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ABSTRACT

This is the third in a series of articles
that explores the analysis and modeling of
nonlinear behaviors in circuits, devices, and
receiver systems. Analytic and numerical
methods can be developed to readily analyze
complex nonlinearities from elemental
formulations such as the weakly nonlinear
series. The topics discussed are quite
general and have application to such diverse
areas as automatic control, broadcasting,
cable television, communications, EMC,
electronic devices, instrumentation, signal
processing, and systems theory.  The
previous articles in this series discussed the
nonlinear effects of intermodulation,
spurious responses, desensitization, cross
modulation, gain compression/expansion as
well as the concepts of average power,
available power and/or exchangeable power
[1-3]. In this article, we discuss in greater
depth the various nonlinear modes and
mechanisms that may arise in practical
systems and components that incorporate
nonlinear devices.

INTRODUCTION

All circuits containing electronic
components are inherently nonlinear.
Nevertheless, the preponderance of analyses

dealing with electronic circuits assumes
linear behavior. This paradox exists because
(1) linear circuits are characterized by linear
equations that are relatively easy to solve,
(2) many nonlinear circuits can be
adequately approximated by equivalent
linear circuits provided the input signals are
sufficiently small, and (3) closed-form
analytical solutions of nonlinear equations
are not ordinarily possible.

One model of a nonlinear circuit that is
readily analyzed is shown in Figure 1.
Observe that this model consists of a zero-
memory nonlinearity preceded and followed
by isolated linear filters. Use of this model
is referred to as the power series approach.
The nonlinearity is characterized in the time
domain by its power series coefficients {a;,
az...,ay} and is said to be weakly nonlinear
when only the first few terms of the power
series are needed to represent the nonlinear
behavior. Typically the linear filters that
model the linear circuits preceding and
following the nonlinear portion of the
electronic device are characterized in the
frequency domain by their linear transfer
functions H(f) and K(f).
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Figure 1. Power Series Model for a Nonlinear System With Memory

ISyracuse University, Link Hall, Syracuse, NY 13244, DDWEINER@ecs.syr.edu
2ANDRO Consulting Services, Beeches Technical Campus, Bidg. 3, Ste. 4, Rte. 26N, Turin Rd., Rome, NY 13440, androcs@borg.com



A system is said to have memory when
the output at time ¢ depends upon values of
the input prior to time . The nonlinearity in
Figure 1 has zero memory because its output
at a specific instant of time depends upon its
input only at the same instant. Circuits
containing energy storage elements have
memory while purely resistive circuits have
zero memory. Since the linear filters in
Figure 1 are intended to be frequency
selective, they contain energy storage
elements. As a result, their outputs depend
upon the past history of their inputs and the
nonlinear system, as a whole, possesses
memory.

The power series model is readily
analyzed because the individual blocks
shown in Figure 1 can be treated as isolated
segments. Specifically, given the input x{t),
the output wit) of the first linear filter is
readily obtained using conventional linear
analysis. The output z(t) of the zero-
memory nonlinearity is then determined by
substitution of w(t) into the power series
representation of the nonlinearity. Finally,
the circuit output y(t) is easily obtained as
the response of the second linear filter to the
known input z(t). Thus, analysis of the
power series model readily proceeds from
input to output.

Although the power series model is an
adequate representation for many electronic
circuits, the reader is cautioned that this
model is not universally applicable. A more
general model is based upon the Volterra
series or nonlinear transfer function
approach [1]. However, the power series
model does provide insight into the many
nonlinear effects that occur in weakly
nonlinear circuits [2].

Response of First Linear Filter

Allowing for the presence of interfering
signals in addition to the desired signal,
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assume Q sinusoidal signals to be present at
the input to the power series model shown in
Figure 1. Hence,

Q

x(t) = |E,| cos(@nfyt + 6,). (1)
&1

By introducing the complex amplitude
= [Eg ¢ @
and defining
E,=E, Eo=0, fq=-f, 3)

the excitation can be expressed as

X(t) _ 1/2 [E Janqt * Janqt]
-1z qujz"fq‘. 4)
q:—

The transfer function of the first linear
filter in Figure 1 is denoted by

H() = [H@e". (5)

Because the filter is linear, superposition
applies. Consequently, its response is a sum
of sinusoids at the same frequencies as those
contained in the input. [Each sinusoidal
output magnitude at a particular frequency
equals the corresponding input magnitude
multiplied by the magnitude of the transfer
function at that frequency while each output
phase angle equals the corresponding input
angle plus the phase angle of the transfer
function at that frequency. In particular,

