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I. INTRODUCTION

The rapid growth of electrical modeling and analysis of elecand electronic systems is due to the
increasing importance of the passive parasitic elemenishwéire cause of interferences or may act as
sources for electromagnetic compatibility and signalgritg problems. The electromagnetic nature of such
effects along with the geometric complexity of electrongstems call for efficient electromagnetic method-
ologies and computer-aided design tools which allow aviai«e analysis of 3-D structures characterized
by inhomogeneous materials and complex geometries.

The three most popular computational methods which are lysadbpted in computational electromag-
netics (CEM) are the finite element method (FEM) [1], the finiteed#hce time domain (FDTD) [2]-[4]
technique, and the method of moments (MoM) [5]. It is knowattthe first two approaches are essentially
based on the partial differential equation (PDE) form of Malke/eequations and result into powerful
technigues that have been widely used for a variety of EM prabl The Method of Moments is based
on an integral formulation of Maxwell’s equations. Among thle different integral equation (IE) based
techniques this tutorial focuses on the Partial Element Edgmi Circuit (PEEC) method. Stemming from
the pioneering works by Ruehli [6]- [8], in this tutorial papthe PEEC method is revised with the aim to
provide the reader with a step-by-step procedure to devidopvn PEEC solver.

The main difference of PEEC method with other integral equatiasell techniques resides in the fact
that it provides a circuit interpretation of the electric diéhtegral equation [9] in terms of partial elements,
namely resistances, partial inductances and coefficienfotatial. Thus, the resulting equivalent circuit
can be studied by means of Spice-like circuit solvers [10]dthkime and frequency domain. Furthermore,
once the PEEC model for an electromagnetic system has beeropedela systematic procedure can be
used to reduce its complexity, taking into account the gkadtsize of the structure under analysis. For
example, if the characteristic time of the excitation (itee rise time of a pulsed excitation pr the period of
a time-harmonic excitation) is such that useful wavelesgtle much larger than the spatial extent of the
system, all retardation effects can be neglected.

Integral equation (IE) methods are very effective for elmtiagnetic modeling for electromagnetic inter-
ference (EMI) and electromagnetic compatibility (EMC) pwes. The first step of any integral equation-
based method is the development of an integral formulatidaxwell’'s equation. The most popular integral
equation is the electric field integral equation which is of#d by enforcing the electric field at a point in
the structure as the superposition of fields due to all etectuirrents and charges in the system [9], [11].

Compared with differential equation (DE) based methodspihg&ices resulting from IE based techniques
solutions are smaller in size and dense. The reason for theeddsize is that the unknowns are repre-
sented by the electric currents flowing through the volumesooiductors dielectrics and charges on their
surfaces; the reason for the density of matrices arisingn fi6 solutions is that each element describes the
electromagnetic interaction (electric and magnetic) etwtwo discrete currents or charges in the structure.



The paper is organized as follows: Section Il presents the lwhsivation of the PEEC method starting
from the volume electric field integral equation (EFIE); the bsis of the PEEC equivalent circuit
is revised in Section Il and the computation of the parti@neénts in Section IV; the extension to
dielectrics is described in Section V; a brief discussionrefjfiency and time domain solvers is presented
in Section VI; Section VII reports numerical examples in EMC, Edfid S| areas; finally, Section VII
draws the conclusions. It is not in the scope of this artioleliscuss advanced PEEC modeling for which,
the interested reader can refer to the referenced papers.

Il. PEEC INTEGRAL FORMULATION OF MAXWELL’S EQUATIONS
Maxwell differential equation in time domain are [9]:

Vx H(rt) = aDa(:’t)—i—J(r,t) (1a)
VxE(rt) — —‘936(:’” (1b)
V-B(r,t) = 0 (1c)
V-D(r,t) = o(r,t) (1d)

wherep (r,t) is the charge density andl (r, t) is the current density; the fieldd, B, E and D satisfy the
following constitutive relations:

B(r,t) = pH (r,t) (2a)
D(r,t) = eE(r,t) (2b)

It is useful to express fields in terms of potential. From theedjenceless property (1c) &, we define
the magnetic vector potential such that:

B(r,t) =V x A(r,t) (3)
Substituting (3) into (1b) we obtain:
V><<E(r,t)—|—aA(r’t)):O 4)
ot
The previous equation allows to define the electric scalarmpiale® (r,¢) such that:
E(r,t)+ 8148(:’75) = -V (r,t) (5)

Such equation relates the electric fieil with the potentialsA and ®. The next step is to express such
potentialsA and ¢ in terms of J and ¢ respectively. To this aim we substitute (3) and (5) into (&)
obtain

0 (_8A (r,t)

A(r,t) = pe—
VxVxA(rt) e T

V() < () )
Using the Laplacian identity
VXVxA(rt)=V(V-Art)—V>A(r1) (7)

and enforcing the Lorenz gauge
0% (r,t)

V-A(r,t)=—pue T (8)
we finally obtain the Helmholtz equation for the magnetic vegotential:
A(r,t
VA1) - pe 2D e ©)

Following the same steps it is possible to express the paten{r, ¢) in terms of the charge density leading
to the Helmholtz equation for the electric scalar potential
0% (r,1) o(r,t)
=— 10
T £ (10)
9

V20 (r,t) — p




In an homogenous medium equation (9) has a closed-formi@olfir the magnetic vector potential
A (r,t) due to a current/ (r,t) in the volumeV’; it is:
i J(r',t)

A = = ! 11
(r,?) A Jy v — 7] v (11)

In an homogenous medium also equation (10) has a closeddolation for the electric scalar potential
® (r,t) due to the charge distribution(r’,t); taking into account that the charge resides on the exterior
surface of conductors, the solution of (10) in an homogenmoadium is:

1 o(r' t)
e Jg |7 — 7|

d(r,t) = s’ (12)

In equations (11) and (12 denotes the time at which the current and charge distribsifid and o, act
as sources ofA and ®@ respectively; it is different from because of the finite value of the speed of light
in the background homogenous mediums 1/, /ue. it means that they can be related by:

t=t —|r—7'|/c (13)

In deriving relations (11) and (12) all the Maxwell’s equeis (1a-1d) have been used along with the Lorenz
gauge (8). So far equation (5) for the electric field has not hesd yet.
In a conductor the following constitutive relation holds:
E(ry- 200 14)

ag
where o is the conductor conductivity. Substituting equation (1dtpithe electric field equation (5) and
taking into account that an external electric fidl (r,¢) can be impressed at pointat time¢, we obtain
the electric field integral equation (EFIE)

Tt o [ T,
EQ (’I",t)— pu +at4ﬂ'/v/ r—r’| dVv +V¢(r,t) (15)

which holds at any point in a conductor and where the elesrlar potential is related to the charge
distribution by equation (10), here repeated for clarity:

1 o(r' t)
dre Jg |r — 7|

d (r,t) s’ (16)

To ensure the conservation of charge the continuity musnereed:
_do(r,t)
ot

As we have assumed that the charge is located only on theswfaonductors, in the interior of conductors
equation (17) becomes:

V. J(r,t) = (17)

V-J(rt)=0 (18)
while on the surface of conductors, using the surface dererg, we have:
_ Oo(r,1)

wheren is the outward normal to the surfac®.
Finally, the set of equations to be solved reads:
_J(rt) 0w J ('t
Ey(r,t) = . +8t47r/v, e dV'+ Vo (r,t) (20a)
! 4/
) = = (2 e e (20b)
dre Jo |r — 7|
V-J(r,t) = 0 reV’ (20c)
a-J(rt) = a’é’;’t) res (20d)
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The unknowns of such a problem are represented by the curessitd.J (r,¢) in the interior of the
conductors, the charge densityr,¢) on the surface of the conductors and the electric scalampate
distribution ® (r,¢) of conductors which can be directly expressed as a functicheocharge density for
red.

