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ABSTRACT

A banded matrix iterative solution method for linear simultaneous
equations arising from thin wire moments problems has been applied to a
variety of problems of intermediate electrical size with the number of
unknowns ranging up to 1000. Using a convergence criterion of 1 percent,
solution efficiencies varied from 2.5 for short, fat objects up to 35 for long,
thin objects. Application of the method requires some expertise.
Approximate guidelines for wire grid modeling of surfaces have been
developed for the moments formalism used. A new method for computing
surface currents from grid currents is discussed.
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AUTHOR’S NOTE

This article was originally submitted to IEEE-AP in 1977 for
publication. As received, it was turned down due to emphases on the
computational aspects. The computational techniques have been
incorporated into the GEMACS computer code.

Since this work, there has been much activity related to modeling
large structures. While GEMACS is not capable of exploiting computer
architecture to reduce computational cost, this work clearly demonstrates
that large problems can be solved efficiently using peripheral processors
and asynchronous input/output operations.

A brief addendum is provided which to some degree substantiates the
rather surprising modeling guidelines of length to radius ratios of 5 for
square grid representations of solid surfaces.

This paper is being printed in the ACES Journal and Newsletter in
order that the results may be available to individuals to whom the
computational and modeling aspects of wire grid or patch models are more
significant.
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1 INTRODUCTION

The BMI (banded matrix iterative) solution method was developed to
reduce the cost of solving the linear simultaneous equations arising from
the thin wire method of moments formalism. The results have been
reported in detail.l A summary of the theory and results for small
problems has been published.2 This paper is a summary of the study of
intermediate to large size problems (100 to 1000 unknowns). The majority of
the problems investigated are wire grid models of objects with surface areas
ranging up to 10 square wavelengths. Intermediate sized problems of this
type were investigated to establish wire grid modeling criteria.ld These
criteria were used in larger problems to investigate the solution efficiency of
the BMI method.l®¢ The reported formula for converting grid currents to
surface currents was established in retrospect.

2. THEORY

The equations to be solved are written
AX = b: (1)

where A is a full complex nonsymmetric N x N matrix usually called the
impedance matrix, X is a column vector of N unknowns related to the
coefficients in the current expansion, and b is the excitation column vector.
The least expensive general method for solving these equations is by
triangular decomposition of A using Gaussian elimination, which requires
about N3/3 complex multiplicative operations (MOs). An approximate
solution with an accuracy of about 1 percent can be obtained at less expense
by making use of knowledge about the elements of A. The wire segment self
impedances (principal diagonal elements of A) are always large. The
relative size of segment interactions (off-diagonal elements) decreases with
increasing separation. Near neighbor interactions can be as large as the
self terms.

Suppose the wire segments are numbered in the following manner.
The object model is sliced into parallel sections across the most narrow
dimension. All wire segments in an extreme slice are numbered first. All
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segments are then numbered in the adjacent slice, and the process is

repeated to the opposite extremity of the object, The slices are kept thin so

that numbering proceeds across the object within a slice. As a result, the
difference in segment numbers between segments in neighboring slices is
always much less then N, the total number of segments. For problems of
significant electrical size, the large off-diagonal matrix elements are the
interactions between segments with separations much less than the object
length. These matrix elements can be grouped within a small bandwidth

about the principal diagonal using this numbering scheme.

The BMI solution method takes advantage of these characteristics by
partitioning the matrix as '

A=L+B+T, (2)

where B is a banded matrix of equal upper and lower bandwidths M, and L
and U are the strictly lower and upper triangular matrices below and above
B in A. Then (1) can be written as

BX=b-L+U)X 3)

The banded matrix is decomposed into a product of a banded lower
triangulation matrix By, and a banded upper matrix By by pivoting on the

principal diagonal elements. An iterative sequence is then defined by the
solutions of

Br, BuXis1 =b- L + UX,. 4)

Forward elimination and back substitution are required for each iteration.
Assuming that the decomposition of B does not lead to large rounding
errors, the sequence {X.} will converge to a solution of (1) if the spectral
radius of B-1 (I + U) is less than one. Pivoting on the principal diagonal
elements theoretically could lead to large rounding errors, especially in ill-
conditioned problems. Monitoring of the pivot ratio and comparisons to
solutions of canonical problems have provided confidence in this method
when used on computers with high precision.

