) in double precision. The plotting
software is in single precision so as to match the DISSPLA library. The evaluation of
Bessel and Neumann functions was performed using the IMSL double precision library
adapted from the NATS FUNPACK library [12]. The basic limitation is the machine pre-

cision which for double precision is 15 hexadecimal digits within the range (1077,107).

The process of determination of the eigenvalue bracket of a transcendental equation
is sometimes very difficult due to the lack of an algorithm which includes the sign change
caused by a pole of the equation. However, this problem was not found to be very severe

for equations (1) and (2).



5. Conclusions

For the illustration of the first code, equation (1) was chosen with index m = 1, i.e. the
first non-rotationally symmetric TM,,,,, mode. In Fig.2 are depicted the transcendental
function (1) and its zero contours projected onto x — ¢-plane. In Fig.3, the zero-contours
in 2-D representation may be used directly in “approximate” engineering application.
The accuracy of the first code suffers from the choice of the mesh size. Nevertheless, it

provides quite good engineering presentation of eigenvalues.

In contrast with the first code, the second code provides high accuracy eigenvalues.
Tables 1.1 and 1.2 show numerical values of eigenvalues of equation (1) with index m = 1.
The uncertainty of each eigenvalue is £0.0001. These tables improve accuracy (over the
first code and published data) of eigenvalues up to n = 5 and extend them up to n = 100
for £ = 0.100,0.250,0.333, n = 79 for £ = 0.500, n = 51 for £ = 0.667 and n = 26 for
¢ = 0.833. The code has been tested up to order m = 54 of transcendental functions
and number of eigenvalue n = 100. These data pave the way for application of the Finite
Hankel Transform to the solution of boundary value problems in various circular symmetry
electromagnetic objects. The described code and its technical manual are available from

the author.
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APPENDIX A

Finite Hankel Transform

Any twice differentiable function f(p) that satisfies the boundary condition of a
‘boundary value problem, say over (£, 1), may be expanded into a uniformly convergent
series of the normal orthogonal set of eigenfunctions pertaining to that boundary-value

problem.

For a coaxial domain with the normalized radius p = r/b, where £ < p < 1, the Finite

Hankel Transform is defined as

1
0= [ Fo)pkn(xpdp (A1)

where K (xp) is the appropriate kernel pertaining to boundary conditions of the domain

under consideration.

For T'Mp, waves in coaxial waveguide or cavity with variation of the normalized

radius £ < p < 1, the kernel of the transformation becomes

Km(xp) = Kppm(xp)
= Jm(xp)Ym(x€) — Y (xp)Jm(x€) (A2)

by the well-known theory of Fourier-Bessel series [1]. For this case, the inverse formula, is

K 2

m? xXaJa(x

fDD 72 J kag sz)(X ) (ng)}CDDm(XkP) y (A.3)
k=1

where K denotes the summation limit, in general K — oo, while y; are positive roots

(zeros) of the transcendental equation:

fm(x€)=})grr}’CDDm(xp) =Jm(X)Ym(x€) — Yo (x)Jm(x0)
=0 . (A4)
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For TE waves, the kernel of transformation

Km(xp) = KnNm(xp)
= Jm(xP)Ym (xt) = Y (xp) I (x£) - (A.5)

The inverse formula for this case is given as

fan(p) =
2 2 J! 2
= %— sz[ m(Xt)] 5 —F (X O)K N Nm(XRP) 5
=1 [ 00121 = (2) ] = [Im0a)] 1= (32) ]
(A.6)
where xj are roots of the transcendental equation:
. OKNNm
fm(xt) = lim #(Xp) =X [T ()Y (x0) = Y () T (x0)
=0 . (A.T)

Discrete roots of equations (A.4) and (A.7) x; are found by the numerical procedure
described in the article. Index & in (A.3) and (A.6) is identical with index n in (1) and (2),
if computed eigenvalues xj; are known with the uncertainty equal to zero. However, the
uncertainty existence in the determination of eigenvalues implies that xx # Xn, therefore
the use of k is reserved for eigenvalues computed with errors. Expansions (A.3) and (A.6)

represent one of two possible expansions of functions fpp(p) and fyn(p) in each region,

respectively [3].