Equations (20a)-(20d) can be rewritten in the Laplace domsin a

/ —sT
By(rs) = 2% +3“/ T 1t v () (21a)
o 4m lr — /|
/ —S8T
o (r,s) = L Mdé” res (21b)
dre Jg T — 17|

V-J(r,s) = 0 reV’ (21c)
n-J(r,s) = so(r,s) res (21d)

wherer = |r — 7’| /c and s is the Laplace variable.

The most popular method for the discretization of integralagipns was called by Harrington tieethod
of moments(MoM) [5] with different implementation [12]- [16]. Usuall the solution is found in the
frequency domain, assuming = jw. As a first step the unknown quantitieb(r,w) and o (r,w) are
approximated by a weighted sum of finite set of basis functiprsR? andp € R:

N,
J(rw) = Y by(r) I, (w) (22a)
o(rw) = D pm(r)Qm (W) (22b)
m=1

wherel,, (w) and@,, (w) are the basis function weights which must be determinedcht @agular frequency
w, N, and N, represent the number of volume and surface basis functiedgtee corresponding elemen-
tary volume and surface sub-regions, respectively. Expang&2a)-(22b) are substituted into (21a)-(21b),
evaluated fors = jw, yielding:

b, (r w e—Iwr
Ey(r,w) = ( ) ] MZ/ |7“— ’an—l—
n=1 n=1 T'n
+ @(r,w) (23a)
@ (rw) = 1%/ () Qo (&) a5 (23b)
r,w = dre Z Js. Pm (T'm m (W |7‘ — Tm’ m

Next, the so-called Galerkin’s testing or weighting prac€EL5]) is used to generate a system of equations
for the unknowns weightg,, (w),n = 1---N, and @, (w),m = 1--- N, by enforcing the residuals of
equations (21a)-(21b) to be orthogonal to a set of weightimgtions which are chosen to be coincident
with the basis functions:

N,
<—E() (,’,’ CU) + Zn:l bTLO(-T) I’fl (Cd) +
jwp [ e 9T
T <nz::1 /V b, (ry) I, (w) - 'rn|> AV, + Vo (r,w),b;(r)) =0 (24a)
1 N, e—ij
<(I) (T7w) - R Zl /S',,,L Pm (Tm) Qm (w) mdsmapj (T)> =0 (24b)
where the inner products are defined as:
G b = [ FEn@ai foris1n, (25a)
@)y ) = [ g opas,  forj=1-N, (25b)
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A. Choice of the basis and weighting functions for the cormustirfaces

A number of different kind of basis and weighting functiorencbe chosen to set the equations (24a)
and (24b). The most popular are the piecewise constant,vpieedinear, RWG [13] set of basis and/or
weighting functions. In the following we will assume the qegvise constant set of functions which are
more suited to model Manhattan type structures. Thus, wenmasdo deal with orthogonal conductors
whose surface is discretized infé, elementary rectangular patches which are electricallyilstoanpared
with the wavelength of the highest frequency of interestréspecifically, the unknown electrical current
and charge densities are taken to have constant values asfercell in the discrete model.

Under this assumption the basis functions used to expandhifwge density are chosen as:

+ ifres
_ ) 5. m

Pm (1) = { 0  otherwise (26)
With such a choice of the basis function the correspondinighte),,, represents the charge on pateh
Finally, equation (23b) can be rewritten as

—jwT
(rw) = {4775 Sm / r—rm| m] @ (@) 27)

which allows to evaluate the potentlal at pointat angular frequency, due to the charge on th€, patches
covering the conductors; in a sense such equation modelgld¢ugric field coupling in the background
medium with permittivitye.

Applying the Galerkin scheme results in the evaluation ef @aherage value ob (r,w) over the surface
of each patch:

1
By (r,w) = / @ (r1,w) dS; =
S
S 1 11 eIwT
{47765’18 // |rl—rm\ SmdSi | Qm ()
= le( )Qm (w) forl=1---Ng (28)
where coefficient of potentiaP,,, (w) is:

P e s as 29
im () 47755;5 /S,/ vy —rm| ! (29)

Thus, the potential of théV, patches can be related to the charges located on the sanegadt the
angular frequencw, by:
®(w)=Pw)Q W) (30)

where matrixP entries are known as coefficients of potential and are, inrgéfequency dependent due
to the full wave type of analysis. The displacement curremtthé background medium are obtained as:

I (w) = jwQ () = jwP (W) ® (w) (31)

B. Choice of the basis and weighting functions for the corauablumes

Conductor volumes are discretized inkg, elementary orthogonal hexahedra (parallelepiped) whieh a
as before, electrically small compared with the waveleraftthe highest frequency of interest. Ligt and
a, the length and the cross section of voluivig respectively.

The basis functions used to expand the current density arsenhas:

Uy jfpeV,
b, = an o 32
(v) { 0 otherwise (32)
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wherew,, is the unit vector indicating the current orientation inwmle V,,. With such a choice of the basis
function the corresponding weight represents the curremtiritp in the volumeV,, with orientation,,.
Equation (23a), after the Galerkin scheme is applied, carebetten as:

il
Ey(ri,w)l; = i (w) +
oa;
—jwT
+ Jw'u / / w; - Uyl n eidvnd‘/z+
al (079 | r; — n‘
+ q)gz( )—(I)h( ) fori=1- NU (33)

In deriving the previous equation the external electric fi&lg(r,w) has been assumed uniform in the
volumeV;. Also, it has been considered that:

1 1
— fLZV‘I) (r,w) d‘/l = — </ ’[leq) (r,w) dll> dai =
ai Jv, @i Ja; \JI;
= q)gi (w) — q)li (w) (34)

where®;; (w) and ®y; (w) represent the potential at the extremes of the voldfnalong thew; direction.
Each term of equation (33) represents a voltage drop acrdsmed/; along thew,; direction and, thus, it
can be rewritten as:

N’u
O (w) = Doy (w) = Vou (@) + Rili+jw > Lypinln (@) (35)
n=1
where
Voi (w) = —Eo (ri,w) ; (36)
represents the voltage source due to external fields;
l;
R; = (37)
oa;
is the resistance of the cellwhere current flows along;
1 —JjwT
Lpan () = 1 / / -V (38)
’ Adr aan Jy, Jv, i — 74
is the so called partial inductance [17] between volumesdetind n;
(I)li (w) — (I)Qi (w) (39)

is the difference of potential between nodes at the extravheslumeV;, along thew,; direction.
In a more compact matrix form equation (35) can be written as:

—A® (w) — RI}, (w) — jwL, (w) I (w)—Vy(w) =0 (40)

where vectorgb and I';, collect the potentials to infinity and the currents flowing tigh the longitudinal
branches, respectively and the matrixis the connectivity matrix whose entries are:

+1 if currenti;,, leaves node
Ank = -1 if current;,, enters node: (42)
0 otherwise

It is worth to notice that the discretization process dématiabove has allowed to generate circuit topological
elements such as branches, where curréptsi = 1--- N,, flow and nodes, whose potential to infinity is
®;,,l=1---N whereN > N; as, in the case of 3-D structures, nodes interior to the atdndsimay occur.