In terms of MOs, the cost of decomposing B is NM2 - 2M3/3. The cost
of each iteration is N2. Assuming K iterations are required to reach the
criterion for convergence, the solution efficiency of the BMI method relative
to triangular decomposition of the full matrix is
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M3 ]-1
). 5)

g=N3|:3(NM2-T+KN2
Termination of the iteration is achieved by imposing a numerical

criterion on some measure of convergence. In the early study of small
problems, the exact solution x, was available for comparison. The RE

(relative-error) at the j-th iteration was defined by

®)

(%] - Xo)t(x; - xe)]m
RE; '[ Xq'Xe
where () denotes the complex conjugate transpose. Because the exact

solution is normally not known, some alternative measure is required. One
candidate is the BCRE (boundary condition relative error) defined by

(AX; - b)I(AX; - b) 12
BCRE; =[ — ]
Unfortunately, the ratio of the RE to the BCRE is bounded between the
condition number of A and its reciprocal. This number can be computed at
a cost of about N MOs at each iteration, however, and provides useful
information about convergence. In particular, an increase in the BCRE has
always been found to be a forecast of divergence.

(7)

An adequate measure of convergence is the IRE (iterative relative
error) defined by

(x; - x;.1)1(x; - xl-.1)]1/2. ®

IRE; =[ X{TXj

For cases of rapid convergence, the sequence of values of both the RE and
the IRE can be approximated by an exponential function.l¢ As a result, the
value of the IRE at the next iteration can be predicted as

2

IRE;
. - _L.
IREJ+1 mEj-I. (9)
This quantity is called the PRE (predicted relative error). The iteration for
large problems was terminated when the PRE was less than 1 percent.

In all calculations, the starting value for xo was zero. Once B is
decomposed, the cost in MOs for obtaining x; is less than N2 because the
operation (L + U)xo need not be performed. Experience shows that x; is a
reasonable approximation to the solution in all cases of rapid convergence.
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Hence no physical arguments or complicated problem-dependent
calculations are required to start the iteration.

If the spectral radius of B (L + U) is greater than 1, the sequence {x;}

must eventually diverge. However, the sequence may initially converge and
then diverge. This behavior is called pseudoconvergence. It has been
observed in this study, and the best solution obtained may be of useful
accuracy.

3. COMPUTER PROGRAM

The computer program used to investigate the capabilities and
limitations of the BMI solution technique for large problems was a modified
version of the Antenna Modeling Program.3 This program is based on the
Pocklington integral equation, with pulse plus sine plus cosine expansion
functions, point matching, and a charge redistribution scheme at multiple
wire junctions that accounts for differing segment lengths. The BMI
solution method was incorporated using machine dependent programming
techniques peculiar to the CDC computers (flip-flopping of storage areas
and simultaneous buffering of data) to reduce costs and turnaround times.
Different sections of code were used in the solution process depending on N,
M, and a core size allocation parameter to take advantage of cases where A,
B, B, Bu, or L + U fit entirely in core. This procedure does not affect the
computer CP (central processor) time, which depends only in the number of
MOs, but reduces the peripheral processor costs for problems of moderate
size. Other portions of the program were not optimized, and segmentation
was not used to further reduce core requirements. This program will not be
disseminated. However, a general modeling program that includes an
ANSI FORTRAN version of the BMI solution technique may be available.*

4., RESULTS FOR LARGE PROBLEMS

For the segment numbering scheme used, a bandwidth M
corresponds to a distance Ry within which all interactions are kept in the

banded matrix. During the research phase on small problems, each
problem was investigated at several bandwidths to determine the value of M
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for peak efficiency using a convergence criterion of 1 percent. The resulting
guideline was that Ry should be about 1/7 of the object length. Cost

limitations in
for each prob

the study of large problems prohibited varying the bandwidth
lem. Calendar restrictions together with early convergence

difficulties for models of spheres resulted in conservative choices of M for
some large problems.

Eleven example problems are briefly described below and in Table 1.
Geometric symmetries in these problems were not used to reduce solution
costs.

1) One straight wire, L/A =100.

)] Four parallel wires, L/A = 25.

3) 10 by 10 array of half wavelength dipoles.

(4) Rectangular plate grid, 2.77 by 3.18 A.

(5) Rectangular plate grid, 3.0 by 0.637 A.

(6) Square plate grid, 2.0 by 2.0 A.

)] Parabolic cylinder reflector grid with array feed, 2.0 by 2.0 A.

