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Introduction: D. Marcuse [1] has derived a power loss formula to
calculate the power losses from an electromagnetic wave traveling down
8 tapered dlelectric rod. He first considers the losses at a step and
then approximates the tapered rod by a series of steps. He assumes
that, when the radius of the rod is a, the constants describing the bound
mode will be the same as for an infinite rod. When the radios changes,
so do the coefficients. Further, there Is an additional change due to
power taken from the bound mode and converted into the radiation
modes. For a full discussion of the model, the interested reader is
referred to [1]. Here, we are concerned only with the numerical
integration of his formula.

In order to understand his formula, it is necessary to Include lengthy
abstracts from Marcuse’s original paper. To begin with, the bound mode
fields inside the rod are:

E‘z =A .Ty(xr) cos (1)
H, =B I (xr) sin(vg)
Er = —I/KZ {xﬁOA Jl: (xr) + w u B y/r .Ty(xr) } cos(ve) (1)
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E,= /2 By Av /r 1) vewpB 1! ) } sinlp)

H
r
He
While the Fields outside the rod may be written:

= -1/ P oPw ey A v/r T ba) +x B B 1! (xr) } sinG)
= /i (oxwegA T ) + BB v/r 1) } cost)

E= c Hyl (iyr) cos(vg)
H, =D H, L (iyr) sinlv)
E.= 1/72( inOCHyl'"(iyr) +wuv/r DHvi (1yr) } cos(ve) 2)

Ed> = -i/yz [ ,Bou/r CHvi (iyr) + iwprHyi (1yr)] sin(ve)

H = 1/v2[ wegu/T cH iyr) +inODHy1' (1y) ] sin(vg)

H¢ = l/yz [ 1yweDCHV1 (iyr) + Bpv/T DHyitl'yr)] cos(v¢)

It is necessary that these fields satisfy the usual continuity conditions
where they meet, namely that the tangential components of H and E are

continuous and the normal compenent of D. This gives rise to the

"eigenvalue" equation (We speclalize to the lowest order mode, v=1)
2 2 1 1
{n ay“/x [ Jo[xa)/JI(Ka) -1/xka] +yatHy (tya)/H, " (tya) - 1} ol
{ayz/x[ 1plka)/1 ka) -1/xka] +yai Hyl tiya) /H, iya) - 1}

= [ (2-nBgk/E 17 3)
where K% = 47r2f2poeo
Bo= the solution of the eigenvalue problem

2_ 2,2 52
x“=n"k"-B H=pe ¥ K
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n2= the dielectric constant

72 = Boz-kz Hp. = relative magnetic permeability

H = ity ya) H, Liya)

When this equation is satisfied we can compute the values of A and B and
therefore the fields inside the rod from:

B/A = Ve iy ka (ka)? [ ? fxa Upka)/T,(ka) -1 /xa} +
1/ya (Bi/ya} ]/ Bpatie/yh] (@)
and
p=m/4 *
[kﬁo/x4*{[xa)2[ 3o ka) + 1 2 kal] 21,2 (xq) }*
(nP+ug/e B2/A%)
+ ko Y (ya P (10} 42} % 7 P (ea) *

(1 +pg/ey 82/A%)

+2 Vig/eg B/A L8P 4n?k 0/ - 8 20 Y 1 %00 1 (9

*AVey i

The equations thus far describe the "so called” bound mode. In
addition to this, radiation modes will be created by the taper and, if we
write:

02=n2k2-
2=k2- BZ

82

p
Then:

