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ABSTRACT

This paper presents a new technique for characterizing the electromagnetic interaction with
and scattering from objects of finite extent. By exploiting the structure of the operators
in this case matrices) associated with the interaction, it is shown that both the system
impedance) matrix and the transfer (admittance) matrix can be partitioned into the sum
of two matrices such that each of the resulting matrices can be decomposed into a set of
normal modes. As a result, the number of parameters needed to describe the interaction is
now significantly reduced and the parameters identified by this technique are model
independent, i.e. they are measurable parameters. Potential applications of the technique
include EM computations, compact descriptions of scatterers and antennas, interpretation
of measured data, and algorithm development applicable to scattering and inverse
scattering problems.

INTRODUCTION

There are a number of numerical methods available for determining the induced
currents on or fields scattered from a wide class of objects. Direct applications of all of
these methods — which include method of moments, finite element, finite difference, etc. —
yield interaction or scattering representations which are exclusively in terms of a large
number of abstract parameters (model dependent parameters). Although, in principle,
these parameters can be related to the measured or observed parameters (model
independent parameters) of the interaction, this usually is very difficult to accomplish
when it can be done at all.  This disparity between measured and model parameters
significantly reduces the utility of these models for most applications to practical problems
other than as computational tools for specific cases.

This requirement for an "observable parameter based EM model" is not new and
has provided the impetus for considerable research in the area. Two methods resulting
from this research are worth noting. The first of these methods is the Eigenmode
Expansion Method (EEM) which is simply a re—statement of the fact that a non—normal
matrix, say Z, can be diagonalized by a similarity transformation or

e = TZT (1)

where the elements of the diagonal matrix e are the eigenvalues of Z, T is the matrix of
right eigenvectors and T-1, the inverse of T, is the matrix of left eigenvectors. If Z is the
impedance matrix obtained by application of the frequency domain method of moments
formulation to an antenna or scatterer, then not only is Z a function of the frequency, f,
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but in general, e and T are also functions of f (usually complicated and irrational
functions). The only real advantage of this formulation is that each eigenvector (T)j is
orthogonal with respect to all other eigenvectors (T)x.

The second method worth noting is the Singularity Expansion Method (SEM)
[Baum (1971)]. It is intimately related to the EEM method in that it decomposes Z (the
system matrix) or Y = Z7} (‘{he transfer matrix) into a set of time invariant vectors
(independent of f or the complex frequency s) and a diagonal matrix representation that
contains all of the time or frequency dependence. For the interior problem with only
ohmic losses érestricts Z(s) to be second order in s), it is straight—forward but tedious to
show [Richardson and Potter (1974)] that each element of the admittance matrix Y can be
expanded into a partial fraction expansion about each pole of Z(s) so that Y can be written
in the form

M
Y = Z Ax/(s—8k) , (2)

k=1

where M = 2N, the Ay's are matrices independent of s, and the sk's are the poles of Z(s).
The A\'s are evaluated by setting s=sy in the following equation

A = T(s)(s—s)e ! (s)T"(s) (3)

where T and e are defined by equation (1). In this formulation, the si's are referred to as
the complex natural frequencies of the system.

Applications of this methodology to the exterior problem where ohmic losses are
replaced by radiation losses significantly increases the complexity of the formulation and
its understanding. First of all, the impedance matrix Z is no longer second order in s and is
at least of order N [Cordaro and Davis (1981)] where N is the dimensionality of the
impedance matrix. There are now on the order of 2N2 natural frequencies instead of the
9N natural frequencies associated with the internal problem (the factor of 2 arises because
the poles occur in conjugate pairs). Secondly, the mode shapes associated with the natural
frequencies are no longer orthogonal or real (this was also true for the interior problem).
Lastly, only the first row of the natural frequencies sik have been observed experimentally.
As a consequence, the admittance matrix has been written in the form