(8 Cylindrical grid, L/A = 3.0, ka = 1.

9 Cylindrical grid, L/A = 2.8, ka = 3.4

(10) Cpylindrical grid, L/A = 2.8, ka = 3.4, 24 wires.

11) Gridded cylinder with axial stubs, L/A = 2.0, ka = 2.1.

TABLE L Efficiency of Solution for Example Large Problems

PROBLEM N M K g
NUMBER
1 1000 150 3 14.3
2 1000 60 6 35.3
3 500 70 1 16.9
4 963 236 3 6.2
5 396 65 4 9.8
| 6 544 132 2 6.3
7 860 120 1 17.7
8 392 64 3 10.6
9 984 336 9 3.4
10 480 168 11 2.9
L 11 822 240 7 4.3
62



These examples include both antennas and scatterers. The above-
mentioned guideline for choice of M was used in examples 1,3,5,7, and 8.
Convergence was rapid for these problems and the average efficiency was
about 14. For example 2, a relatively small bandwidth resulted in high
efficiency. Although this result could be problem dependent, the BMI
solution method may prove to be more efficient than expected for long, thin
objects. For examples 4 and 6, conservative choices for M resulted in rapid
convergence. Higher efficiencies would probably be found by using the
guideline for these examples. Good efficiencies were obtained for all objects
with planar or near-planar geometries. Results for some of these examples
using other lengths or wavelengths were comparable, but are not shown in
Table 1.

To further exhibit the iteration characteristics for problems with
rapid convergence, example 4 is described in greater detail. The grid mesh
is square. There are 23 wire segments along one edge and 20 along the
other. Numbering is along one edge, then along the adjacent segments
perpendicular to the edge, then along the segments parallel to the edge, etc.
The excitation is a plane wave with E-polarization and a 45° angle of
incidence. The convergence data are shown in Table 2. The efficiency is
computed at each iteration from (5) with K as the current number of
iterations. As is evident, most of the solution time for this example was
spent in decomposing B, and the rapid convergence points to better
efficiency at smaller M. The PRE is a fair predictor of the IRE at the next
iteration, which is characteristic of cases with rapid convergence. Note that
the BCRE is about 1/5 of the IRE at each iteration, which shows that the
BCRE is not an adequate measure of convergence. (The pivot ratio for
decomposing B was only 53 for this example, indicating that the small
values of the BCRE are not due to an ill-conditioned problem.)

Convergence Data for Example 4; N=9863, M=236

TABLE 2.
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6.5 4.0 19.1 3.6
6.4 1.1 4.9 1.3
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The efficiency of the BMI solution method is considerably lower for
ghort, fat objects. The performance for spheres will be discussed later. For a
cylinder with length and circumference approximately equal, the guideline
for M generally results in divergence or pseudoconvergence. Larger
bandwidths yield convergence as shown by examples 9-11, but with lower
efficiencies than for planar or long objects. Example 9 exhibits several
details of interest. The cylindrical grid has 24 wire segments in a
circumference and 20 along a length. Numbering is helix-like, which is a
special choice of numbering within each slice across the cylinder. The
guideline for M suggests a value of about 144 for this problem. Actual
values used were 336, as shown in Table 1, and 195. For a plane wave
excitation with E-polarization, the convergence data are shown in Table 3 at
a bandwidth of 336. Note again that the BCRE is not a reliable measure of
convergence. The PRE is an excellent predictor of the IRE at the next
iteration in this example.

TABLE 3. Convergence Data for Example 9; N=984, M=338
ITERATION |EFFICIENCY BCRE IRE PRE

1 3.7 11.93 100.00 —
2 3.7 4.62 45.81 20.98
3 3.6 2.§6 20.84 9.48
4 3.6 1.76 13.54 8.80
5 3.§ 1.20 9.30 6.39

6 3.5 .81 6.29 4.25
7 3.5 .55 4.30 2.95
8 3.4 .38 2.93 1.99
9 3.4 .26 2.00 1.37

10 3.4 1.36 .93

At a bandwidth of 195, example 9 was studied for E-polarization,
H-polarization, and also for an annular gap voltage impressed on
longitudinal segments at one cross section of the cylinder. For
E-polarization, pseudoconvergence occurred. The best solution was at the
fourth or fifth iteration, with an IRE of 26 percent and a BCRE of 6 percent.
Compared to the solution obtained at a bandwidth of 336, this solution
showed differences ranging up to 30 percent. (Far fields computed from this
solution agreed with those from the accurate solution to within about 3
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percent.) For H-polarization, the solution diverged after the first iteration.
For the gap excitation, pseudoconvergence occurred. The best solution was
obtained at the fifth or sixth iteration, with an IRE of 8 percent and a BCRE
of 3 percent. These results emphasize the following characteristics of the
iterative process. Whether the sequence converges depends on the spectral
radius of Bl (L + U) and not on the excitation. The number of iterations '
required for convergence depends on the spectral radius, the excitation, the
starting point, and the convergence criterion.