EZ =F Ju(ar) cos v

Hz =G Ju(or) sin v
E. = —1/02 {08 F I (o) + wpv/r G I (or) } cos vg
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Eg = 1/a% (Bu/r F I (or) + opw G I, (or) } sin v (6)
H. = -i/cr2 { nzweou/r F .TV[ar) + 08 G JL' (or)} sin v

r
H¢ = —i/c,r2 { nzoweo F JL‘(or‘) + 8v/r G .Tu(ar) } cos vo

give the radiation modes inside the rod while:
Ez =[H .Ty(pr) + 1 Yu(pr) ] cos vo
Hz= [K Jy[pr‘) + M Yy(pr) ] sin v¢ (7
E.= -.i/p2 {pB[ H JL (pr) +1 Y:) (er) ]
+owpv/r [K Jy(pr) + M Yy_[pr)] } cos v

= i/pz {Bv/r [H Jy(pr) +1 Yy(pr) ]

s
+pwp K I (pr) + MY, (pr)] } sin v

H. = -1/p° { wegr/r [H I (pr) + 1Y (pr) ]
+p8 [KI) (pr) + MY (pr) ] } sin v
= -1/p2 {pweo [HI)(pr) +]1 Y, (pr) ]

Ho
+ Bv/r [K Jv(pr) + M Yy(pr)] } cos v

give the flelds ocutside the rod.

Let: ,
b = p/o 11 (oa) YI[pa)
¢ = (P-1kB/ apo® 1,(oa) Y, (pa)
d = p/o J; (oa) Ji(pa) (8)

e = Jloa) 7} (pa)
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F = (n-1)kB/ apo? J,(ea) 1, (pa)

0q
i

= J,(oq) Y1' (pa)

Then:
FIG = +/- Vigey / (gt +e-d? +c24F2 (9)

(g-nb) 2+ (e-n2d) 242 472
and
Pe(as2)342 2 2
=(r/2)"a“B8/p meo[ [g-n°b +cV '“O/GO G/F]° +
le-n’d +ig /ey G/

[e +(g-B)Vip7e, G/A)2 (10)

[F +e-dVig7e, G/F 12 } F2
where F and G are the analogs of A and B in the bound modes. The

Square root in the first formula introduces an ambiguity of sign which
we shall comment on later-.

For the present, we compute the four partial derivatives:

i 2 22
3q =TP/2 [ {a(a n"p%) /o Jy(oq) [Yo[pa)- Y (pa)/pa ]

+ [ 2/pa -pa +n2(pa-2pa/0202)] Jyloa) Y

1 (PQ)
+[n2p2/02-1] J4(oa) Yq(pa) } F

+(n2~1)k25/weoc72p * (11)
{alo(oa) YI (pa) + pJI(aa) Yo(pa)

-2/aJ1[aa) Yl(pa) } G J
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al = -1p/2 [ {cz(o -n“p %/a Jgloa) {JO (pa)-7 ; (pa) /pa }
+[2/pa-patn (pa—Zpa/a o ) 17,l0a)d, (pa)
+[n p /cr -1) J (oa) JO(pa) }F

+n2-DkPB/wego’p * (12)

{o]o (oa) 1, lpa) +p 1;(00) Jylpa)-2/a ] jloa I, (pa) } « ¢]
K = np/20 (-2 [
8 / wupo { 01n(00) Y 4(pa) + pJ o0 Yolpa) 2/a1;(00) Y 4(pa) } F
+ {a.TD (oa) ( Yolpa)-Y (pa) /pa ) +2 / pom T (oa)Y  (pe) (13)
-1/0 1, (0a)Yqlpa) } *G |

%[;-/—I = -.51p/0C [n2—1)k2 [B/w,upcr
{OJ 0 (oa) Iy (pa) +pIy (oa)] 0 (pa) -2/a ] L (ea)I, (pa) } F

+{ aln(oa) [Jo(pa)-.'fi(pa)/pa] (14)

+2/poa Ii(cra).Tl(pa) - 1/0 Ji(aa)IO[pa)
}ox el

And now we are in a position to compute the first integrand:

™
I(p,a) = —‘;—2—7—};‘ Ty lem) *
Py
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& 3
{ Bgtarvee € ga & 4y p 2K
o 1 1
. YIgleal+ pl, (pa) iHy" (iya) / H, ~ (iya) ) Ty (pa)
) —
v e YP
al aM
+{ (Jgo'*'ﬂ)'YP“-’ [EOABE +POBSE—) P (15)
¥Y(pa)+pY ; (pa) 1Hy  (iya) / H, Liya) Y, (pa)
[2 V. -
Y+ P

Wasep [0 408 1y + A Bn L v, e ] )

Corresponding to each choice of sign for the square root In equation 9,
there will be a function, I(p,a). By 1 +[p,a) we mean the function
corresponding to the positive choice of the sign and by I_(p,a) we mean the
function corresponding to the negative choice. %‘his corresponds completely to

the even and odd symmetry present in the slab dielectrics. Now
calculate:

P =[5 1, (p) 2/ () expl- 1 [ % (B,B) ds ] dz (16)
qW)= o~ Lpa) a'@ epl-1 [, By ds] dz (17)
And then the fractiomal power loss is given by:

8P/P = § (1o + 192 I81/p d8  (18)

The Eigenvalue Equation: The first step In Integrating this expression
is the evaluation of the integrand and this begins with a solution of the
elgenvalue equation. In practice it was found easier to solve for Yy (=

\_/ﬁO - k™ than for Bpbecause there is one roct at Y =0 and we are
looking for the smallest positive root. The function on the right was
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expanded in a power series in the two variables ya and In(ya), as shown
in appendix 1. (See also [2] and [3].) Cnly the lowest order terms were
retained and the resulting formula led to the approximation

2 In(kpa)
_ n“+1 00
ya=1.123 exp [} PRI PCAE

This formula was extremely accurate for ka ¢ 1 and provided a useful
starting point for an iteration scheme whenever k2 was less than 2.4

(ie: the first zero of the Bessel function), that is: as long as all higher
order modes are choked off.

When the elgenvalue Is determined, the bound mode is completely
described by equations (4) and (5). In the calculation, fifty values of v,
A and B were calculated at polnts spaced at ecLual intervals down the
rod. These values were then stored in a table to be used as needed.

The Singularities: With the bound mode available, the inner integrand
may be calculated from equations (7)-(14). A value of 1(p,a) is needed
for each value of 8 from -k to +k inclusive. At each of these (end)
points, p = O, the denominator of (18) vanishes and a singularity (which
ust be dealt with) is created. 1t is to be hoped that p(,c% and q(p) will
be proportional to Vp or better. Unfortunately equation (14) does not

have Vp but 1/ p2. Now a factor of ps/ 2 must be sought from the rest
of the terms and the search leads us a merry chase. The details are
included in appendix 1. When lpl and |q| were plotted for values of 8
close to k, the graph rose steeply. (Indeed, it was this that led to the
calculations descriged in appendix 11.) After the results of appendix 11
were available, the integrand was calculated for values of 8 each of
which was only half as far from k as its predecessor. The graph rose
sharply revealing a burst of power very close to B = k. The
preliminary calculations had missed this entirely and underestimated
the power lost. With the aid of appendix 1I, the revised calculations
used much smaller steps near 8 =k and were much more accurate as we
shall show.

Ancther, albeit simpler, singularity was found at 8 =0. It was
easily mended. Now a straightforward Simpsen’s law integration
scheme could be (and was) written. It worked moderately well for
chort rods but failed utterly when applied to long rods. This led to an
investigation which showed that the problem lay in the periodic nature
of the integrand.

The Inverse Square Law and the Validation of the Program: Starting
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with the power loss formula:

AP/P = § Clpl? +191%t 181/pd8 (18)

where:
PP = o 1,2 2’ @ el 1 [,% By ds] e (16)
1= [g~ Lipa) a'te) epl-1 [5% By ds ] dz (17)

If z is large, so is the argument of the imaginary exponential function
and that creates the problem. The period of the integrand is small
compared to the spacing, Ax. So we wind up taking a quasi-random
sample of the integrand.