Fm(xis £jg1) <0 — g =0

D ny | 1 | na | na Gll=Cr&S3 =1 initial state
1 01010730 Gt7:;1 - G:t;,z =G4, =1 goal state
2 0(010]1 . 7 ’

3 0{0[1]0 Gaqg—i=i+1, k=k

4 00 1}1 For the adjacent grid sides:
5 011(01]0 St = st

6 0|10 1 St =51

7 01|10

8 gf1i1il

9 1101070 Fm(Xi+1, £j41) 20 = n3 =1
10 1 (0|01

11 10|10

12 1 10]1}1

13 1|11101]0

14 111071

15 11110

16 11 |1]1

fm(xi, £45) <0 —n; =0

Jm(Xit+1, £5) <0 = ny =0

Fig. 1

Demonstration of the grid function Gy 4 for a grid along the search path. The table
presents generation of the index p by nodal values ny, ns, n3, ng.
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TRANSCENDENTAL FUNCTION
ORDER OF FUNCTIONS: 100
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Transcendental function fi(x,£) and its zero contour projected onto x — £ plane.
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ZERO—CONTOUR PLOT
ORDER OF FUNCTIONS: 1.00
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Fig. 3

2-D representation of the solution of the transcendental equation fi(x,¢) = 0.
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Roots of the transcendental equation fi(x,£) = 0 with the uncertainty 40.0001 for

the D-D case.

85

Roots x;, of the transcendental equation
Ji(x1n)Y1(X1n€) = J1(X1n8)Y1{X1n) =0
n | £=0100]£=0250)£=0333|£=0500|¢£=0.667 | £=0.833
1 3.9502 4.4502 4.9252 6.4003 9.5005 18.8509
2 7.3254 8.5254 9.5255 12.6006 18.8759 37.6269
3 10.7505 12.7006 14.2257 18.9009 28.3264 56.4528
4 14.1757 16.8258 18.8759 25.1512 37.7269 75.2287
5 17.6509 21.0260 23.6012 31.4516 47.2023 94.0797
6 21.1010 25.1763 28.2764 37.7019 56.6028 112.8556
7 24.6012 29.3764 33.0266 44.0022 66.0533 131.7066
8 28.0514 33.5517 37.7019 50.2775 75.4788 150.4825
9 31.5516 37.7519 42.4271 56.5778 84.9292 169.3334
10 35.0017 41.9021 47.1023 62.8281 94.3297 188.1094
11 38.5019 46.1273 51.8526 69.1284 103.8052 | 206.9353
12 41.9521 50.2775 56.5278 75.4037 113.2056 | 225.7363
13 45.4773 54.5027 61.2531 81.7041 122.6561 | 244.5622
14 48.9274 58.6529 65.9533 87.9544 132.0816 | 263.3630
15 52.4526 62.8781 70.6785 94.2797 141.5320 | 282.1887
16 55.9028 67.0283 75.3537 100.5300 | 150.9325 | 300.9900
17 59.4279 71.2535 80.1040 106.8303 | 160.4080 | 319.8157
18 62.8781 75.4037 84.7792 113.0806 | 169.8085 | 338.5918
19 66.4033 79.6290 89.5045 119.4059 | 179.2589 | 357.4424
20 69.8535 83.7792 94.2047 125.6562 | 188.6844 | 376.2187
21 73.3786 88.0044 98.9299 131.9566 | 198.1349 | 395.0696
22 76.8288 92.1546 103.6302 | 138.2319 | 207.5353 | 413.8455
23 80.3540 96.3798 108.3554 | 144.5322 | 217.0108 | 432.6965
24 83.8042 100.5300 | 113.0306 | 150.7825 | 226.4113 | 451.4724
25 87.3293 104.7552 | 117.7809 | 157.1078 | 235.8618 | 470.3232
26 90.7795 108.9054 | 122.4561 | 163.3581 | 245.2872 | 489.0994
27 94.3047 113.1306 | 127.1813 | 169.6584 | 254.7377
28 97.7549 117.2808 | 131.8816 | 175.9088 | 264.1379
29 || 101.2800 | 121.5061 | 136.6068 | 182.2341 | 273.6133
30 || 104.7552 | 125.6562 | 141.3070 | 188.4844 | 283.0139
31 || 108.2554 | 129.8815 | 146.0323 | 194.7847 | 292.4641
32 || 111.7306 | 134.0317 | 150.7075 | 201.0600 | 301.8899
33 || 115.2307 | 138.2569 | 155.4577 | 207.3603 | 311.3401
34 || 118.7059 | 142.4071 | 160.1330 | 213.6106 | 320.7410
35 || 122.2061 | 146.6323 | 164.8582 | 219.9360 | 330.2161
36 |[ 125.6813 | 150.7825 | 169.5584 | 226.1863 | 339.6167
37 || 129.2064 | 155.0077 | 174.2837 | 232.4866 | 349.0920
38 || 132.6566 | 159.1829 | 178.9839 | 238.7619 | 358.4927
39 || 136.1818 | 163.3831 | 183.7092 | 245.0622 | 367.9431
40 || 139.6320 | 167.5583 | 188.3844 | 251.3125 | 377.3687
41 § 143.1571 | 171.7586 | 193.1346 | 257.6375 | 386.8191
42 || 146.6323 | 175.9338 | 197.8099 | 263.8879 | 396.2197
43 || 150.1325 | 180.1340 | 202.5601 | 270.1880 | 405.6951
44 || 153.6077 | 184.3092 | 207.2353 | 276.4387 | 415.0955
45 || 157.1078 | 188.5094 | 211.9606 | 282.7637 | 424.5461
46 || 160.5830 | 192.6846 | 216.6608 | 289.0144 | 433.9714
47 || 164.1082 | 196.8848 | 221.3860 | 295.3145 | 443.4219
48 || 167.5583 | 201.0600 | 226.0863 | 301.5898 | 452.8225
49 || 171.0835 | 205.2602 | 230.8115 | 307.8899 | 462.2979
50 || 174.5337 | 209.4354 | 235.4867 | 314.1406 | 471.6985
Tab. 1.1