Several wire grid models of spheres were investigated. Each model
was constructed with a finite degree of rotational symmetry. The models
generally had wire segments along lines of latitude or longitude, with
occasional tapering at moderate latitudes to prevent extreme differences in
segment length at junctions near the poles. Solutions were sought with the
BMI method without making use of symmetries. Solutions were obtained
with the use of symmetries for comparisons in some cases. In the iterative
method, segment numbering spirals outward from one pole to helix-like
numbering at the equator, and then spirals inward at the other pole.

For a sphere with ka equal to 4.7, a model using 996 segments was
used. The excitation was a plane wave, incident normal to the polar axis.
The wave had E (case 1) or H (case 2) lying in the equatorial plane. In the
first case, pseudoconvergence occurred at bandwidths of 220 and 360. The
best solutions obtained were poor. In the second case, at a bandwidth of 220,
33 iterations reduced the IRE to 2.7 percent and the BCRE to 2 percent.
Termination was due to an independently set default. No sign of divergence
was present. The distribution of current on wires normal to the H plane at
the equator was in full agreement with known surface currents. Because
pseudoconvergence occurred at a bandwidth of 220 for E-polarization, it
must also eventually occur for H-polarization. This example shows that
even a fairly small convergence criterion could be satisfied in an iterative
sequence eventually destined for divergence.

It is possible that interior mode contributions affect the iterative
solution for wire grid models of fat objects. Little is known about such
modes. For the spherical cavity, the mode of lowest frequency occurs at ka
equal to 2.744. A grid model for this sphere with 552 segments was
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subjected to a plane wave excitation. With M equal to 192,
pseudoconvergence occurred. The IRE and BCRE were reduced to less than
20 percent at the sixth iteration. The corresponding current distribution
and resulting scattering cross section showed fair agreement with known
behavior for the sphere external problem.

Additional studies of short, fat objects will be required to establish
adequate guidelines for choice of M.

5. COMPUTER COSTS

All of the example problems were run on a CDC 6600 computer. For
those examples resulting in convergence, the CP times required for
solution are plotted in Figure 1 versus the number of MOs. The CP time is
almost entirely due to performing the multiplicative operations, as
expected. Time requirements on other machines may be approximated by
comparing times required for one multiplication.

The PP (peripheral processor) times for full program execution are
plotted in Figure 2 versus the number of MOs. Almost all of the PP time is
used during the decomposition of B. The PP time required for performing
iterations is quite small. The one point in Figure 2 well below the line is for
the sphere problem with 33 iterations mentioned earlier. The large value
for K raises the number of MOs considerably without much effect on the PP
time. The PP time is dependent on the machine and the operating system,
and on the amount of fast access core available for matrix operations. The
latter factor determines whether all of A, B, Br, By, or L + U can reside
entirely in core. The most significant savings in PP time occur when B will
reside in core, which requires about N(2M+1) complex words of storage.
None of the large problems satisfied this requirement. Projections of PP
time for other computers would be difficult. If M<<N, the PP time for the
BMI solution method should be far less than for full decomposition of A. No
numerical comparisons were available. The dollar cost for computing was

dominated by the PP time.
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6. SURFACE MODELING WITH GRIDS

Early experience with the BMI solution method showed that the
convergence properties for wire grid models of conducting surfaces should
be based on models that are known to adequately represent the surfaces.
Hence a limited modeling study was undertaken. Several objects of
moderate size and rotational symmetry were modeled by wire grids with
finite degrees of rotational symmetry. Symmetry was used in the solution
process to reduce costs.ld

Wire grid modeling guidelines are not well defined in the literature.
Mesh circumferences must be appreciably less than a wavelength to
prevent mesh loop resonance phenomena. The maximum segment length
depends on the details of the moments formalism in use, but must be
restricted to about one-fifth of a wavelength even for single straight wire
problems solved with sophisticated expansion functions. One guideline for
the wire radius suggests that the wire surface area be about equal to the
area of the modeled surface. Thinner wires have been used. For models
with varying mesh shape and size, most studies have used the same wire
radius for all segments. This practice was followed here.