At this point the generation of equivalent circuits is gjtaforward, as described in the next Section.
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[Il. DEVELOPMENT OFEQUIVALENT CIRCUIT MODELS

The procedure outlined above has allowed to write equati@d8){(20d) in such a way that circuit
unknowns are used, namely currerdis (w), ¢ = 1---N,, potentials®; (w), [ = 1---N and charges
Qm (w), m =1--- N,. The synthesis of the equivalent circuit is best demonstrteough the application
of the procedure to the very simple example of a zero thicksé$p of conductor depicted in Fig. 1. The
discretization process has been accomplished leadingde tiodes, 1,2 and 3, and two branches, connecting
them. The corresponding unknowns are the potential to infofithe nodes®,,®, and®3, and the currents
I;, and I}, flowing through the branches.

Fig. 1. Single zero thickness conductor with three nodes.

A. Model for electric field coupling

A circuit model for the electric field coupling can be obtairggmming from equation (30) which, in
the considered example, reads:

& = PQ1+ Pi2Q2+ Pi3Qs (42a)
®y = P1Q1+ PrQa+ P3Q3 (42b)
O3 = P51Q1 + P3aQ2 + P33Q3 (42c)

For implementation purposes in time domain it is useful pasate the self effect from the mutual effects.
The displacement currents are obtained by taking the desvat both the equations (42a)- (42c) yielding:

. 1 . Pria . P13
In = e ®) — jw 2y — jud 43a
cl Jw@ = jw P TR Q2 o Q@3 (43a)
. ‘ . Py . Pas
lo = — oy — jw 2y — jui 43b
2 JwQa = jw By 22 "I, Q1 %, Q3 (43b)
. 1 . P3 . Py
Iy = = jo— By — i Qy — jw 2 43c
3 JwQs Jwp P Jwp Q1 P, Q2 (43c)

which allows to identify the contribution of the self cellhweh can be modelled as a capacitor, from the
mutual coupling, which is modelled in terms of current coliéd current sources (CCCS8§), I», I3 as:

. Pris . P13
L = jw—Qo+ jw— 44a
1 J P11Q2 J P11Q3 (44a)
. Py . Pa3
I, = — Q- 44b
2 JWP22Q1 +JWP22 Q3 (44b)
. Py . Pso
I3 = — — 44c
3 JWP33Q1 +JWP33 Q2 (44c)
In the most general case tlhe-th CCCS can be defined as:
N, N,
- Pkm . - Pk:m
I, = E — = E —] 45
k P Pkk ijm — Pkk c,m ( )
Thus, currentd are related to currentg,. by:
I=TI, (46)
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where

1 piz ., PiNg

P11 P11

P21 1 A

T — P22 P22
PNg1 PNg2 . 1

PNgNs PNgNs

Let's introduce a matrixD to describe the self induced effect as:

jwD®
where
L 0 ... 0
P11 1
0 = .. 0
D: 22
0 o --- T

Equations (43a-43c) in a more compact form as:
I.=jwD® —TI,

Such equations are is well suited for a circuit interpretgtghown in Fig. 2.

1 3

2
L ]
lclI Icz[ Ic3

.v)
£~
a
Y
|
—
et
O
&0
—

Fig. 2. Equivalent circuit model for electric field coupling.

Also, the following P matrix factorization can be established:

P'=pDs!
where matrixS is defined as:
1 piz .. _PiNs
Pb22 PNsNg
P21 1 .. PaNs
S o P11 PNgNg
pz\;sl Pl\;s2 - 1
P11 P22

It is easy to verify that the following identity holds:
S=T"'

(47)

(48)

(49)

(50)

(51)

(52)

(53)

It has to be pointed out that equations (42a)- (42b) allowad@hthe electric field coupling in the background

medium.
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Fig. 3. Equivalent circuit model for magnetic field coupling.

B. Model for magnetic field coupling
A circuit model for the magnetic field coupling can be obtairstemming from equation (33) which,
enforcing the electric field equation (5) in a discrete formthe considered example reads:
Py — Py = (Ry+ jwlpiilry + jwlpiala + Vo1) (54a)
Oy — P35 = (Ro+ jwlpoalps + jwlpoili + Vi) (54b)

It is suited for the circuit synthesis shown in Fig. 3
In the considered example no interior node occurs, thiys= N = 3.

C. PEEC equivalent circuit

Once the equivalent circuits for the electric and magnetid fimupling have been generated, the next
task is to connect equivalent circuits shown in Figs. 2 and 3 €an be accomplished just by connecting
nodes 1,2 and 3 in Figs. 2 and 3, thus leading to the equivaleniitcsketched in Fig. 4.

i Lp,lZILZ Vou R L i LV

c3

Fig. 4. Equivalent circuit model for the simple example in Fig. 1.

D. Enforcement of Kirchhoff’s current and voltage laws

Once the equivalent circuit is generated, Kirchhoff's eatrand voltage laws can be enforced. The first
set of equation can be obtained by enforcing Kirchhoff'sage law (KVL) applied to a mesh constituted
by the resistive-inductive branch connecting each coupfeodes and the capacitive branch connecting each
node to infinity. It yields the set of equations (40), here etpé for the sake of clarity,

—A® (w) — RI (w) — jwL, (w) I (w) —Vy(w)=0 (55)
The PEEC method enforces the continuity equation in the form affioff’'s current law (KCL); taking
into account that botll;, andI. and that external current sourcés can be connected to each node, KCL
can be written as:
I (w) — AT () = I, (w) (56)
wheret denotes transpose. Considering that the displacemergntsifi, can be expressed as a function of
the potentials® (31), it is possible to write:

jwP (W) '@ (w) — AT (w) = I, () (57)
From the implementation point of view it may be desirable toidthe matrix inversionP (w)~' because
of its complexity O (n?)). Matrix P (w) can be used as preconditioner, allowing to re-write the iptev

eguation as:
jw® (W) — P (w) AT (w) = P (w) I (w) (58)
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IV. COMPUTATION OF PARTIAL ELEMENTS

As seen in the previous Section, building a PEEC model requirageting partial elements, namely
partial inductances, coefficients of potential, descrililmg magnetic and electric couplings respectively and
resistances which account for power dissipation in condeichaterials. The present Section focuses on the
computation of partial elements and existing closed foamulhich allow fast and accurate partial elements
computation.

A. Computation of partial inductances
The evaluation of partial inductances requires the comiomatt double folded volume integrals as (38):

e ij
//ul un dV,dV; (59)

_TTL‘

L .

b (w) = 47r a;Qnp,
If the discretization matches thg,,;,/20 rule (max(dimx )\mm/20), being max(dim) the maximum
dimension of cells andambda..;,, the minimum wavelength of interest, a center to center afipration
can be assumed and the partial inductance can be computed as

ij . ce
Lpin(w) = / / w; - un : dV,dV; = Lffm TIWTin (60)

47r a;an, — 7y

where7(¢ is the center to center distance between volume ¢edisdn.