Let us suppose that the antenna is self-similar In that the radius
depends only on the ratio x=z/L.. Substituting this in the integral:

ple) = o' 1, bl L expl-if* [Bylald) - £ L ds} dx
Now set u= ]ox [Bo(a[x]) -81lds.

u

1
(p) = ¢(u) exp(-iLu} d (19)
where PP fo 2 t d

o) =1,0p, alxh) B / [Bplabh -8 (20)

and the quantities to be evaluated are understoed to be functions of u.
Integrating by parts and multiplying by L:

Q u
Lplp) = 1 exp(-ila) ¢() Iy * -1 [y * ¢lu) exp(-iLu} do
Lplp) = 1 exp(-iluy} ¢lug) - 19(0) -IT

and Lqlp) =1 exp{—iLul} Wluy) -ig(0) - 1T_
L2AP/P=

S 0%) + 920 + ¥Ry + w0 181/p d8
k i i
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‘_kfk [ pluy) (T expliloy) + T+*exp(-1[_u1) }

+glay) (Texplilug) + T fexpl-iLuy) )
e (T, + T,

*
wo) (T. + T}

T,°T, +TT 181/ p 48

Now the limits of T and T_ as L goes to Infinity are both zero as
noted above and the third integral grows smaller as L grows larger. We
claim that the same s true for t second Integral as well. Observe

that the integrand :
{dluy) (@) + wluy) w@ P18l /P

is continuous except possibly at 8=0 and p=0. By appendix 11, even in
these three exceptional cases the inte rand is continuous . Accordingly
the integral goes to zero (Riemann- Lebesgue Lemma )

Hence, as L goes to infinity, L.ZAP/P approaches:
K62ty + 620 +¥Py + VIO ) 18I /p 0B

and by using this formula we can compute the value of the constant
appearing in the inverse square law. The agreement initlally was not
very good, and a more sophisticated integration — the one of van der
Vooren and van Linde [4] (which owes some filial respect to the scheme
of Fllon ) was introduced.. This scheme ls designed for integrating:

2N
0 S F(x) cos (wx) dx

2Nr
and f f(x) sin(wx) dx
0

by approximating f (x) by an appropriate polynomial.

The first hurdle that we must clear In order to use this scheme
stems from the fact that our integral is not exactly In this form since

175



u, is not, in general, a multiple of 2r. So we choose N to be the
greatest integer that does not exceed u,/ 2rr . The integral from 2nor
to u, Is then found by a Simpson Law scheme. Before evaluating the
remainder by the van der Vooren - van Linde scheme, we have one more
burdle to cross. This scheme requires that the Integrand be evaluated
at Integral submultiples of 2Nw. But u must be constructed from a
numerical Integration scheme and the values of u that are avallable are
not always at the required points. To overcome this difficulty, the
most stralghtforward imaginable solution was used: linear
Interpolation. We did not have time to carry out a thorough analysis of
the errors involved in such a scheme, but we did test it by generating a
value of u from the quadratic function:

u=2rx -7rx2/10

By setting x = n/5 for n=1 to 50, we generated a table of values of u
The following four integrals were then evaluated:

10w 5 10w 5
11 =5 § u” cos(u) du 12 = D§ u” sin(u) du

10w 4 10r 4
13 = § u cos(u) du I‘1 = § u’ sin(u) du
0 0

in three different ways. The first was a straightforward application of
Integral calculus and repeated integrations by parts (exact). The second
used the vdVvL scheme just as it stands and the third chose a value of u
as the scheme demands, but then Interpolated linearly In the table to
find the value of z and then got back to u from the interpolated value of
z by using the formula. The results are In the table below:
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exact vdVvlL mod. vdVvL

1 48112369x107 .48218x107  .48183x10”
1, - 29985613108 -.29986x108 -.29983x10®
15 1232712x108  .12340x108  .12332x10°
1, _95224739x10° -.96225x10°  -.96214x10°

The modified scheme does not seem markedly inaccurate - the
errors are all less than a quarter of a percent. To obtain exact error
bounds B complete analysis would have to be undertaken and the results
might well be too complicated to apply to our problem in any simple
way This table seems sufficient to us to warrant our confidence in the
results cbtained by the use of this scheme.