No method for accurate conversion of wire grid currents to equivalent
surface currents was available during this study. As a consequence.
radiation patterns and bistatic scattering cross sections available from the
literature for canonical objects were used for comparison to model results.
These attributes are not as sensitive as current distributions for
comparison purposes. After a conversion method was developed, current
comparisons were made in a few cases.

Far field calculations from sphere models were compared to graphed
results for radiation patterns of spherical antennas® and to bistatic
scattering cross sections.® The models used wire segments along lines of
latitude and longitude, yielding nearly rectangular mesh shapes at the
equator.

For a spherical antenna with an equatorial gap and ka equal to 2, the
power radiation pattern is shown in Figure 3 as a solid line. The other lines
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were computed from the model, with the average ratio of segment length to
wire radius at the equator denoted by d. Good agreement was obtained for
ka equal to 3. Agreement deteriorated rapidly for ka equal to 4 and 5.
Corresponding mesh circumference for the larger mesh area near the
equator were 0.35, 0.52, 0.70, and 0.87 wavelengths respectively.

For plane wave scattering by a sphere, the bistatic scattering cross
section in the E plane for ka equal to 2.3 is shown by the line in Figure 4.
The points were computed from the model. Reasonable values were
obtained for d equal to 5. Wire radii were fixed at this value and the
frequency was varied. Good agreement was found at lower frequencies. At
ka equal to 4.7, corresponding to mesh circumferences of about one
wavelength, cross section errors of a factor of 2 were found.

d=87

4.0
5.8

8.7

|
il

3
1
b

8 =90

I 1

Figure 3. Power Radiation Pattern of a Sphere Excited Across an
Annular Gap at the Equator, ka=2. (Solid Line After [5], Others

from Model.)
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Guidelines suggested by these comparisons are that the largest mesh
circumference should not greatly exceed one half wavelength and the ratio
of segment length to wire radius in regions of square mesh should be about
five. Models of other objects (disk, toroid, cylinder, cone-sphere, etc.) were

constructed using these approximate guidelines. Consistently good
agreement with other theoretical results were obtained.ld.e

The guideline suggests a relatively fat wire for grid models in view of
the thin wire assumptions common to all wire moments formalisms. It is
likely that the best choice of radius depends not only on the choice of
integral equations, expansion functions, weighting functions, and methods
of treating junctions, but also on the type of kernel approximations used in
computing segment interactions and self terms. Consequently, guidelines
should be investigated for each choice of formalism.

10 T
oka=2.3
aka=3.0
oka=4.7

0 8 (DEG) 360

Figure 4. E-Plane Bistatic Scattering Cross Section For a Sphere with
ka=2.3. (Line After King and Wu, Points From Model
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7. CONVERSION TO SURFACE CURRENTS

Direct comparisons of shapes of wire grid current distributions and
surface current distributions are possible in some cases. Surface current
distributions for canonical problems are usually plotted as a function of one
natural geometrical coordinate, with the current component either along or
normal to the coordinate. If the wire segments in the grid lie along the
natural coordinates and the grid is highly regular (mesh shapes repeated
along the coordinate), excellent comparisons are possible.le.7 In such cases,
the equivalent local component of the surface current density is
approximately equal to the wire current divided by the distance between
wires carrying the current. This fact is closely related to the assumptions
inherent in wire grid modeling and in the thin wire moments formalism.
It is assumed that the current is slowly varying over a region small
compared to a wavelength. The wire current is assumed to be uniformly
distributed around the wire. This information can be used to redistribute
the grid currents on the modeled surface for grids of arbitrary shape.