For general geometries and not negligible delays numadnitegration techniques must used. In the quasi-
static case and orthogonal geometry analytical formulasaaailable. In the following a review of partial
inductances computation techniques is presented. A mdadlatk description of closed formula for partial
inductances evaluation for standard configurations can bedfan [17]- [19].

w,

D

/ ¢ TZ
w,

Fig. 5. Geometry and notation for the computation of self and mutual partakttances.

a) Self Partial Inductance of a 3D rectangular cell:

Lp;; . Q,u 14 Ay 1
I = 24’LL [ln( o ) A5:| + T [ln(w + Ag) A@] (61)
w2 w? u—+ As w? 1
+W(A4—A3)+ﬁ[l( ) — A7l + G0a W — Az) + 5 (A2 — Ad)
2
g W1 WU W g U A7
+4A5 6wtan (A4)+ Ag 6ta (A4)+4
1 ‘1(u—w)+ [In(u+ Ay) — A7) + (A] — Ay)
6w Vg T g P T A T A 202 1A
1 1 U
—(1—-A Ay — A — (A3 — A
T 2) F Gouez (Aa — A + 55 (ds — A)
u? 1+ A W [ w As
T oa [ln( u )_A5]+24w [ln( u )= 4s
U3
+607[(A4—A1)+(U—A3)H
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whereu = L/W, w = T/W and the following notation is adopted:

A = V14+u2 Ay =+1+w?

Ay = Vr+u2 Ag=+vV1+w?+u? (62)

As = ln<1—;;44> A6—1n<wzlA4>

A = 1n<“1‘12‘44> (63)
W,

Fig. 6. Co-planar zero-thickness conductor geometry for the evatuafithe mutual partial inductance and coefficient of potential.

b) Mutual partial inductance of 2D rectangular cells:

4 4
Ly = S 3OSy b = O (s 1 p) (64)
Y P AL B k kTP
P k=1m=1
2_02 1 b
+ bm ln(bm+ﬂ)—g(bil—ZC’Q—l-ai)P—meaktan*l al/jcm
where
p=(a} + b2, +C%:3
a1 WU_?Z_#7 a2—W1+72_7]
QS—WijWL?ZﬁLTJ, a4:Wi-—7l+73
L; L; L. L.
bi=Lij—5—~ b=Lj+o -
L, L; L. .
b3:Lij+?Z+?J, b4:Lij—?Z+?J

and C is the distance between the two planes containing surfdte ead ;.
¢) Mutual and self partial inductance of 1D rectangular eellin the case of structures where two
dimensions are much smaller than the third, volumetricscetin be approximated as filaments. In such
hypothesis a closed formula for mutual partial inductanegveen parallel filaments with equal length.
m L L\? D D\?
Lyii=—L |In| = 1 — - 1 65
i = o Mt <D)+ T <L)+ (65)

A good approximation of the self partial inductance can bwiolked by substituting/ with the radiusr of
conductors:

L L\? 2
LpiiZQL;L |~ <T> +1 +%— (2) +1 (66)
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Fig. 7. Two parallel filaments.

B. Computation of coefficients of potential
The evaluation of coefficients of potential requires the caiaion of double folded surface integrals as

(29):
e ]uJT
P, ——dSnd 67

As before, if the discretization matches mgm/m rule, a center to center approximation can be assumed
and the coefficient of potential can be computed as

1 e 7¥im 1 N
P, = - —dS,,dS; = Pfte I¥Tim 68
im () 4re SSm /l /sm 71 — T S5 = Fime (58)

where ;¢ is the center to center distance between surface teltgl .

Obviously, for general geometries no closed-formula exist such integrals and numerical integration
is needed. In the quasi-static case and for selected gepniesed-formula can be adopted. To obtain good
accuracy and fast evaluation of the partial coefficients dépimal basic geometries, building blocks, have
been defined. For each basic geometry a formulation for thieati@n of the partial coefficient of potential
is given. The most important basic geometry is betangular surface celilepicted in Fig. 8. The interested
reader may refer to [20], [21] for a complete overview of doents of potential computation.

“— >
w

Fig. 8. Rectangular conductor geometry for the evaluation of the sefficeat of potential.

d) Partial Self Coefficient of PotentialThe formula for the evaluation of the partial self coefficieht o
potential for the general rectangular conductor, equa®), is given by a modified version of (16) in [17]
which is used for the evaluation of the partial self inductiffor thin conductors:

L 2 1 1
pii = 4WE3{31n[u+(u +1)2}+u2+a

B
whereu = L/W using the definitions from Fig. 8.

e) Partial Mutual Coefficients of PotentiaEffective calculation routines for partial mutual coeffidien
of potential are, as for the partial inductances, more irigmbrthan for partial self coefficients of potential
due to the mutual capacitive/electric field coupling of aliface cells in the discretization. For the partial
mutual coefficients of potential calculations two basic getsies has been defined to speed up and retain

(69)

(A1}

+ 3uln[i—|—(u12+1);} - {ui +(=)

1
U

19



good accuracy in the partial element calculations. The nmogbrtant basic geometry is the mutual coupling
between two rectangular surface cells, Fig. 6. The formuldherevaluation of the partial mutual coefficient
of potential for the general conductor configuration in Figs @iven by a modified version of the (64) used
for partial mutual inductances for zero-thickness conolitsctThe equation uses the notations in Fig. 6 and
is given by

4 4

ij = L¥Z (—1)m+k Ma In(ag + p) (70)
PI T dme WLW,L; &= 2= g Ok AT
a2 _ 02 1 3 a,k bm
+ kam In(bm + p) — g(bfn —2C% 4 a3)p — by, Caj tan™! ,C
where )
p=(a; + b2, +C?:>
a o= Wy-5-5h =W
a o= Wyt 5+ 5h a=Wym it
by = Lij_?_?j; b2:Lij+?_?J
_ Lz Lj o LZ Lj
b3 - ng + ? ?, b4 = L” ? ?

andC' is the distance between the two planes containing surfdte eed ;.
The second basic geometry considered is that of two cellsitedeperpendicular to each other as seen in
Fig. 9.

«—>

W,

Fig. 9. Orthogonal Rectangular surface conductor geometry forvhl@ation of the partial mutual coefficient of potential.

The evaluation of the perpendicular surface cell partialualutoefficient of potential is given by equation
(16) in [20].

1 1 : 2 2 I+m+k+1
P S WL, 2 2 2T

a? ¢ a? b2
[(k - l> cln (b +p) + ... (;’ - é”) b In (¢ + p) + axbpmer In (ag + p)

b 3 b b2 2 b
_ Ima p— 2k arctan [ 22 = 2m%% orctan | ) — 25D rctan [ S2m
3 6 app 6 mp 2 ap

where



a o= Wy—g -5 a=Wt 5 -
a = Wyt o h a =Wy -5+
L; L;
by = Lij-f—?l, ngLij—?Z
H,; H,;
cp = Cij+7j, Cl—Cij_%

Resistances

The patrtial resistances in a PEEC model is calculated using theeacell discretization and the resistance
formula from (37) as:

R, = b (71)
AyOry

wherel, is the length of the volume cell in the current directien, is the cross section normal to the
current direction, and, is the conductivity of the volume cell material.