M
Y = Z Aix/(s—s1x) + "entire function" : (4)
k=1

Here the "entire function" somehow accounts for the driven response of the scatterer while
the sum over the poles accounts for the undriven response. The functional form of the
entire function has yet to be uniquely defined. To date the SEM representation has proven
to be too complex and too difficult both theoretically and experimentally to be of much
practical value except for a few specific cases. It seems rather obvious that the "entire
function" in equation (42 arises because the A;x's do not form a complete set of natural
frequency mode shapes. If all of these mode shapes are required, then the SEM formulation
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results in replacing one NxN frequency dependent full matrix by N NxN frequency
dependent diagonal matrices and N NxN frequency independent full complex matrices.
But, "Is this representation simpler than the original matrix?"

The next question is "Where does one go from here?" It appears that the cure is
worse than the disease. There are three possible cases. The first is that there are no
"measurable parameter based EM models" that are simple and easy to apply. Certainly,
the results obtained to date seem to support this argument. The second is that simple and
easy to apply "measurable parameter based EM models" do exist but that the theoretical
and experimental tools necessary for developing these models currently do not exist. The
third is that these models have not been developed primarily because of misconceptions
held about the nature and existence of normal modes. It is this last case that is examined
in some detail in the remainder of this paper.

We begin by examining the concept of classical normal modes. It is well-known
that for a linear phenomenon which obeys the wave equation and for which the interaction
takes place within a bounded region of space (an interior problem), the "system response”
can be decomposed into an ingnite number of normal modes as long as all losses or
damping mechanisms are ignored. As the name implies, these modes represent independent
degrees of freedom (they are orthogonal to each other) and they are defined to be
measurable parameters because they do not depend on the analytical formulation of the
problem. If a loss or damping mechanism is now introduced into the interaction, then, in
general, the response can no longer be decomposed into normal modes and the modes are
no longer independent (although for most problems of interest, orthogonality is a good
approximation even for the case of large damping coefficients). As a result, it is generally
accepted that normal modes exist only for those interactions for which there is no loss or
damping, although it has been shown [Caughey and O'Kelly (1965)] that this is not
universally true. It should be noted that for interior problems, damping is directly related
to the constitutive parameters of the media; for example, for a cavity problem we have no
damping if we assume that the cavity walls are perfectly conducting. For the exterior
problem £scattering), we know that radiation damping is always present independent of the
nature of the media parameters. Therefore, it is easy to assume that the response of
scatterers cannot be decomposed into normal modes, even though a few objects (most
r};gtably s circular wire loop and a perfectly conducting sphere) do exhibit normal mode

havior.

The behavior of the circular wire loop and the sphere pose some interestin
questions. "Is it an accident of nature that their response can be decomposed into norma
modes?" These two objects still radiate, so is there some property of their radiation
mechanism that makes them different than say a thin straight wire? Or is it possible that
the response of all perfectly conducting scatterers can be decomposed into normal modes
and that the wire loop and the sphere are limiting cases of some yet to be determined
higher order normal mode theory (i.e. for these geometries the higher order theory reduces
to the canonical form of normal mode theory)? We now investigate this possibility.

THE DUAL NORMAL MODE REPRESENTATION OF THE IMPEDANCE MATRIX

Consider a thin straight wire defined by a length 2L, a radius a and an impedance
matrix Zy(f) obtained from discretizing Pocklington's equation with the reduced kernel.
We do not have to specify the discretization procedure since the structure of Zy is form
invariant with respect to the method of discretization. In other words, Zy is a Toeplitz
matrix irrespective of how it was obtained. The second attribute of Zy of note, is that if

we evaluate it at two different frequencies, say fy and fa, then the two matrices that result
from this calculation, do not commute:
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[ZW(fl)’ZW(f2)] = ZW(fl)ZW(f2)“Zw(f2)Zw(f1) 0

unless f; = fo. Therefore, we know that Z(fy) and Zw(f2) cannot be diagonalized by the
same similarity transformation and that "classical" normal mode theory is not applicable
to a thin wire scatterer.