Figure 5 shows a portion of a planar wire grid around the j-th
surface subdomain, which has an area equal to A;. This area is bounded by

wire segments with lengths Li which carry midpoint currents _I)i. The
currents are complex and are spatial vectors. The magnitudes of the
complex currents are spatial vectors denoted by | 'fil . The surface

subdomains bounding A; and sharing common wire segments are shaded
in Figure 5, and their areas are denoted by Aj (not to be confused with

matrix elements). The magnitude of the complex surface current density is
a spatial vector denoted by | 7 f | . An approximate formula for this quantity

18

17,0 =2 () 1Tl 10

.
loop

The vector sum is over all segments bounding A; . The coefficient in

brackets is the reciprocal of an average width of the two areas joined by wire

i, in the direction normal to the wire. For a square mesh, this formula

reduces to the simple result mentioned earlier.
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Figure 5. Equivalent Surface Currents From Wires

L1771,

Several special cases must be considered. If one of the bounding
wires is an edge wire, the corresponding value of Aj is zero. The phases of
all complex currents bounding Aj should be about the same.* The predicted
surface current is the sum of currents from both sides of the modeled
surface. If the surface is not closed, the predicted current cannot be
uniquely separated into currents for each side. The formula gave reliable
prediction for the sum of the two surface currents for example problems.

The formula was spot verified for square, rectangular, trapezoidal,
and triangular mesh shapes in models of disks, spheres, and cylinders.
For all meshes with four bounding wires, all wires were coplanar. For
objects of arbitrary curvature, this may not always be possible. Slight
deviations from planarity in a mesh should have little effect, and (10)
should still be adequate. Large deviations result from poor modeling, since
sharp bends should be modeled with wires along the bend.

* This should always be the case for regions small compared to a wavelength. The
current phase and the interpretation of vector direction are mterrelated and are
affected by the order in which segment ends are defined. It has been suggestedd that the
absolute value restrictions in (10) be removed. A paucity of surface current phase
comparisons prevented verification of this suggestion.
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The formula has not been verified for some special cases. For models
with meshes in which an occasional surface subdomain was bounded by
two nearly colinear segments, no local surface currents were available for
comparison. The formula yields reasonably smooth current distributions in
such regions and is presumed valid. For problems such as intersecting
planes, some wires may border three or more surface areas. The formulas
is not easily modified in this case, because one or more of the bordered
areas may be in a shadow region with little current. For problems with
symmetry in the geometry and excitation, wires normal to the expected
direction of current flow are sometimes omitted even though the resulting
mesh circumferences are greater than one wavelength. The formula is not
appropriate for such models.

A more sophisticated formula could be generated using complicated
interpolation methods. However, (10) is probably as accurate as is justified
by wire grid modeling. If a poor model is used, no formula will give
accurate surface currents.

8. SUMMARY AND PROSPECTUS

The banded matrix iterative method for solving linear simultaneous
equations is useful for thin wire moments problems of intermediate
electrical size. Compared to full matrix decomposition, the efficiency based
on computer central processing time (or MOs) ranged from 35 for long, thin
objects to about 10 for flat objects of significant width. Efficiencies of about 3
were found for fatter cylinders, and poor results were found for spheres.
For flat objects, the guideline for bandwidth selection corresponding to
about one-seventh of the object length resulted in reasonable convergence
rates. Smaller bandwidths may be appropriate for long, thin objects. Larger
bandwidths are required for short, fat objects. More examples might yield
better guidelines. Even with use of the iterative method, the cost of solving
large problems may be prohibitive for academic studies. Use of the method
on machines of limited precision may lead to large rounding errors in the
decomposition of the banded matrix. Partial pivoting may alleviate this
problem, but at the expense of lower efficiency and increased storage

requirements.
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The computer program was recently converted to the CDC 7600
computer with no attempt at optimization for that machine. Up to 1250
unknowns have been used. Larger problems can be solved with minor code
modifications. Optimization could greatly reduce the peripheral processor
times, which currently dominate the dollar costs.

A limited study of wire grid modeling of surfaces established
approximate guidelines for the specific moments formalism in use. The
mesh circumference should not greatly exceed one-half wavelength. The
segment length to wire radius ratio should be about 5 in regions of square
mesh. Consistently good results were obtained, but no overall statement of
accuracy was developed. The wire radius was constant for all segments in
a single model, even though much smaller mesh sizes occurred near such
regions as sphere poles. No deleterious effects of this practice were
observed, which may indicate that further increases in wire radius would
produce little change in currents.

The formula for converting grid currents to equivalent surface
currents is useful for arbitrary mesh shapes. The accuracy of the computed
surface currents is probably limited more by the accuracy of wire grid
modeling than any other factor. The question concerning the phase of the
predicted surface current should be investigated.
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ADDENDUM

Since this work was originally performed, some additional insights
into wire grid modeling have been developed. There follows a discussion of
the wire length to radius ratios, wire grid models using regular polygons,
and, finally, a different view of impedance matrices.