The resistance in the PEEC models accounts for the losses in tigeictors. A more general approach
to the computation of partial elements for non-orthogoresrgetries can be found in [22], [23].

V. DIELECTRICSMODELING

The key idea for modeling dielectrics is to represent theldegment current due to the bound charges for
dielectrics withe,. > 1 separately from the conducting currents due to the freegelsaMaxwell’s equation
for the displacement current is written as:

F B
V.E = ¢ teo (72)
€0
wherep!” is the free charge and’ is the bound charge due to the dielectric regions. Thus, thieagcharge
is: T _ F B
0 =0 +o°.
The dielectric volumes can be taken into account in terms efpiblarization current density associated

with their presence. ThisEcan be accomplished by adding abttasting the displacement current in the
oE(r.t)

background mediunage, =5~ in the Maxwell equation foiH [24]:
E
VxH(rt) = Jrt) +eosr8g;t)

OE(r,t) . OE(r,t)
ot ot
Thus, the total current in the equation (73) takes into accdumth the electric current related to the

conductivity of the medium as well as the polarization cotréue to the dielectrics:

OE(r,t)
ot
Thus, the magnetic vector potential at pointgiven in (11) becomes:

1 JT (' 1)

A(r,t) = — —2aqv’ 75
(T7 ) 47T v ‘Ir —T‘/| ( )

= Jc(r,t) +eoler — 1)

(73)

JT(T,t) = Jc(r,t) +eo(er — 1) = Jc(r,t) + JD(T,t) (74)

For a point located in a conductor (20a) reads:

Jrt) 0 [ JO)
Eo(rt) = =00 Rk [ L) gy,
o(r,1) o ' diar /V/ P — 7|

1 1 9*E(r,t) .,
foler 1)47r /V/ lr—7r/|  Ot? v (76)

_|_

+ Vo(r,t)
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At a pointr inside a dielectric region with relative permittivity. (20a) becomes:

T (2l 4/
Eo(r,t) = E(T,t)—i-au/ Mdvl

ot 4w |r — 7|
w 1 9*E(r,t) .,
—1)—
+ eoler )47r /V ] R av (77)
+ VO(rt)
where® (r,t) is:
1 T (! t
o (r,1) e Mg ey (78)

dme Jg |r—7]

Thus, it can be observed that the electric field at a pejnE(r), is determined by the first time derivative
of the current density distributiod” (r, ), the gradient of the electric scalar potentiad (r,¢) but also
by the second derivative of the electric field itsefE (', ') /0t2.

As stated before the chargeg;, o” andp” are on the surface of the conductors and dielectrics while th
currents flow through volumes. The continuity equation catmeoenforced as in the conventional moment
type solutions [5]

v-Jl+ 9" _ 0 (79)
ot

but it will implemented in the form of Kirchhoff's currentwaenforced to each node. Thus, within each
conductor and each homogeneous block of dielectric we have:

vV-Jr) = 0 (80)
v-JP(r) = 0 (81)

Furthermore, on each conductor and dielectric the curremnhaloto the surface causes accumulation of
surface charge:

f- IO (r) = jwo’ (r) (82)

n-JP(r) = jwo®(r) (83)
On the surface between touching conductor and dielectackis| equation (82) becomes:

- I (r) = jwo’ (r) (84)

Let’s refer to Fig. 10. We divide the conductors and dielestii@o blocks for which the conduction or
displacement currents are assumed to be uniform. Furthersutfaces of conductors and dielectrics are
completely laid out with panels to represent free and bouradges, respectively.

Fig. 10. Cell structure for finite conductors and dielectrics.
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Cells o e 3 represent conductors and free chagdeis located on their surfaces. Dielectric cellis an
internal cell and has no outside surface; there is no changésasurface; finally, dielectric cell is on the
surface of the dielectric body and presents bound chafgen its surface. In the following we will refer
to the total charge’ to be general.
We can represent the vector quantities in terms of the Gantesordinates. For this case the vector quantities
areJ = J,x +Jyy+ J.z andE = E,x + E,y + E.2. The three integral equations are identical in form
with the exception of the space directiongy andz. We will consider cells in theg-direction only, without
loss of generality Equations (76), (77) become three couplegral equations. Vectons e ' indicate the
point where the electric field is evaluated and where the sounarrent or charge, is located, respectively.
Two different cases must be considered depending on thé&dacaf the field pointr. In the first case the
field pointr is located in a conductor, in the second one it is in a didediock.
Let's assume first that is located in a conductor cell and no external fiélg exists: equation (76) applied
to the conductor celt is:

JE (v, t) N aﬂ/ Jc(rl’t/)dv’

Oa ot 4r @

v
C ol 4/

* %ﬁ /V/ J\T(r ;“f|)dvﬁ/

+ 50(67_1)11%;/“: T_1T/‘32Eggf,t’>dv;

+ 50(55—1)4‘7‘T/W |T1T,|82Egg/’t/)dvg (85)

+ 47360 Sgaawa_lr,’@T(T”t/)dS&

+ 47:60 . (%’T_T,‘QT(r’,t’)dS’ﬁ

- 47360 SgaayMQT(r’,t’)ngzo

whereo,, represents the electrical conductivity of cell

Applying the Galerkin solution each single term of (85) hasirauit interpretation. In the following we
assume that density curramf is uniform across the cross section of cellFurther, for the sake of clarity,
we assume the quasi-static assumption, =g ', thus neglecting the delay due to the speed of light in the
background medium. The first term of (85) represents the wvelthgp across the resistance of the cell

1 JE (ra, ot lo
— / Iy (e ) AVa = — / / By rel) g, adla = pa- (a0 ) = Ral{ (86)
Ve «Q

Qo Ou (£%eY

The second term is the voltage drop across the self inductaintte cell o

/ / ——aVv!dv, ( JS)=1L a1y (87)
47maaa , |ra — 7’&\ o Pee dt
This allows to identify the self partial inductance of cellas:
H 1 /
Lpoe = ——— ——dV, dV, 88
P AT a0y /V; /Va |re — 7l | ¢ (88)

Following the same procedure it is possible to recogniziérthird term of (85) the mutual partial inductance
between the conductor cells e 3:

W 1
Lywyg=—" —dV,dV; 89
pali dTaqag /Va /V/a 7o — T3] A (89)
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The fourth and fifth terms model the coupling among the condumttl o and dielectric cellsy e §: as
clearly seen, although the different nature of materialshgerm still represents an inductive coupling:

2 /
" 1 0 Ey(’l“,y,td) ,
-1 dv.dV, =
fo(&y )47ma /Va /4 7o — 7| Ot? VydVe

W 1 , d ar,
= Vv, | =
<4ma /V /V ra %0 V) dt (WO(&” Vg

a1
= Lpay—~
dt
where the polarizatiorif current appears. Again, the mutual partial inductance éetwcellsa and~ can
be evaluated by means of the same formula (89). The same eoatsith apply to the fifth term.
The last three terms of (85) describe the electric field prodiiceell o by the charge located on the surface

of cellsa, ¢ andd. It is to point out that the coefficients of potential deseripisuch couplings are the
same as in the free space. Let's consider peiig located in the dielectric cel}; equation (77) becomes:

(90)

Ey(r,t) + ﬁ . K(rjr’)(w??g:’mdvcfy + ﬁ ; K(Tarl)WdVé
+  coley 1)45; K<"°>’°/)82E%(Z;/’td)d1/7’+
b el [ K<r,r’>‘3’2E§t’;"td)dvg+
" 47350 / , 8Kg;r g7 )as), + 47350 / / 8th; T/)qT(r’,t)dS’ﬁJr
+ 47350 / BK((;; ) q"(r',t)dS5 =0 (91)

The Galerkin's testing procedure is applied leading to find ¢bheresponding equivalent circuits. The
integration of the first term in (91) allows to define a voltagepdacross a volume dielectric cell:

1 1
— / / Ey(r,t)dlyday = —ayl,Ey(t) = v, (92)
ay Ja, Ji, Gy

A polarization current flows through the dielectric cell

dr, dk,\ 1,
I;OL — J;OLCL,Y: (80(671) at ) Ay = <50( 1) L > l 0y =

- (2B as)| - (99

where capacitanc€, is namedexcess capacitancand defined as:

go(ey — 1)ay
lW

The second and third terms in (91) describe an inductive aaypiThe fourth term allows to define the

partial self inductance of dielectric ce}t

Ce = (94)

0E, (1, tq)
—-1)-—— K(r D2 dVIdV, =
=0 47T ar vy ) om ot? VydVy
H / ! d dEy
= | K avidv, | — — )= =
(47T afya’y /‘/:Y V’y/ (T’Y’T'Y) V’Y V’Y) dt <a"/50(8"/ ) dt
dIfOL
= LP’YWT (95)
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Fig. 11. PEEC equivalent circuit for dielectrics.

The last term allows to evaluate the mutual partial induadnetween dielectric cells e §:

1
Ly = —- /V / —dVjaV, (96)

dma~as Ty — T

Again, the last three terms are analogous to those evalirated free space. To summarize, ideal (lossless)
dielectrics are modeled by volume cells characterized byetttess capacitance in series to the equivalent
circuit for the inductive coupling described in terms offs@ld partial inductances, computed in free space.
Fig. 11 shows the PEEC equivalent circuit of a dielectric barmagsy N, = 2, N, = N = 3. More recently
PEEC models of dispersive and lossy dielectrics have been gedg@5]- [27].

A. External incident Electric Fields

When analyzing EMC problems the excitation can be repreddnteurrent, voltage-sources and external
electric fields as well. The incorporation of incident fields le PEEC method is detailed in [28] where
a source equivalencé), is derived from the left hand side in (20a). The equivalertage source}y, is
placed in series with each inductive volume cell equivatgrduit and calculated for a volume cell using

1 .
Vo, (t) = a/ /l E'(r,t)da dl (97)

where ' ' ‘ '
E'(r,t) = Ey(r,t)2 + Ej(r, 1)) + E.(r, )2 (98)

VI. ANALYSIS OF PEECMODELS

The analysis of PEEC models can be carried out in both the freguamttime domain by means of the
same circuit.

A. Frequency domain solver

A PEEC frequency domain solver can be obtained just collectijpgtons (55) and (56) (the dependence
on the frequency has been omitted for simplicity):

—A —(R+ijp)}[<I>}_{VO] (99)
jwP~! — A I, | | I,

1) Solution of dense linear system#n efficient and accurate solution of the linear system (99) is
extremely important for the performance of the PEEC solver. Thestraommon technique to solve linear
systems is the LU decomposition [29]. Although elegant sudthod is not practical for solving large
and dense linear systems as its complexity)ig:?), beingn the number of the unknowns. It is much
more convenient to use Krylov subspace iterative methofls Many different implementation variants are
available; the most popular is GMRES [30] whose complexit@{:?) as requires matrix-vector products
and converges in a very small number of iterations if an efiigie-conditioneris used. Furthermore, the
matrix-vector product can be accelerated by using fastipulé techniques [31]—[34] or precorrected-FFT
methods [35] which may reduce the complexity@gn log(n)).
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B. Time domain solver

The development of time domain PEEC solver needs to considereiag th the coupling terms. In the
following we assume that partial inductances and coeffisiehpotential are evaluated as static coefficients,
thus assuming a center to center approximation (60) and (68)

The coupling inductancép,,, between the partial inductancég,,,, and Lp,,, leads to the neutral delay
term which is related to the physical spacing of the indectiellsm andn as given by

t;nn—t—W—t—T (100)
Hence, the coupled inductive voltage takes the form:
. /
Umn = Lpmn dzn(tmn> (101)

at
Analogously, the capacitive coupling with delays needsetiniplemented. The general form of the capacitive
term is® (w) = PQ (w) where P (w) is the coefficient of potential matrix. The corresponding tidoenain
implementation can be derived from (50):

1 0% Y2\ Piom
m#£k

wherei., is the total capacitive current for cell. We may assign more than one delay for each cell pair
leading to potentially multiple distancd®,,, between points on two cells andm.

The above formulation for a linear PEEC circuit consisting of PEEGIet®) using the Modified Nodal
Analysis (MNA) technique [36], can be written as the follogiNDDE

Cot+Gox=) Gim(t—7)+Y Ciz(t—m)+ Y Bui(t—m) (103)

whereCy and G represent the time dependent and the static portion of thedetayed part, respectively,
while C; and G; correspond to the elements with a delgy Finally, B is the input selector matrix and
u are the inputs or forcing voltages and currents. The size isfdbmbined electromagnetic and circuit
(EM/Ckt) problem can be extremely large where fagand P coupling coefficients matrices are dense and
very large. However, as is evident from (103), the solutibrthe left hand part is importantly very sparse
since it contains only the non-retarded part or the slightiiarded part of the matrix, depending on the
time steph. In a time domain solver, the couplings have to be computegditiing up values in the past,
delayed by the appropriatefor the time domain from stored waveforms. Hence, the coggliare already
known and the values are stamped into the known right hareddfithe system rather than the MNA circuit
coefficient matrix. The basic solution complexity¥n?) wheren is the system size.

One of the most important aspects which at present redueegetherality of the time domain approach
is the long time stability of the solution. Improvements ke tstability have been made over thirty years
by numerous researchers. In [37], the general stabilityeisgith full-wave time domain integral equation
solution is described. Since then, much more progress hasrbade on the stability issue. For example. the
impact of the delay points on the conductors was studied8h48d the introduction of further delay points
or cell subdivisions of the conductors on the stability esssuas considered for PEEC models in [39]. A
refinement strategy for the delay assignment is presentedDin More recently the stability of quasi-static
PEEC models has been investigated [41].