Since Z. does not exhibit normal mode behavior, the next question is "does any part
of Z, exhibit normal mode behavior?" The answer to this question is yes. By carefully
examining the structure of Zy, it can be shown that Zy can be partitioned into the sum of
two matrices (see Appendix A) such that each matrix can be diagonalized by a frequency
independent similarity transformation:

Zu(f) = Zu(f) + Zo(f) ()

where

[Z4(f1),Z4(f2)] = 0 (6)
and

[Z2(f1),Za(f2)] = 0 (7)
for arbitrary f; and f,. Therefore, there exists two time or frequency independent matrices,
T, and Ty, rArfken (1966)] such that

T1*Z4 () Ty = z1(f) (8)
and

T Zs(f) T2 = 2o(f) (9)

for all values of the frequency, f, where z;(f) and zo(f) are diagonal matrices and
Ty* = Ty = transpose of Ty (10)

Tt = To! = transpose of Ts. (11)
Therefore, both Z; and Z, are diagonalizable by orthogonal similarity transformations.

~ Equations (8), (9), (10) and (11) allow us to write the impedance matrix, Zy, for the
thin wire in a very simple and compact form:

Zw(f) = lel(f)Tlt' + TQZQ(f)TQt . (12)
Thus Zy can be expressed in terms of two frequency dependent diagonal matrices and two
frequency independent orthogonal matrices. Some of the interesting properties of these
matrices are:

(1)  The matrix elements of both Ty and T are real.
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(2)  The first N/2 columns of Ty and T represent symmetric mode shapes and
the second N/2 columns of Ty and Ty represent anti—symmetric mode shapes.

(3) Both Ty and T, form complete sets of eigenvectors; so that the current and
the incident field can be expanded in terms of either set.

(4) Both the symmetric (T1)s and anti—symmetric (Ty), modes of Z; are analytic
functions of the position, x, along the length of the wire and are of the form

(Ty)s = cos ((2n+1) 7x/2L), n = 0,1,2,...
(Ty)a = sin ((2n+1) 7 x/2L), n = 0,1,2,...

i.e. they are symmetric and anti—symmetric odd multiple half wavelength
(spatial) modes. Note that the anti—symmetric modes do not vanish at the
ends of the wire.

(5)  Both the symmetric (T2)s and anti—symmetric (T2)a modes of Zp are also
analytic functions of the position, x, along the length of the wire and are of
the form

(Tq)s = cos(n 7 x/L) ,n =0,1,2,....
(Tp)a = sin(n 7x/L) , n =0,1,2,....

i.e. they are symmetric a,nd.a,nti—symmetric full wave—length (spatial)

modes. Note that the symmetric modes do not vanish at the ends of the wire
for this case.

(6)  The matrix elements of the diagonal matrices z; and zp are complex; so that
radiation damping is included in this representation.

(7)  The set of eigenvalues z; and the set of eigenvalues z; are both doubly
degenerate. The eigenvalue (z;)n of the eigenvector (Ty)s is equal to the
eigenvalue of the eigenvector (Ty), for the same mode number n. Similarly,
(T)s and (T2)a have equal eigenvalues for the same mode number n.

(8)  The resonances of the z, eigenvalues occur exactly at odd multiples of the
half wavelength for the thin wire (Figure 1). Similarly, the resonances of the
25 eigenvalues occur exactly at multiples of the full wavelength (Figure 2).
These eigenvalues do not exhibit any mode—to—mode coupling. In both
Figures 1 and 2, the inverses of the eigenvalues, z;! and z71, are presented so
that the resonances are easier to identify.