Q

w(t) = |Eq | [H(E)] cos [2nfyt + 6, + w(fy)] (6)
¢l



For real circuits the transfer function has the
property that

H(-f) = H'(f) = [H(H)]e*?. M

As a result, w(t) can be written as

0
W)= 12 [EH(E) LB H(E) e
F
Q -
12 E.HE) ®)
g=0

Response of Zero-Memory Nonlinearity

The output of the zero-memory
nonlinearity is
N
Z(t) = dp Wn(t) (9)
n=1

The n term in this sum is said to be of n"
degree because it involves w(t) raised to the
n" power. Focusing on the n™-degree
portion of z(t),

n
a, W(0) = 2/2" [ E H() e”"‘Q‘] -
=0
e 0
a/2"

qu‘.. Eqn H(fql)H(fqn) ej21|: (fq1+..4+fqn)t'
4=0

g;=Q
(10)

Consequently, Equation (9) can be written
as

N Q Q
i2m(f, +... 11
2{t) = Aqqy,--90) &) e
ml g=0Q ¢=0Q
where

Au(qy,---q0) = a/2" E~ Eq H(fy)~HE,).  (12)
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Response of Second Linear Filter

Having obtained z(t), the final step in
the analysis is determination of y(t), the
output of the power series model. Note that
this is also the response of the second linear
filter whose transfer function is

K@ = [K@)] *®. (13)
As was the case with the first linear filter,
superposition applies and

N Q Q

_y(t) - Bn(m,---,q.:) ej21:(fql+...+fq“)t
=l ¢g=—0Q ¢=0Q
(14)
where
B (Qur---Gn) = An(Qus-. ) Klfg +..+fg)- (15)

Observe that the magnitude of By (q1.....q0)
is

IBn (q1,- : -an)I = 2,/2" lqul'“lEqnl

H(fq )| HE )| Ky +...+fg )| (16)
while its angle is given by

Z Bn (ql,...,qn) =

B, +...+0q + \y(fql) +oot \y(fqn) + ¢(fq1+...+fqn). (17)

The most striking feature concerning the
response, as given by Equation (14), is the
presence of new frequencies not contained
in the input. Terms involving these new
frequencies are referred to as inter-
modulation components. Their complex
amplitudes depend upon the compiex input
amplitudes, the power series coefficients,
and the linear transfer functions of the two



filters evaluated at the

frequencies.

appropriate

Because Eg = 0, each sum in the n-fold
summation of Equation (10) contains 2Q
terms. Consequently, the total number of
terms in the n"-degree portion of zt) is
(2Q)". This number grows rapidly with
increasing values of Q and n. The number
of terms in y{t) is identical to that of z(t). As
a result, evaluation of all of the terms in

Equation (14) is extremely tedious.
Simplification of this expression is
discussed next.
Total Response for a Particular
Frequency Mix

Intermodulation components whose

frequencies fall well outside of the system
passband are usually not troublesome
because they are greatly attenuated by the
frequency selectivity of the system. Thus,
with regard to Equation (14), it is necessary
to focus only on those terms whose
frequencies fall either within or close to the
system passband.

For example, consider a system tuned
to 50 MHz with a 1 MHz bandwith.
Assume the input to consist of two
interfering sinusoids at f; = 46 MHz and f; =
48 MHz. If the system contains a
nonlinearity, an intermodulation component
at 2f; - f; = 50 MHz may be generated. This
falls at the tuned frequency and may cause
significant interference with the desired
signal when the amplitudes of the interfering
tones are sufficiently large. On the other
hand, the intermodulation component whose
frequency is 2f; + f; = 140 MHz falls will
outside of the system passband and may be
ignored.

Therefore, the first step in evaluating
Equation (14) is to determine which
intermodulation frequencies are of concern.
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Having done this, the second step is to
determine the manner by which the pertinent
intermodulation frequencies are generated.
For this purpose, the concept of a frequency
mix is introduced.

A frequency mix is characterized by the
number of times the various frequencies
appear in the frequency sum (fg+...+f; ) of

Equation (14). For example, consider a
power series model for which N = 5. Focus
on the intermodulation frequency given by
2f, - f;. Corresponding to n=3, 2f; - f; is
produced by the single frequency mix (fz +
f, - f;). Corresponding to n=53, 2f; - f; is
produced by the two frequency mixes (f; +
fg+f2-f2—f1) and (f2+fz+f1 -f1 —fl).