The choice of the numerical integration method is very imgatrfor several aspects of the solution. Early
work on the solution of time domain electromagnetic inte@guation solvers used explicit methods [37].
However, it became clear that explicit forward Euler type moes could only lead to stable solutions for
very special cases and for extremely small time steps. k®rélason, several researchers started to employ
implicit methods for the time domain PEEC methods which are @albe suited for this type of problem,
e.g, [42], [43]. One of the key considerations for the choice g thethod is the behavior of the stability
function R(z) wherez = Ah where\ is the eigenvalue an#l is the time step [44]. We clearly require that
the stability functions which decay with — oc. This is evident from the last section since, preferably, we
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do have several mechanisms in our model to dampen the ad®wl#hovef,; such that a strong feedback
reduction occurs without impacting the solution behavielotr f;;. Three methods which are well suited
for the task are the backward Euler method, ¢hmethod forf > 0.5, and the Lobatto 11I-C method. In
fact, the Lobatto IlI-C method decays a,é(z2), which is very desirable. However, as shown below, the size
of the system matrix is a factor 2 larger than for ther the BE methods. The frequently used trapezoidal
rule was shown to be one of the worst methods for these syq#BhsThe stability function of the BE
formula decays asymptotically ag(z), which is also very desirable. NDDE equations can be solyedrb
adaptation of the RK methods for ODEsg, [45].

Finally, it is also to be pointed out that the solution of (1@2n be accelerated by means of the fast
multipole method and multi-function techniques [46]- [47]

VII. EXAMPLES
A. Crosstalk problem

An 8 lead tape automated bonding (TAB) interconnect has beasteled. Figure 12 shows the geometry
of the TAB. It is{ = 350 mil long, conductor width and separation are= 4 mil , S = 8 mil at inner side,
w = 8 mil, S = 16 mil at outer side, respectively. The line 3 from the bottomiizah by a unit voltage
step. The input and output port voltag€s, andV,,; of the driven line are shown in Fig. 13 along with
the near and far end voltages induced on the line 4.

0.035

0.03 ¢, N

-0.005
0

I . . I . )
0.01 0.02 0.03 0.04 0.05 0.06
[m]

Fig. 12. Crosstalk analysis.
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Fig. 13. Crosstalk analysis voltages. Driven line (B)., Vou:; Victim-line (4): Vg, Vre.
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B. Signal integrity problem

The second example considers the propagation of a signal éecrastnip structure on a dielectric substrate.
Its geometry is shown in Fig. 14.

PR Y S |

- {2

Fig. 14. Microstrip line.

The dielectric permittivity isz3.4eo. The microstrip transmission line is excited by 7 ns pulsén\itns
rise and fall time (see Fig. 15). The terminations are loade&M®{ resistances. Polarization currents are
introduced to take into account the presence of inhomogenédelectric volumes. As a consequence of
this the free-space Green'’s function is used in computing PEEPIling parameters. All the conductive
and dielectric volume are discretized by means of hexahetiemnents according to the general approach
presented in [23]. The surfaces are covered by quadrilagdeahents where free and/or bound charge is
localized. The analysis has been carried out using two diftespatial discretization with an increasing
number of current and potential basis functions. For boéhahses PEEC parameters have been evaluated
using a numerical routine implementing the Gauss-Legendithm (GL) and the Fast Multipole Method
[34]. Fig. 16 shows the voltage waveforms at the input and wWuports as obtained by means of the two
aforementioned techniques. They are almost perfectly appdd.

I I I I I L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 15. Microstrip line excitation.

C. Direct lightning stroke

In the third case study the direct lightning stroke of a lastreicture is considered. It is constituted by a
100 m long semi-cylindrical covering grounded every 15 m. BEigyshows the configuration under analysis.
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Fig. 16. Microstrip voltages at the input (left) and output (right) ports.

Fig. 17. Direct lightning stroke of a long structure.

The overall structures has been discretized with 2500 patch€000 spatial basis functions considering
both currents and potentials to infinity. A direct stroke lfie covering just in the middle; thus, currents
flow and far end voltages arise. Potential at the striking pait far ends are shown in Fig. 18.

D. Parasitic effects in a buck-boost electronic converter

One of the main advantage of the PEEC method is relies in the easyporation of linear and non
linear lumped elements. In the last case study a buck-bamstecter has been modeled. Its aim is to
convert the DC voltagé/; to the voltagel,.qs. The equivalent circuit of the buck-boost converter is shown
in Fig. 19. The nominal values of the parameters &fg= 8.5V, L = 10 mH, C = 100 mF, Rjpeq = 8
Q, switching frequencyfs = 100 kHz, switch duty ratio0.75. The thickness of the copper conductors
constituting the interconnect is assumed to be 18 mm. Dubddajtite high frequency content of currents
flowing in the interconnect, inductive effects need to be wered. The overall structure has been discretized
in 288 capacitive cells with 127 different electrical nogexl 288 inductive cells; thus the zero thickness
approximation has been assumed. The parasitic effects oihtbeconnect (in Fig. 20) cause the output
voltage to be affected by a significant ripple as shown in Fig. 21

VIIl. CONCLUSIONS

This tutorial paper presented a review of the Partial Elemeniviatgnt Circuit (PEEC) method. Starting
from the volume integral formulation of Maxwell's equatiothe derivation of the technique has been
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Fig. 18. Potential at the striking point and far ends.
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Fig. 19. Buck-boost converter.

Fig. 20. Buck-boost converter interconnect.

described step-by-step with the aim to help the reader teldpvhis own PEEC solver focusing on the
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Fig. 21. Buck-boost converter output voltage.

different aspects of its implementation. It has been pdimtgt that the PEEC method is very well suited to
be adopted to analyze mixed electromagnetic and circulilenos like those arising in EMC, EMI and Sl
areas, as the presented examples have shown.

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]

(9]
(10]

[11]
[12]

(13]
(14]

[15]
[16]

[17]

(18]
[19]

[20]

REFERENCES

J. M. Jin. The Finite Element Method in Electromagnetid®hn Wiley and Sons, New York, 2nd edition, 2002.

K. S. Yee. Numerical Solution of Initial Boundary Value Problemsdiring Maxwell's Equations in Isotropic medidEEE
Transactions on Antennas and Propagatfidd(5):302—-307, May 1966.

A. Taflove. Advances in Computational Electrodynamiéstech House, 1998.

A. Taflove and S. C. HagnesS€omputational Electrodynamic#rtech House, 2000.

R. F. Harrington.Field Computation by Moment Methad®lacmillan, New York, 1968.

A. E. Ruehli. Equivalent Circuit Models for Three Dimensional Multiductor SystemslEEE Transactions on Microwave
Theory and TechniquetTT-22(3):216-221, March 1974.

A. E. Ruehli. Survey of computer-aided electrical analysis of irgegt circuit interconnectiondBM Journal of Research
and Development23(6):626—-639, November 1979.

H. Heeb and A. Ruehli. Three-Dimensional Interconnect Analysisig Partial Element Equivalent CircuitEEE Transactions
on Circuits and System88(11):974-981, November 1992.

C. A. Balanis. Advanced Engineering Electromagnetid®hn Wiley and Sons, New York, 1989.

L. W. Nagel. SPICE: A computer program to simulate semicondugitouits. Electr. Res. Lab. Report ERL M520, University
of California, Berkeley, May 1975.