Two aspects of this dual normal mode representation of the impedance matrix
require more discussion: (1) the resonant frequencics of the impedance matrix eigenvalues
are not cqual to the measured values of the resonant frequencies for the thin wire and (2)
the (Ty)a and the (T2)s mode shapes do not have zero amplitudes at the ends of the wire.
Of the two, the first is the least disturbing since we will show later that the resonant
frequencies of the admittance matrix do indeed correspond to the measured values. The
physical significance of the impedance matrix cigenvalues is unclear at this time. ‘The
second aspect of the dual normal mode representation is more disturbing.  One would feel
more comfortable it all the mode shapes vanished at the ends of the wire. However, the
mimnatural” mode shapes are just the derivatives of the "natural” mode shapes suggesting
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that they are somehow related to the charge distribution on the wire. Another possible
explanation is that one set of modes corresponds to magnetic field modes and the other to
electric field modes. This imposed duality is not new in electromagnetics and raises the
serious question as to whether a first order time formulation is more natural than a second
order time formulation. Perhaps a formulation fashioned after the Hamiltonian theory of
classical mechanics [Goldstein (1957)] would shed some light on this subject.

Before concluding our discussion of the impedance matrix, we return once again to
our original supposition that the impedance matrix Zioop Of a circular wire loop is just
some limiting case of a higher order normal mode theory. To support this supposition we
note that in the limit as the thin straight wire evolves into a circular loop

Zw = Z2
and the Z; contribution to the impedance matrix vanishes. But Zs is just equal to Zjoop SO
that for thin wire scatterers our initial supposition is true.

THE DUAL NORMAL MODE REPRESENTATION OF THE ADMITTANCE MATRIX

We have been able to demonstrate up to this point that the impedance matrix for
the thin wire can be put into an extremely simple form. A more important question is
what about the admittance matrix, Yy, which is, of course, just the inverse of Zy? The
most desirable behavior would be that the structure of the impedance matrix is form
invariant under inversion. This would imply that for the thin wire, Yy would also be a
Toeplitz matrix. From experience, we know that, in general, this is not true.

The next best situation would be that the form of the normal mode decomposition
as defined by equations (5),(6),(7) and (12) is preserved under inversion. This would imply
that Yy, could be partitioned into the sum of two commuting matrices as before or

Yulf) = Ya() + Ya(D) (13)
where

[Y1(f1),Y1(f2)] = 0 (14)
and

[Ya(f1), Ya(f2)] = 0 (15)

for arbitrary f; and fo. We would also require that Y, is diagonalizable by the same
orthogonal similarity transformation that diagonalized Z; and similarly, that Ya is
diagonalizable by the same similarity transformation that diagonalized Zs or

yl(f) = Tlt‘Yl(f)Tx (16)

and

ya(f) = T2'Yo(f) T2 (17)

where yi(f) and y»(f) are frequency dependent diagonal matrices and T, and T, are
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frequency independent orthogonal matrices as before. If equations (13) through (17) prove
to be true, then the admittance matrix Y, (f) for the thin wire can be written in a compact
form given by

Yw(f) = lel(f)Tlt‘ + Toya(f)Tot (18)

As was the case for the impedance matrix, the admittance matrix can also be written in
terms of two frequency dependent diagonal matrices and two orthogonal frequency
independent matrices.

The proof of the identity

[Tizy () To* + Taza(f) 2" = Tiy1(f)T1® + Tayaf)T2* (19)

turned out to be non—trivial. However, for the decomposition of the impedance matrix as
presented in the previous section to be of more than just academic interest, the admittance
matrix must also exhibit a similar behavior. Therefore, the proof of the above identity or a
similar identity is a very crucial step in the development of this dual normal mode theory.

The first thing of note about the above identity is that
yi(f) = z17(f)

and

ya(f) = 2271(f)

is not a solution. Therefore, in general, y; and y» are probably non—linear functions of z;
and Z9.

