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ABSTRACT

The higher order terms of eigenvalues in spheroidal differential equation are
developed by using power-series expansion and asymptotic ones for both prolate and
oblate wave functions, these important multipole expansions greatly facilitate and
improve the computatioﬁs of the electromagnetic scattering by different kinds of

spheroids with various size parameters, refractive indices, and aspect ratios.

I. INTRCDUCTION
The prolate and oblate spheroidal eigenvalues Amn are usually calculated following
Bouwkamp's method1 while restricted to the case of small value of size parameter c
(= K(az—bz)%, where k is wave number, a is semi-major axis, and b is semi-minor axis)
and large number n. For large value of ¢ (say > 15) and/or small number n, the asymptotic

b

expansions must be employed; J. Meixner had performed the asymptotic developments of

prolate and oblate spheroidal eigenvalues up to c_s, respectively. However, for moderate
value of ¢ and the intermediate number n, there appears a gap between Bouwkamp's and the
asymptotic expansions because of the orders of the included terms being not high enough

for these expansions.

16 term, and the prolate

The author has pushed the power-series expansion forward to ¢
and oblate asymptotic developments till c-e, respectively. Thus the correct arrangement
of the eigenvalues Amnfrom small value through large value of ¢ and from small number
through large number n is formed in increasing order by correspondingly selecting one of
these two expansions. The developments of the analytical expressions of the spheroidal

»>
eigenvalues, together with further improvements on calculating the spheroidal radial

functions, have made it feasible to compute the scattering coefficients for different

kinds of spheroids within very wide range.
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1. PONER-SERIES EXPANSION OF THE SPHEROIDAL EIGENVALUES

The angular differential equation of the spheroidal wave functions can be written

in the form

23 S
4Sm | gp Lma 4 (- 22 - —F—)s = 0 (1)
dn2 dn 1 -n

(1 - n?)
where n is angular coordinate in the spheroidal system, -1 &£ ng 1;

Smn are the spheroidal angle functions of order m and degree n;

an are the eigenvalues of the spheroidal differential equation;

m and n are positive integers with n 2 m.
This equation is for prolate spheroidal wave functions. By replacing c by -ic in Eq. (1)
we would have the equation for oblate ome. For small value of c, the following expression
of the eigenvalues Amn in the form of continued fraction can be obtained by using three-
term recursion relation of the expansion coefficients, d:n(c), of the spheroidal angle

, . . m
functions smn with respect to the associated Legendre functions Pm+r (where r is the

4
summation index):

m m m m
. Bn-m Bn--m—2 - n-m+2 Bn—m+4 . (2)
on ' o-m m ., _.m -5 — m ., _ .m o —
Ya-m-2""mn Yn-m-4 “mn , Yo-m+2 ‘mn_ Tn-m+4mn
where v* = (@+r) (@rrel) + 3c2[1 - m?-1 ] (r 3 0) (2-1)
r 2 (2m+2r-1) (2m+2r+3) z
: 1yl
g™ = r(r-1) 2m+r) Cm+r-1)c (r 3 2) (2-2)
T (2m+2r-1)2(2m+2r-3) (2m+2r+1)
Substituting in Eq. (2) the power-series expansion
o
= mn 2k 3
Ann Log © (3)
k=0

and then developing the continued fraction by raising consecutively each partial
denominator up to the associated numerator with the use of binomial expansion, we can find

2k

the coefficients lgi by equating the power of c“. The coefficients in the book by

C. Flammer5 were given till 2?3; it might be remarked that he obtained the coefficient
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"2 as given below, but apart from a sign error in the third term of the second part (the

10
6
numerator 6n—-25 instead of the correct 6n+25). In most cases, the coefficients up to QT;
. . mn mn . . . .
are often used, the coefficients 114 and 216 are just applied to some certain size parameters
of moderate value of c and intermediate numbers n. To save space the coefficients derived

by author are not fully listed; ETZ and 2?2 can be found from author's paper.