A.l1 Wire Length/Radius Ratios

Conventional guidelines recommend that there be 10 wire segments
per wavelength and that the wire segment length/radius ratio be 10 or
greater. During investigations of the BMI solution technique, very good
results were obtained with 5-6 wire segments per wavelength when the
length/radius ratio was 5 to 6. This agreement held for both field values and
surface current density when compared to analytical results.

While these were empirical results, their general validity has been
substantiated in the open literature.®10 In these references, the EFIE MoM

formalism is represented as:

Qo-L)*d =- 3 Einc
where L, is the usual electric field linear operator and [, is a perturbation
operator induced by representing a continuous surface by a wire grid. L is

_ ) Jjvv
L=jo b eln |g= | I- T~

where ) is the grid segment length, p, is the free space permeability
(4%10-7), f is the frequency, k is the wave number, and r, is the wire element
radius. The perturbation term can be made to vanish using a length to
radius ratio of 2x, which explains the empirical results obtained in the
early GEMACS work of Ferguson and Balestri in which the ratio of 5 was

explicitly given by:

used. Rewriting the segment length as a fraction of wavelength ) = oA, the

perturbation term L, becomes:

. )
L =J0.1207dn (zmoj [.]
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which is recognizable as a fraction of the free space impedance of 377Q. In
the GEMACS, and also most other formulations, the self terms are
dominated by the complex part of the interaction, and the terms are on the
order of 103. We can that see the trade-off between the segment length and
the length to radius ratio can alter the diagonal element of the structure
matrix appreciably.

A.2 VWire Surface Grid Models

Another general rule is to attempt to have as much wire segment
surface area as the actual surface being modeled. This rule has never been
substantiated in the literature, however, there appears to be a conflict with
the previous requirements. Consider a square mesh with each element
having sides of length . If each wire element contributes 1/2 of its area to

the interior (the other 1/2 contributes to the adjacent mesh) then we have:
22= 3(8rr, L )]

for the mesh area in terms of the wire segment parameters. This results in
a length to radius ratio of 4% or approximately 10 which is where we started
using the conventional modeling lore.

It would appear that the correct wire grid representations of surfaces
lies somewhere in between, and the user should always make the ultimate
decisions. It is natural to ask if there is a grid representation which
supports a length to radius ratio of 2x and at the same time preserves the
total surface area. In general the answer is no since there is no regular
polygon for which this condition holds. The area of a regular polygon of n
sides of length lis:

A=mnl2ecot Gt{)
and the area of the n wire segments each of length b is:

Aw =ne2nr, 1

T 4nr,
cot(g) = 1

Setting A = 7Aw leads to:




or:

)
Settingn to 3, ..., 10 yields o ratios and perturbation factors of:

) ]
n . ln[2 m_o)
3 21.76 1.25
4 12.56 .69
5 913 37
6 7.256 14
7 6.05 -.04
8 5.20 -18
9 457 -31
10 4.08 -.43

for surface area modeling. It is seen that the - ratio of 2x requires a
o

seven-sided polygon, whereas the ratio of 4n requires 4-sided polygons
which are typical planar surfaces. It is interesting to note that modeling
surfaces with triangular meshes (n = 3) requires an extremely thin wire
which will have a perturbation factor twice that of 4-sided polygons.

A.3 A Different View of Impedance Matrices

The banding scheme presented in the earlier work has since been
referred to as the Principle Axis Slicing System or PASS. The problem with
such a system is the fact that the interaction “strength” is assumed to be
dependent on relative separation. It is possible for model elements to be
quite far apart and still interact strongly to produce a scattered field when
the elements are in phase. Figure A-3 is a magnitude plot of an impedance
matrix. While there is a strong diagonal band, off band elements are clearly
seen. Based on magnitude, a band-width can easily be selected as
illustrated. Figure A-3 was originally displayed in color, and by using color
graphics a different perspective of the “electromagnetics” of the model may
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be obtained. Also, by assigning a reference phase, plotting the relative
phases of the impedance matrix elements may indicate when certain
regions of the model can interact coherently to produce large effects. I
haven’t attempted this since I think it will require more than the three
colors available to me at present.

EERESNE

)

Figure A.3 (a,b) Impedance Matrix and Bandwidth Display
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