A review of the literature on inverse matrix theory failed to provide any insight into
the proof of the identity given by equation (19). Finally, a numerical demonstration of the

validity of the identity was attempted. To do this, we pre—multiply equation (18) by Ti*
and post—multiply by Ty which results in the equation

yl(f) + TxtTng(f)thT1 = Tlt‘Yw(f)Tl (20)

Next, we pre—multiply equation (18) by T,t and post—multiply by Ta which results in the
equation

Tgt'lel(f)TltTg + y2(f) = TgtYw(f)TQ (21)

First of all we note that S* = To'Ty and S = T;'Ty are both frequency independent

orthogonal matrices with S'S = SS' = I (the identity matrix). Next, we note that
equations (20) and (21) yield 2N2 equations for the 2N unknowns y; and ys. Using only the
2N equations provided by the diagonal elements of the matrices defined by equations (20)
and (21), y; and y2 can bhe determined from solutions of the equation
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Hy(f) = h() (22)

where y(f) and h(f) are 2Nx1 column vectors and H is a 2Nx2N frequency independent
matrix. The first N elements of y(f) correspond to the N diagonal elements of y,(f) and the
second N elements of y(f) correspond to the N diagonal elements of yo(f). The first N
clements of h(f) correspond to the N diagonal elements of the matrix Tltng)Tl and the
second N elements of h(f) correspond to the N diagonal elements of TotYy(f)To. If H is
partitioned into the four NxN matrices: Hyy,Hya,Hoy,Hao; then Hyy and Hip are equal to the
NxN identity matrix I, or

Hyy = Hpo =1,

the elements of His are given by

(Hiz)ij = (S)?
and the elements of Hy; are given by

(Har)sj = (553)?
where

Sij = (T1tTy)s;.

Equation (22) was solved numerically over a frequency range corresponding to a
wire length—to—wavelength ratio of 0.05 to 2.0. The impedance matrix, Zy(f), was derived
from a hybrid finite difference/method of moments technique using pulse expansion
functions with point matching. The wire was divided into 20 segments and the wire
radius—to—length ratio was 0.005. Since H is independent of frequency, the resulting 40x40
matrix only had to be inverted once. The values of y;(f) and yo(f) obtained from equation
(22) were inserted into equation (18) and the resulting values obtained for Yy(f) were then
compared to the values Yy(f) obtained by directly inverting Zy(f). The results for 6
elements of the admittance matrix are shown in Figures 3 through 8. Comparisons for
other matrix elements showed similar agreement.

Although the comparison of the results of the two calculations was excellent, they
still were not exact. This could either be attributed to numerical round—off error since the
calculations were performed on a PC AT computer using single precision or it could be
attributed to small contributions to the admittance matrix that were not included in
equation (18). Another literature search on the subject of inverse matrix theory failed to
provide any new insight. Then it was discovered that another matrix besides the identity
matrix commutes with both Z;(f) and Z(f) of equation (5), therefore, it is also
diagonalizable by both the orthogonal similarity transformations defined by T; and T2 of
equations (8) and (9). This matrix is the cross identity matrix, E, i.e. the major cross
diagonal elements of E are equal to one and all other elements are zero. With the aid of
this matrix, one can then show that if a matrix Z can be partitioned into the sum of two
commuting matrices as defined by equations (5),(6) and (7), then Z2 can also be
partitioned into the sum of two matrices (but not the same two matrices) that have the
same properties. If this is true for Z2, it is also true for Z3 and all higher powers of Z (the
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Wilson, Decius and Cross (1955)], the inverse of the NxN matrix, Zw, can be written in the

coof for a 4x4 matrix is shown in Appendix ). Using the Cayley—Ilamilton theorem
Eorm

Zut = Yu = ~{Cy_y + Onglv + Cygle’ +

40z N2 ez N e, (23)

and therefore, equations (13) through 97) follow and we have proved the identity given by
equation (19). In equation (23), all of the C's are scalars and they are the coefficients of
the characteristic equation for Zy; for example, C; is the negative of the trace of Zy and CN

is the negative of the determinant of Zy. Equation (18) also follows and we have succeeded
in demonstrating that the admittance matrix can be written in the very simple form

Yy(f) = Tiyi( Tt + Taya(f) To" (18)

which only requires two frequency dependent diagonal matrices and two frequency
independent orthogonal real matrices as compared to the 2N frequency dependent diagonal
matrices and the 2N frequency independent non—orthogonal complex matrices that result
from the SEM formulation.