Tt was hoped that the introduction of this scheme would remedy all
the problems and bring the long antenna results and the Inverse square
law results together. This did not occur and a further search revealed
the power spike just below 8 = k alluded to earlier. When both
programs were corrected to use much smaller steps near 8 =k, the
desired agreement was forthcoming, as the following figures show.
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FRACTIONAL POWER LOSS [AP/P]— »

101

1072

1073

1074

1075_

1076

EXPONENTIALLY TAPERED
RODS. DATA OF D. MARCUSE

nZ = 2.05

amax / amin =2.0

k a =2.5

max

O«—POINTS CALCULATED FROM

MARCUSE’S FORMULA

©)

— INVERSE SQUARE
LAW PREDICTION

20

I
100 500

L/a —
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FRACTIONAL POWER LOSS [AP/P]— >

MARCUSE’S DIELECTRIC ROD
CALCULATED POWER LOSSES
AND
INVERSE SQUARE LAW PREDICTIONS LINEAR TAPER

10_1 n2 = 2.05
O g max / 8min =2.0
k B ax =2.5
_ INVERSE SQUARE
) LAW PREDICTION
1072
1073

100 500

L/a —

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P]—>-

n%=1.2
Linear Taper

amax'_' -0642"\ f = 4x 109HZ
Amin= .0315m
1071
©)
- INVERSE SQUARE
LAW PREDICTION
1072
1073
10~4 , : .
10 100 1000

L/a ———

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P]—-

n2=1.2
Exponential Taper

dmax*= -0642“’\
amin= .0315m
f=4x10% Hz
1073
|
©)
1074
INVERSE SQUARE ~
LAW PREDICTION
1073
O]
1076 : , ,
10 100 1000

L/a —

(O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS (AP/P) ——-

n2=1.5

Linear Taper
dmax*= .04057"’1
@min=.024748m

f=4x109 hz
1072
O

INVERSE SQUARE
1073 “ LAW PREDICTION
104
1075 : , ,

10 100 1000
L/a ——

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P}—

1074

1075

10§

1077

n2=1.5
Exponential Taper
amax= .04057m
amin = .024748m

f= 4)(109 Hz

INVERSE SQUARE
/LAW PREDICTION

10

100 1000

L/a —

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS (AP/P) —-

n2=2.56
Linear Taper
amax = .02297m
amin = -013047!’“

f=4X 109 Hz
1071
0 o
©)
102
©)
INVERSE SQUARE ~
LAW PREDICTION
1073
©)
10-4 T T L
10 100 1000
L/a ————

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P}—>

n2=2.56
Exponential Taper
dmax= .02297“‘\
Amin = .013047"’\

f=4x10%Hz
1073
O]
1074
©
INVERSE SQUARE -~
LAW PREDICTION
10758
©)
1076 : , \
10 100 1000

L/a —>

(O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS (AP/P) —

n2=10

Linear Taper
Amax=.009563 m
@min=.0069332m

f=4x10%H;
1.
O]
107,
©)
P INVERSE SQUARE
LAW PREDICTION
1072 ' o)
1073 . ' \
100 1000
L/a ———

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P}——-

n2= 10
Exponential Taper
dmax= .009563"1
amin = .006932m

f=4 X109 Hz
1073
1074
©)
/\NVERSE  SQUARE
LAW PREDICTION
1075
1078

© Calculated directly from Marcuse’s Equations
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APPENDIX 1

{ yzaz J:’:(Ka) . 1 Hyu)' (iya) } .
Ya —‘—(T'_'
xa Jv[xa) Hy 1 (1ya)
[
{ n2y?a? I (ke) x 11 ya)
+ Yya } =
ka I (xa) Hym (1ya)