The power-series expansion of the spheroidal eigenvalues an is as follows:

o0
_ mn 2k
‘an = Z’lzk ¢ (4)
k=0 .
where
zg“ = n(n+l) (4-1) -
2_ 1 -
g;“ - % [1 - ____éﬂ;_l___] (4-2)
(2n-1) (2n+3)
8 8
z?n - 0 _ 2 (4=3)
2(2n-1) 2(2n+3)
8. (4m2-1) 8. (4m2-1)
e e e B
4(2n-1)2 L(2n-5) (2n-1) (20+3) 4(20+3)2 L(2n+7) (20+3) (2n-1)
R Bo(““‘z‘”[ b 8 (4n2-1) B2 ]
8 4(2n-1)2 Lin2-1) T (20-5)2(20-1)3(2043)2 4 (4m2-1) (20-3)-
8. (4m2-1) z 2 B }
4(2n+3)2 L(4m?-1) (zn+7)2(2n+3)3(2n-1)2 4(4m2-1) (2n+5)-
2_ mn
gn ol 1)[ e “2y N 16 (4m2-1)2
10 4(2n-1)2 L(4m?-1) Qm&ﬂhrnzﬂmﬁ) (2n-5) 3 (2n-1) 5 (2n+3) 3
. B_, (6n-19) ]
2(2n-9) (2n-5) (2n-3) (2n-1)2(2n+3)
2 mn mn
_ Bylim '1)[ Yo 4Ly ) 16 (4n2-1)2
4(20+3)2 L(4m2-1)  (20+7) (20+3)2(2n-1) (20+7)3(20+3) 5 (2n-1) 3

(4-6)

64(6n+25) ]

2(2n+11) (2n+7) (20+5) (20+3) 2 (2n-1)
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2_ mn mn, 2 mn 2_ mn
o eo(am 1){ ig i «, ) i bey . 12(4m®-1) 2,
12 4(20-1)2 U(4m2-1)  2(4m2-1) (2n-1) (20-5) (20-1)2(20+3)  (20-5)2(20-1)*(20+3)?
2
- 32 (bm?-1) 2 i P2 [ (bn?-1)%¢,
(2n-5)%(20-1)7 (2n+3)*  (4m®-1) (2n-3) (2n-9)2(2n-5)2(2n-1)"*(20+3) 2
mn
i (10n-13)2, . B_, . B_, ]
16(2n-3) (2n-1)  32(2n-3) (2n-1)  96(2n-5) (2n-3)
2_ mn mn, 2 mn 2_ mn
i B, (4m 1){ Lg . (2, ) i bag . 12(4m?-1)8,
4(2n+3)2 L (4m2-1)  2(4m?-1) (20+3) (20+7) (2n+3)2(20-1)  (20+7)2(20+3)"* (20-1)2
2
32 (4m2-1) N By [ (4n?-1)%d,
(2n+7)* (20+3)7 (20-1)*  (4m?-1) (20+5) (2n+11)2 (20+7) 2 (2n+3) " (20-1)2
(10n+23) 25" 8 8
+ b & + 6 ]} (4=7)
16(2n+5) (2n+3)  32(2n+5) (2n+3) 96 (2n+7) (2n+5)
- L = -
where 8_, = Bn—m—é/c , B_, = Bn_m_z/c ’ By = Bn_m/cu,
= 4 = b4 - u o
B2 - 8n—m+2/c ’ 84 Bn—m+4/c ’ 86 Bn-m+6/c .
and d; = (2n-1)2 + 2(2n-1) (2n-9) + 3(2n-9)?2
d, = (20+3)2 + 2(20+3) (2n+11) + 3(2n+11)2

The power-series expansion of the oblate eigenvalues Amn is obtained from Eq. (&)
by simply replacing c? by -2,

111. ASYMPTOTIC DEVELOPMENT OF THE PROLATE SPHEROIDAL EIGENVALUES

Let us set

ol g

s = (- n?) u__ (5)

substitute this expression in Eq. (1), and make the transformation
n = (20) % (6)

there results

x2. d%upn  (m+l)  dugp %2
-2 dx? T e dx + - E—)umn =0 (7)
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an-m(m+l)

where constant K = e (7-1)

First of all, developing Un and K in the asymptotic forms of size parameter c:

-1 -2 -3 _k
= + e + -
uon ) + ulc + u2C + u3c ukc (8-1)