The eigenvalues, yi(f) and yo(f), of the two admittance matrices Yy(f) and Ya(f)
were calculated over the frequency range corresponding to a wire length to wavelength
ratio of 0.05 to 2.0. The calculations were performed for a 20 segment wire, again using a
hybrid finite difference/method of moments technique with pulse expansion functions and
point matching. Results of the calculations are presented in Figures 9 through 12. Some of
the interesting behavior exhibited by these eigenvalues is:

(1)  The response resonances of these eigenvalues occur at the same frequencies as
observed in measured data, i.e. they are no longer "exact" multiples of half

and full wavelengths as was the case for the eigenvalues of the impedance
matrix.

(2)  The eigenvalues (Figures 9 and 11) associated with the symmetric mode
shapes exhibit odd multiple of half wavelength resonances while the
eigenvalues (Figures 10 and 12) associated with the anti—symmetric mode
shapes exhibit multiple of full wavelength resonances. Remember that this
was not true for the impedance matrix eigenvalues.

(3)  While the impedance matrix eizenvalues did not exhibit any mode—to—mode
coupling, the eigenvalues of the admittance matrix exhibit strong
mode—to—mode coupling behavior for some of the eigenvalues.

(4)  The admittance matrix appears to exhibit a very high degree of degeneracy
(or "near" degeneracies) over the frequency range for which the eigenvalues
were calculated. This degeneracy persists even for the phase of the
eigenvalues (Figure 9.b) with similar results for the other set of eigenvalue
phases (not shown).
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It will be interesting to see if the redundancy which manifests itself through the
degeneracies of the admittance matrix eigenvalues persists over a higher frequency range.
The thin straight wire is only a two parameter problem, namely length to wavelength ratio
and length to radius ratio, therefore one would expect considerable redundancy in its
response characterization over a considerable frequency range.

One of the features that will require more investigation is the strong mode—to—mode
coupling exhibited by the symmetric modes (Figures 9 and 11) at frequencies near the first
resonance (approximately half wavelength) of the thin wire. It appears that all of the
symmetric modes contribute significantly to the first resonance response. For frequencies
near the second symmetric resonance (Figures 9 and 11), the nearest neighbor modes,
modes 0 and 2, are coupled more strongly than the higher order modes. For the
anti—symmetric modes (Figures 10 and 12), the modal coupling is also the strongest for the
nearest neighbor modes.

POTENTIAL APPLICATIONS

For many years, normal mode techniques have played a powerful role in the analysis
of the dynamic response of complex structural systems and their environments. This role is
not limited to numerical response predictions but has included test definition, data analysis
and system identification. These normal mode techniques provide a convenient bridge
between model predictions and test results which is always an important consideration in
any area of physics. Although, there is no guarantee that normal mode techniques will
display a similar robust character when applied to the exterior EM interaction problem,
there is also no reason, at this time, to assume otherwise.

The first and most obvious benefit of the technique would result if it provides better
understanding and insight into the physics and the nature of EM coupling problems. This
could potentially lead to the development of good self—consistent approximate models and
to simpler and more meaningful measurement techniques.

From strictly a computational point of view, there are several possibilities. First a
significant reduction in the number of unknowns can usually be achieved by making the
transformation to normal coordinates. For example, if the expansion functions used in the
discretization require 10 segments per wavelength from accuracy considerations, then only
the first N/10 modal coordinates need to be retained in the calculations since the higher
order mode contributions will be in error. Also, it maybe possible to partition a complex
scatterer into several distinct regions such that the total system can be reconstructed by
using the modal coordinates of each region as the expansion functions. Another possibility
includes reducing matrix fill time for applications that require the prediction of responses
over a wide frequency range. Also, it may be possible to treat the mode density as a
continuum (rather than discrete) which potentially could provide us with a method for
increasing the upper frequency limits for the numerical techniques currently in use.