Roots Y, of the transcendental equation
Jl(Xln)YI(Xlng) - Jl(Xan)YI(Xln) =0
n £€=0.100 | £=0.250 | €=0333[£=0500[ £=0667 | £=0.333
51 178.0589 | 213.6357 | 240.2370 | 320.4656 | 481.1489
52 181.5340 | 217.8109 | 244.9122 | 326.7161 | 490.5742
53 185.0342 | 222.0361 | 249.6374 | 333.0164
54 188.5094 | 226.1363 | 254.3377 | 339.2017
55 192.0096 | 230.4115 | 259.0625 | 345.5918
56 195.4847 | 234.5617 | 263.7629 | 351.8425
57 199.0099 | 238.7869 | 268.4880 | 358.1675
58 202.4601 | 242.9371 | 273.1636 | 364.4180
59 205.9853 | 247.1623 | 277.9136 | 370.7183
60 209.4354 | 251.3125 | 282.5889 | 376.9687
61 212.9606 | 255.5377 | 287.3389 | 383.2939
62 216.4358 | 259.6877 | 292.0144 | 389.5442
63 219.9360 | 263.9128 | 296.7395 | 395.8447
64 223.4111 | 268.0632 | 301.4399 | 402.1199
65 226.9113 | 272.2883 | 306.1648 | 408.4202
66 230.3865 | 276.4636 | 310.8655 | 414.6707
67 233.9117 | 280.6636 | 315.5903 | 420.9958
68 237.3618 | 284.8391 | 320.2659 | 427.2461
69 240.8870 | 289.0391 | 325.0159 | 433.5464
70 244.3372 | 293.2146 | 329.6914 | 439.8218
71 247.8624 | 297.4146 | 334.4163 | 446.1221
72 251.3375 | 301.5898 | 339.1167 | 452.3723
73 254.8377 | 305.7898 | 343.8418 | 458.6978
74 258.3127 | 309.9653 | 348.5422 | 464.9480
75 261.8376 | 314.1653 | 353.2673 | 471.2483
7 265.2881 | 318.3408 | 357.9426 | 477.4988
77 268.8130 | 322.5657 | 362.6926 | 483.8240
7 272.2634 | 326.7161 | 367.3682 | 490.0742
79 275.7883 | 330.9412 | 372.1184 | 496.3745
80 279.2639 | 335.0916 | 376.7937
81 282.7637 | 339.3167 | 381.5188
82 286.2393 | 343.4670 | 386.2192
83 289.7390 | 347.6919 | 390.9443
84 293.2146 | 351.8425 | 395.6445
85 296.7395 | 356.0674 | 400.3699
86 300.1899 | 360.2178 | 405.0452
87 303.7148 | 364.4429 | 409.7954
88 307.1653 | 368.5933 | 414.4705
89 310.6902 | 372.8184 | 419.1958
90 314.1655 | 376.9937 | 423.8960
91 317.6655 | 381.1938 | 428.6213
92 321.1409 | 385.3691 | 433.3215
93 324.6658 | 389.5693 | 438.0466
94 328.1162 | 393.7446 | 442.7219
95 331.6411 | 397.9448 | 447.4722
96 335.0916 | 402.1199 | 452.1475
97 338.6165 | 406.3201 | 456.8977
98 342.0920 | 410.4954 | 461.5730
99 345.5918 | 414.6956 | 466.2981
100 || 349.0674 | 418.8708 | 470.9983

Tab. 1.2

Roots of the transcendental equation fi(),¢) = 0 with the uncertainty +0.0001 for

the D-D case. 56