- —1 * e 0
K = @y + alc + azc + a3c + + akc (8-2)

and substituting them in Eq. (7), we can determine the terms Ugs Ups Ugy tt of eigen-

functions Un by a series of differential equations of the second order, namely —

U.l + ( - _}_{_2') = 0

u, ¢ 4 uo , (9-1)

u " + (0- - x—z-)u = = .U + l[ 2U. " + 2(m+l)xu '] (9-2)
1 0 4 1 170 2 0 0

u" + (a. - l{-2-)u = -q.u, - au. + l[#zu "+ 2(m+l)xu ] (9-3)
2 0 4772 171 270 2 1 1

u "+ (2, - l{i) = -a.u -0,u - sse =g u. + l[ 2y, "+ 2(m+l) ! (9-k+1)
k 0% ™ 1%-1 "%*2%-2 k% T 2F k-1 |

Let
1
ag = p + 3 (10)

where p is a positive integer or zero. The solution of Eq. (9-1) is

u, =D (x) (11)
0 P '
wher= Dp(x) is parabolic cylinder function. For simplicity, we just denote it by Dp

In the first approximation of K, we have

1 .
K=o, =p+3 (12)
It implies that
A= (2p + Dec while ¢ + = ‘ (13)

mn

According to the asymptotic property of the eigenvalues an, we find that

A = 2@ - m) + 1]c while ¢ + = (14)

The foregoing suggests that

Next we define the operator
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9D = %2D " + 2(m+1)xD '
p p P

Utilizing the recursion relation of the parabolic cylinder functions:

' X _ =
Dp + 2Dp pr_1 0

we obtain

+ +C +
VDp Cl,pr+4 2,pr+2 CB,p ) 4,pr~2 CS,pr-4
where
1
Ci1,p 7 3
C2,p = -m
2
C = - w - m
3,p 4
C4,p = m|P|2
. lel,
5,p 4

with |p|, = p(p-1), and |p[, = p(p=1)(p=2) (p=3).
Again, we define the operator

2

1 X
= " - - —
Aur =u + (p + 5" % )ur

where r = 1, 2, --- k.
Remembering that

AD =0
P

we find that Dp term will not appear in the solution u of Egs.

Furthermore we set

Y T Z AoePotan
L#0

then

bu, = Z (=20)850D 10 = ; ByePp+2e
0 [

where we have expressed the right-hand sides of Egs. (9-2), (9-3),

of Z BZle+29..

L¥0
Hence the coefficients A22 are found to be

117

in the forms

(16)

(17)

(18)

(18-1)

(18-2)

(18-3)

(18-4)

(18-5)

(19

(29)

(21)

(22)



By

Ay, = - —

2% 20
Now we can solve Eqs. (9-2), (9-3),

From Eq. (9-2), we get

C 2
w =3P _ _ 2p%+2p¥3 _m
1 2 8 2

By assuming

q=2p+1
we have
o = - QZ548m
1 16
The term uy of the eigenfunctions un is found in the form
1
== +
4T3 [lep+4 *Elpu F E30 f4Dp—4]
where
1
ST T
=T
f273
m
£y =3 loly
1

Similarly we can obtain the other coefficients e of the eigenvalues Amn and the
terms u_ of the eigenfunctions U by the successive substitutions. The expression of
terms u will be lengthy and lengthy while r increases; therefore I only list the

coefficients ar.

_ q(q?+11-32m?)

% = 7

2 2
o = - 5(q"4+26q2421)-384m? (q%+1)

3 211

_ (33q5+1594q3+5621q) -128m? (37q3+167q)+2048m"q

% = ;15
. = - (63q6+49400“+43327g2+22470)-128m2(1qu“+13loq2+735)+24576m“(qz+1)

5 217
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(23)

(24)

(25)

(26)

(27)

(27-1)

(27-2)

(27-3)

(27-4)

(28)

(29)

(30)

(31)

1llk 1"' 1!!l 1"' 1"' 1lll~ 1"' 1"' 1"' 1!!! 1"' 1"' 1"' 1"' 1"' 1"' !!E! ‘III



- [(527q7+61529q5+1043961q3+2241599q)-32m2(5739q5+127550q3+298951q)+

Q
1}

6
~-21
2048m" (355q3+1505q)-65536m®q]2 (32)
o, = - [(9387q8+1536556q6+43711178q“+230937084q2+93110115)-1536m2(2989q6+112020q“+
7
-26
648461q2+270690)+196608m“(175q“+1814q2+939)-12582912m6(q2+1)]2 (33)
Therefore the eigenvalues kmn are in the form:
-r+ -7
\ = qc - L(q2+5-8m2) + 26 T w0 (34)
mn 8 & r
Correspondingly the eigenfunctions u N are in the form:
m

e
mn r

=0
As E.L.Ince gaid: "If anyone had the courage to push the development on a stage Or two
further he would greatly enhance the value of an important expansion. But any reader

who attempts to verify the results given above will realize that the work involved

. 9
would be tremendous'.