VZ (n2_ 1) 2.2 BOZ

4
K

This Is the equation that determines whether the M made can
propagate down the rod. A careful study of this equatlon will reveal that
it is not possible to satisfy it for arbitrary v and a. Indeed unless a has
a certain minimum value, there will, in general, be no solution. The
only exceptlon to this rule 1s the case v=1, where the above equation has
a solution for all values of a. Accordingly, v=1 is the lowest order
mode that can propogate down the rod (lower than v =0 1). 1f we
specialize to this case, the resulting equation becomes:

nzazyz { Tglka) 1 } N lHOu)(lya) ) N
- — a -
[ Ka .Ti(xa) ka v l—{iu;uya) : ]
az'yz { Iq(x2) 1 } N lHou)[l'ya) .
- a -
Ka J { (xa) Ka Y H1 (1) (1ya) ]

where the derivatives of the Bessel functions have been eliminated by
using well known identities (cf. Abramowitz and Stegun(S))
e can expand the Hankel functions as follows:

Ya
1YBHO(1)UYB) / Hi(i)(lya) = - yzaz (yy + ln[—z——) + O(yzaz)
where y, Is Euler’s constant. This expansion is not, strictly speaking,
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a valid Maclaurin series for the Hankel functions, since the natural
logarithm term is extremely large near ya = 0. But we will make the
substitution anyway, leading to:
2.2 2
2 2 a o-ya” 2
{i—y a“lln(—%-) + y) + e ty +0O(y“) }

22 2.2
B R

0
2-1)2k2 [kz'*'YZ)

(n

[0%-1)k2-y2)2

JO (Koa) 1 }

t,= —_— - —

Iy (Koa) Kna
Expand the left hand side in a power series in ¥a and subtract the
right hand side to obtain:

142/(n%-1)
K2

2
+ 2y +2 I 5 (”K—*:l t, = O3
. 0

(where k™ = ka) and in view of the behavior of the logarithm near y=0,
this equation cannot be satisfied unless

2 2
a n~+1 n~+1 %2
lnyz— ——['yi+—z<o—at1+2—nzi—k ]
And,if this equation is solved for ya, we get:
2
n-+1 .TD[KOa)
Ya = 29xp(—yi) exp(-
ZKOB Ji [KOB)

This is a very useful approximate formula for computing the
solution to the eigenvalue problem. As the table below shows, the
results are quite good for small values of ka and even for large values
they form a good starting point for an iteration scheme.
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TABLE 1I

va (computer calculation)

ya (formula)
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APPENDIX 11

We now return to the expresslon for I{p,a) glven by formula 15.
Corresponding to each choice of sign for the square root in equation 9,
there will be a function, I(p,a). Byl +(p,a) we mean the function obtained from
the positive choice for the sign and by 1 (p,a), we mean the function
corresponding to the negative choice.” Now calculate:

P =[5 1, (pa) a' () el 1 f)® By-A ds] dz
1= fy" 1(p,a) a' ) expl- 1 Jg* BB ds] dz

And then the fractional power loss will be glven by:
aP/P = f*(1g? +pI2} 18] /p a8

Now since p = \_l(kz-ﬁz ) » it is clear that this last named integrand
has a singularity at each end polnt of the Interval of Integration. This
singularity is rendered doubly difficult because each limit as 8 approaches
k or -k must be handled separately for each choice of sign for F/GC.