One area that has a great practical potential is the whole field of EM measurements.
If it can be shown that the eigenvalues of the admittance matrix can be directly or easily
related to measurements, then the technique will provide a simple format for categorizing
the response of radiating structures. This will be uscful as a tool for retaining information
about general classes of radiating objects, for extrapolating near field measurements to far
field responses and possibly for identifying objects from far field measurements. However,
for the last application to be feasible, algorithms that relate the impedance matrix
cigenvalues to the admittance matrix eigenvalues will be required, since the impedance
matrix "footprint" is significantly simpler than that of the admittance matrix.

37



SUMMARY

We have demonstrated that both the impedance and admittance matrices for a
straight thin wire can be put into a simple form by using a dual normal mode formulation.
The mode shapes associated with the normal modes are real and are neither functions of
time nor frequency. They can be represented numerically by real orthogonal matrices.
The dynamic or transient part of the interaction can be characterized by diagonal matrices
which are complex numbers (in the frequency domain) and are functions of either time or
frequency. These elements of the diagonal matrices could be referred to as the modal
frequencies. However, one must keep in mind that there is no one—to—one correspondence
between the modal frequencies associated with the impedance matrix and the modal
frequencies associated with the admittance matrix. The impedance matrix modal
frequencies have only one resonant frequency but that frequency does not coincide with
measured resonant frequencies. The resonances of the admittance matrix modal
frequencies do coincide with the measured resonant frequencies but each of these modal
frequencies possess multiple resonances. Maybe it would be less confusing to refer to the
impedance matrix modal frequencies as the system frequencies and the admittance matrix
modal frequencies as the transfer frequencies.

In many respects, the dual normal mode representation is much simpler than the
representation provided by the Singularity Expansion Method. However, the transfer
frequencies (eigenvalues of the admittance matrix) are no longer one—parameter rational
functions of the frequency. The functional behavior of the transfer frequencies needs to be
determined.

Clearly, much work on the dual normal mode representation needs to be done.
Issues regarding its extension to more complex scatterers need to be investigated. The
physical significance of the system frequencies (eigenvalues of the impedance matrix) and
the mode shapes that do not satisfy the boundary conditions at the end of the wire needs to
be determined. The relationship between the transfer {requencies and measured data must
be established. However, if it can be demonstrated that the dual normal mode
representation simply and efficiently bridges the gap between models and measurements, it
has the potential of providing us with a very powerful tool applicable to almost every facet
of the EM interaction and scattering problem.
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APPENDIX A

To prove that the impedance matrix, Zy, can be partitioned into the sum of two
commuting matrices as defined by equations (5), (6) and (7), we begin by writing Zy, in the
form:

N-1
Zu(f) = ) oall) da (A1)

n=0

where the o's are just frequency dependent scalars and the ¢'s are frequency independent
NxN matrices of the form

do = I (identity matrix),

---------

.........

b= L
00---1010
00---0101
00 -0010
00100--00
00010--00
10001--00

b = R
00--10001
00 01000
00--00100
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00 - - 010]
00 - 001
q)N_Q: .........
100 - -00
010 - -00
00 -+« - 01]
00 -+« + - 00
¢N_1= .........
00« -« 00
10 - 00

¢y =0 (null matrix).

The ¢'s do not commute or

[Da, On] = §ndn — Pupn # 0 (A.2)

unlessn =morn=0orn=Norm=0orm=N. If we define two new sets of matrices,
7n and yn, by the relationships

Yo=0n—0y o (A3)
and

fo= 0t (A4)
and add equations (A.3)and (A.4) we can write ¢ in terms of these new matrices or

On = (Xn + ¥n)/2. (A.5)

substituting equation (A.5) into equation (A.1) yields

N—1 N—1
20 =1 Y, etz Y, a0k (A.6)
n=0 n=0
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and by defining
and

equation (5) follows or

Zw () = Z1(f) + 22 (1) ()