The expression of the eigenvalues an of the prolate spheroidal differential
equation can be converted to that of the eigenvalue A of the Mathieu differential

equation, as follows:

-7 =1 - -2
A = -2h% + 2qh - é(q2+l) (3430027 0T - (5q%+34q249)2 12077 - (33q%+410q3+405q)27 1773

- (63q5+1260q%+2943q2+486)2 2 b - (527q7+15617q5+69001q >+41607q) 2 2%n ™"
- (9387q8+388780q6428&5898q“+4021884q2+506979)2_31h—6 +om )y (36)
where
b3 (36-1)
L % y % c* (36-2)

-6
herein the author has developed one more high order term h .

IV, ASYMPTOTIC DEVELOPMENT OF THE OBLATE SPHEROIDAL EIGENVALUES

The oblate spheroidal differential equation for angle functions Smn is expressed as

m2

s =0 (37)

2° mn

2
(1 - n?) d%Smn _ 5, dSmn (A  + c2n2 -
dn2 dn o 1 -n
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Referring to C. Flammer's book, and using three-term recursion relation of the

mn . . .
expansion coefficients, As , of the oblate spheroidal angle functions Smn with respect

1
to the Laguerre functions Liﬁ; (where v = 3 (n-m) if (n-m) is even, and v = % (n-m-1)

if (n-m) is odd, and s is the summation index), we have the following expression of the

eigenvalues Amn in the form of transcendental equation:

Q2 Q2 Q? Q>
L - 0 1 oy 1 2
= g — A i —
mn Amn + P—l Amn + P_2 o + Pl Amn + P2
where
Q = (s+v) (s+v+m)

P = 2s(2v+m+l-2c+s)

The eigenvalues A_. are related to the eigenvalues X__ by
mn mn

1
= -n2 _ 2241 -p2
Amn c® + 2qc 2(q +1-m<) + Amn
where
q=n+1 while (n-m) even
q=n while (n-m) odd

Substituting in Eq. (38) the inverse power-series with respect to size parameter c:
)

A = L.c
mn 1
2:

and then expanding the continued fraction by doing same procedure as power-series

i

expansion discussed in Section II, we can get the coefficients li. The eigenvalues

an of the oblate spheroidal differential equation would be:

mn
- q[(33q“+114q2+37)—2m2(23q2+25)+13m“]2‘9c'3 - [(63q5+340q"+239q%+14) -

L0m2 (10q*+23q2+3)+3m" (13q2+6)-2m8]27 %™ - a[(527q5+4139q4+5221q2+1009) -

m2(939q“+3750q2+1591)+5m“(93q2+127)-53m6]2‘13c‘5 - [(9387q8+101836q5+

A = -c2 + 2qc - %(q2+l-m2) - q(q2+1-m2)2'3c‘1 - [(sq“+10q1+1)—2m2(3q2+1)+m“]2‘

(38)

(38-1)

(38-2)

(39)

(39-1)

(39-2)

(40)

6 =2
c

205898q“+86940q2+3747)-12m2(1547q6+9575q“+8657q2+7o1)+6m“(1855q“+5o78q2+939)—

12m (167q2+85)+51m8]27 7”8 + 0¢c™T)
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(41)

i { R | 1 & ]
- e h
¥ % LR




V, DISCUSSION

In order to obtain the accurate spheroidal eigenvalues, we should substitute

the expression of spheroidal eigenvalues with hgigher order terms for Bouwkamp's or

asymptotic expansion, as the initial values, into Eq. (2). Since the terms in the

multipole expansion have been developed in such a high order that the initial

eigenvalues will be immediately bound within the convergence circles. Therefore, the

final eigenvalues Amn can be easily reached by iterated procedures at very fast

convergence rates.

The spheroidal eigenvalues kmn’ the spheroidal angular functions Smn’ and the

spheroidal radial functions Rmn’ together with the boundary conditions matching,

make the computational electromagnetic scattering problems solvable.
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