N. Morita, N. Kumagai, J. R. Mautzintegral Equation Methods for Electromagnetio&rtech House, 1990.

A. W. Glisson and D. R. Wilson. Simple and efficient numerical mdthéor problems of electromagnetic radiation and
scattering from surfacesEEE Transactions on Antennas and Propagatigf:593-603, 1980.

S. M. Rao, D.R. Wilton, and A.W. Glisson. Electromagnetic scattebyngurfaces of arbitrary shap#EEE Transactions on
Antennas and Propagatior30:409-418, May 1982.

S. M. Rao and D. R. Wilton. Transient scattering by conductingased of arbitrary shapéEEE Transactions on Antennas
and Propagation 39(1):56-61, 1991.

J. J. H. Wang.Generalized Moment Method in Electromagnetidshn Wiley and Sons, New York, 1991.

B. M. Kolundzija and B. D. Popovic. Entire-domain Galerkin methad &nalysis of metallic antennas and scatterers.
Proceedings of the IEE HL40(1):1-10, January 1993.

A. E. Ruehli. Inductance Calculations in a Complex Integrated CitiironmentIBM Journal of Research and Development
16(5):470-481, September 1972.

F. W. Grover.Inductance calculations: Working formulas and tabl&over, 1962.

P. A. Brennan, N. Raver and A. E. Ruehli. Three-Dimensiomaluttance Computations with Partial Element Equivalent
Circuits. IBM Journal of Research and Developme28(6):661-668, November 1979.

A. E. Ruehli, P. A. Brennan. Efficient Capacitance Calculations Three-Dimensional Multiconductor Systems$EEE
Transactions on Microwave Theory and Techniqua2):76—-82, February 1973.

31



[21]
[22]
(23]
[24]
(25]
(26]
[27]
(28]

[29]
(30]

[31]
(32]

[33]
(34]
(35]
(36]
[37]
(38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]

P. A. Brennan, A. E. Ruehli. Capacitance Models for Integratiedu@ Metallization Wires.IEEE Transactions on Solid State
Circuits, 10(6):530-536, December 1975.

G. Antonini, A. Orlandi, A. Ruehli. Analytical Integration of Quasi-8taPotential Integrals on Non-Orthogonal Coplanar
Quadrilaterals for the PEEC MethotEEE Transactions on Electromagnetic Compatibjlig(2):399-403, May 2002.

A.E. Ruehli, G. Antonini, J. Esch, J. Ekman, A. Mayo, A. Orlaridon-Orthogonal PEEC Formulation for Time and Frequency
Domain EM and Circuit ModelinglEEE Transactions on Electromagnetic Compatibjli#§p(2):167-176, May 2003.

A. E. Ruehli and H. Heeb. Circuit Models for Three-Dimensio@Hometries Including DielectricdEEE Transactions on
Microwave Theory and Technique#(7):1507-1516, July 1992.

G. Antonini. PEEC Modelling of Debye Dispersive Dielectrics. Htectrical Engineering and Electromagneticgages
126-133. WIT Press, C. A. Brebbia, D. Polyak Editors, 2003.

G. Antonini, A. E. Ruehli, A. Haridass. Including Dispersive Digtérs in PEEC Models. IiDigest of Electr. Perf. Electronic
Packaging Princeton, NJ, USA, October 2003.

G. Antonini, A. E. Ruehli, A. Haridass. PEEC Equivalent Circuits Baspersive Dielectrics. IfProceedings of Piers-Progress
in Electromagnetics Research Sympositisa, Italy, March 2004.

A. E. Ruehli, J. Garrett, C. R. Paul. Circuit models for 3d structwith incident fields. InProc. of the IEEE Int. Symp. on
Electromagnetic Compatibilitypages 28-31, Dallas, Tx, August 1993.

A. Quarteroni.Numerical MathematicsSpringer-Verlag, 2000.

Y. Saad, M. Schultz. GMRES: A Generalized Minimal Residual Alidgpon for Solving Nonsymmetric Linear SystemSiam

J. Scientific and Statistical Computing(3):856—869, 1986.

N. Engheta, W. D. Murphy, V. Rokhlin, M. S. Vassilou. The fastltipole method (FMM). InPIERS July 1991.

R. Coifman, V. Rokhlin and S. Wandzura. The fast multipole meti#opedestrian descriptionEEE Antenna and Propagation
Magazine 35(3):7-12, 1993.

J M. Song and W. C. Chew. Multilevel fast-multipole algorithm for sofvdombined field integral equations of electromagnetic
scattering.Microwave and Optical Technology Letterk0, 1995.

G. Antonini, A. E. Ruehli. Fast Multipole and Multi-Function PEEC MethodEEE Transactions on Mobile Computing
2(4):288-298, October-December 2003.

J. R. Phillips and J. K. White. A Precorrected-FFT Method for Etestatic Analysis of Complicated 3-D StructurdEEE
Transactions on Computer-Aided Design of Integrated Circuits and 18gsi65(10):1059—-1072, October 1997.

C. Ho, A. Ruehli, P. Brennan. The Modified Nodal Approach tavdek Analysis. IEEE Transactions on Circuits and
Systemspages 504-509, June 1975.

B.P. Rynne. Comments on a stable procedure in calculating thaemassattering by conducting surfaces of arbitary shape.
IEEE Transactions on Antennas and PropagatiéiPP-41(4):517-520, April 1993.

A. E. Ruehli, U. Miekkala, and H. Heeb. Stability of Discretized ParE#ment Equivalent EFIE Circuit ModelslEEEE
Transactions on Antennas and Propagatid3(6):553—-559, June 1995.

J. Garrett, A.E. Ruehli, and C.R. Paul. Accuracy and stability imgmeents of integral equation models using the partial
element equivalent circuit PEEC approadBEE Transactions on Antennas and Propagatid6(12):1824—-1831, December
1998.

J. Pingenot, S. Chakraborty, V. Jandhyala. Polar integratioeXact space-time quadrature in time-domain integral equations.
(submitted for publication)IEEE Transactions on Antennas and Propagati2f06.

J. Ekman, G. Antonini, A. Orlandi and A. E. Ruehli. The ImpactRartial Element Accuracy for PEEC Model Stability.
IEEE Transactions on Electromagnetic Compatibjli#y3(1), February 2006.

A. E. Ruehli, U. Miekkala, A. Bellen, and H. Heeb. Stable time domailuttons for EMC problems using PEEC circuit
models. InProc. of the IEEE Int. Symp. on Electromagnetic Compatibil@hicage,lll, August 1994.

A. Bellen, N. Guglielmi, A. Ruehli. Methods for Linear Systems of QitcDelay Differential Equations of Neutral Type.
IEEE Transactions on Circuits and System$:212-216, January 1999.

E. Hairer and G. WanneBolving ordinary differential equations Il, Stiff and differential algebrpioblems Springer-Verlag,
New York, 1991.

A. Bellen, M. Zennaro. Strong contractivity properties of numarivethods for ordinary delay differential equatioAgplied
Numer. Math, 9:321-346, 1992.

G. Antonini. Fast Multipole Formulation for PEEC Frequency Domaiadgling. Applied Computatational Electromagnetic
Society Newsletterl7(3), November 2002.

G. Antonini. Fast Multipole Method for Time Domain PEEC Analy3EEE Transactions on Mobile Computing(4):275-287,
October-December 2003.

32