But
[xn,xm] =0

and
[¥n,qm] = 0
for all n and m. Therefore, equations (6) and (7) follow or
Z1 (f1), Z1 (f2)] = 0 (6)

and
(Z2 (f1), Zo(f2)] = 0 (7)

for all f; and f,. One possible generalization of equation (A.5) to arbitrarily shaped wires
was suggested by J. W.Williams [private communication]|. This generalized form is given

by
On =g xn + (1-8) In (A.7)

where g is now a geometric shape factor. For a straight wire, g = 1/; and equation (A.5)
follows. For a wire loop, g = 0 and Zy reduces to

N-1

Ze (f) = 2 an (£) n (A.8)

n=0

which is the form of the impedance matrix for a wire loop.
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APPENDIX B

To show that the admittance matrix, Y, can be written in the form
Yy = Tiy1Tit + TayaTat (18)

for the case of a 4x4 impedance matrix, we begin by writing the normalized impedance
matrix, Z, given by

Z - Zw/ao
=4+ X4 (B.1)

where

X = fid1 + Bode + B3ds,
By = /%, o= /%, f3= 03/,

1000 0100
L= |0100 b1 = 1010
4 0010 1 0101
0001 0010
0010 0001
by = 0001 g = 0000
2= 11000 3= 10000
0100 1000

and the o's are the frequency dependent coefficients defined by equation (A.1) of Appendix
A. The Cayley—Hamilton theorem states that a matrix satisfies its own characteristic
equation or
24+ CiZ3 + CoZ2 + C3Z + C4 =0 (B.2)
where the C's are scalars. Therefore,the inverse of Z, Y = 71, is given by
Y = —[Ca + CoZ + CiZy + Z3]/C4
= —[(I4+Cl+C?_+C3) + (C2+201+3)X4 + (Cl+3)X42 + X43]/C4 (83)

We have already shown in Appendix A that the first two terms of equation (A.3) can be
reduced to the desired form; therefore we will address only the X42 and X43 terms.
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2

Expanding X42 in terms of its primitive matrices we have

Xa? = 012 012 +022 G2 + 32 G52 + Bi B2 (Pudo + odhy)

b1 B3 (D13 + dads) + fabBs (Doths + b3da) (B.4)
with
012 =2l —Eq4 + o
b2 =1y
$32 = Eqd3
bid2 + dobr = 2E4 + 2E4y
G103 + b3t = ¢e
bads + dsde = Eqdo
where
0001
- [iE4
1000 {.
X43:

Similarly, expanding X43 in terms of its primitive matrices we have
X3 = B33 + F2302% + Ba2hs2 + fifa? (o2 + Padadh + ho2y)
+ 01852 (01ds? + daihs + 5%h1) + S1282(Gadi® + Guods + bi2ho)
+ BoB52(Gohs? + Qsdads + ha2b2) + £i283(dsds® + duhsds + §120s)
+ 02203(0s? + dabsde + ba3s)
+ 018203(1Pads + duhsda + dobids + Gadads + daduds + daddy)  (B.5)

with
¢13 = 201 + Eq4
$o3 = Po
¢33 = ¢s

¢1¢23 + ¢2¢1¢2 + ¢22¢1 = d)l + E4 + 2E4q)2

Gi1da? + dadids + d32P1 = Eado

G2 + Ordody + di%2 = 4Ly + 42 — 2Eads
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Gops? + Gadas + s’h2 = o

Gadi2 + Drdadn + 23 = b + 203

baha? + Qodade + G223 = §3 + By

Ouhaba + Dibadde + Godis + opaty + Gadadhe + Dodoy = 2L + G2 + 2E40s.

Collecting terms, equation (B.3) can now be written in the form

3
Y = 2 Ta(£16,E4) . (B.6)
n=0
But since
[14,¢n] = 0
a-nd [E4,¢n] =0

for all n, the results of Appendix A also hold for equation (B.6) and equation (18) follows:

w= lelTlt + T2y2T2t' (18)
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