Lim I (p,a) /V
g + p

ﬂ[=—i>m-k I+(p,a) / YP

Lim I (p,a) / Vp
8=k

Lim 1(p,a) / Vp
B =k

vanish. To see this we shall outline the derivation for the first of

these four limits, since that is the most difficult of the four. First
we show:

lim F/G =V_€O7p
8=>k
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and, then:
lim [F/G Ve/pl/p =L, =0
0 1
B=>k
With the aid of these, we can show
lim [ In(p) *F/p /21 =F, =0
A=k
And now we are prepared to look at the integrand To save writing,
%*
we will use H in place of iHO (Jya)/['-l1 [wa) Then

lim I(p,a)/\/p = lim 7], (ka) / 4 P YZ 5/ 24
B=>k B=>k
*
vIn(pa)+H pl, (pa) T, (pa)
{ (ﬁO+B)YP (wegA SH + wuB3aK) *l— 0 — 1 1 ]
da da - Yo +p vp
*
YYqlpa)+H pY,(pa) Y, (pa)
+ (Ba+B)vplwenASl + wuBAM )* |a -
o+AYplwegARL + wuBlh [ Z a2 - ]

B AK +BOH )T, (pa)  + (A M +BA1)Y, (pa ]

This limit gives rise to the following four limits:

*
_ vIA(pa) + pJ, (pa)H I, (pa)
Ly=limp 5/2{ (By+8) ypwendt l' 0 > 21 - 1
, da Y +p YP
+(k“+8,8) gf_( I, (pa) }
a

_ yY (pa) + pH Y [pa) Y, (pa)
Ly= lim p>/2 (BB vpeeg 81 [‘ A
Bp=k Yo +p Yp

+kZ+8,BM Y, (pa) }
da
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VAl nlea) + pH*J 1 (pa) _.I 1 (pa)

Ly = lim p-S/Z{ (BO"'&YPQ}J?E [a

B=>k Y vp

+(+BBT  (pa) BH )
da

*
Yolea)+ pH Y, (pa) Y, (pa)
Ly = lim p-S/Z{ (BptB8)ypwy 8M [—a Ll ki 1 S R

8=k da y2+p2 PY
2
+I4B8)2L Y (pa) |
da
Then the limit of I(p,a)/Vp will be
Ig =, (<a)/ (4y2P) {A[L1+L2) +BlLgtl,) }
Ly =Ly +L,"
L= lim p-s/2 ,—(BD-{-,B)ypweO 3H _]*
By=k - 3a
*
{ Vol nlea) +pH T 1 (pa) J 1 (pa) a
a - -
7 }
Y+ pY 2y
=0

- v — e =572 2
Li=L,"= limp (BntB)wenap/2y8H +(k“+ B) I, (pa) 3K
1 1 B=>k { g 0 da '80 LPe da }

= .25 maF, LMV Yy

LY=0
Y, (pa)
pa

Lliii = lim| ln[p)]_i* { cra.TO(oa) - ZJi[cra) P
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[-BgtBlweg + (By+H) (n%-1)k28G/F/a” +
2 +808 { 21, (pa)/p5} {8/0n)} {(nz-i)kz/az}

- (48,8 {2J1 (pa) /pa } G/F

L= 2/ ra? *[ ogalylogal - 21, (0ga) 1 * LMLy

L, Y= 1im{ (B+88) (21, (pa)/pa] [07-1k%/0) [8/pl-(By+B g}
B=>k

6% In(p)

L, =0
Ly = lim (8 +8) 2-1)k?/0% B G/F -Z+8,8) G/F [21, (pa) /pal}
B=>k

5% Inlp)

L.ivn=0
Y (pa)
=.25 ma F * lim

g=>k In(p)
{ [ﬂO+B)weO[ oa.TO (oa) - .I1 (oa) ]

Ly

+(B+Blwey*n2-1)% /a? B/ wep G/F 1, (oa)
2 2 2
+(k“+8,8) [21, (pa)/pa] [ (0"-1) k2 /o) [8/wp] I, loa)

+02+8,8) 21, (pa)/ pa] [(0%-1)k?/0%] G/F *
[ oaly(oa) - Ji(aa) ] }
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L.1= Fia opalgloa) (By+k)k v €q/H
L3 = Fl k [ﬂ0+k)aoa10[aoa) a

L4= = L.3
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