As far as frequency mixes are
concerned, the order in which the
frequencies appear is unimportant. For
example, (f; - f; + f>) represents the same
mix as does (-f; + f> + f) and (f; + f2 - fy).
What is important is the number of times

“each frequency appears in the mix. Note

that (f, + f, - f;) involves -f; once and f;
twice, (f, + f> + f2 - f> - f;) involves -f; once,
-f| once, and f, three times, while (f, + f> +
f, - f; - f)) involves -f; twice, f; once, and f;
twice.

The concept of a frequency mix has
been introduced in order to clarify the
manner by which an intermodulation
frequency is produced. To avoid confusion,
frequency mixes, such as (f; + f2 + f; - fi -
f;), are enclosed in parentheses while
intermodulation frequencies, such as 2f; -f;,
are not.

To aid in the representation of a
frequency mix, let the number of times that
the frequency fy appears be denoted by my.
Considering negative frequencies, recall that
fyx = -f. Therefore, for an excitation



consisting of Q sinusoidal tones, as given by
Equations (1) and (4), the input frequencies
are fo,....f1, fi,....fo. It follows that any
possible frequency mix can be represented
by the frequency mix vector
...,Q). (18)
By way of example, assume Q = 2
corresponding to the four input frequencies
f,, £, f1, 2 and the frequency mix vector

m = (m., m.;, my, my). (19)
The frequency mix (f2 + f - fi) is
represented by m = (0, 1, 0, 2) while m = (1,
1, 0, 3) represents the frequency mix (fz + f
+f-£-f)and m = (0, 2, 1, 2) represents
the frequency mix (f + f> + fy - fi - f1).

In general, the nth-order frequency mix
(fy+...+fq,), as appears in Equation (14),

can be expressed as

Q

fm = mkfk
k=—Q
k#0

= mofg+...+myfy + mifi+...+mofy.  (20)
Since exactly n frequencies are involved in
an nth-order frequency mix, it follows that

Q

My = Mg+...+M; + My+...+mg =n. (21)
k=0
k#0

With regard to the n indices qy,...,qn Of
Equation (14), observe that B, (q1,---,q0) and
(fg,+...+fg,) are unchanged by a permutation

of the indices. Consequently, many of the
terms in Equation (14) are identical.
Corresponding to a particular frequency mix
vector m, it can be shown that the number of
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identical terms is given by the multinomial
coefficient

(m; m) = @)/[(mg))...(m,) (my)...(mgh]. (22)

For example, consider the frequency mix (f;
+f+f,-f,-f)) forwhichn=5and m = (1,
1,0, 3). Using Equation (22), the number of
identical terms in Equation (14) contributing
to this mix is

(5;1,1,0,3) =

GY/IY @AHEHEH1 =20. (23)

Combining all of these terms, the resulting
intermodulation component is given by

ys (61,1,0,3) =

20a5/32[E, B, B H () H (B)H'(E) K@ -f) € 2 1.

(24)

In general, let the sum of identical
terms corresponding to a particular
frequency mix vector m of order n be
denoted by ya(t; m). It follows that y,(t; m)
can be expressed as

Ya (t; m) =

ma, *m My o (I mq
- (Eq) Q...(El) € " -. Eg)

[l ™. [ ] ™ [ ] ™ 1] ™

K(fe (25)
Although y,(t; m) is complex, y(t) is real.
Therefore, terms in Equation (14) exist in
conjugate pairs.

Characterization of a nonlinear
electronic circuit by the power series model
requires specification of the prefilter transfer



function H(f), the postfilter transfer function
K(), and the power series coefficients {a,
az,...,an}. When accurate predictions of the
nonlinear responses are desired, one might
expect that accurate modeling of the power
series coefficients is the most critical task.
Equation (25) reveals that this is not the
case. The prefilter transfer function H(f)
appears as a factor n times whereas the
power series coefficient a, and the postfilter
transfer function K(f) appear only once. As
a result, errors in the modeling of H(f) may
be much more serious than similar errors in
the modeling of a, and K(f). Because of the
accuracy to which H(f) must be known in
order to stay within a prescribed output
error, it may be exceedingly difficult to
make accurate predictions of nonlinear
responses when n is large.

SUMMARY
This article discussed the
characterization of weakly nonlinear

electronic circuits by the power series
modeling approach. This approach requires
the specification of prefilter and postfilter
transfer functions, and the power series
coefficients. The responses of the first and
second linear  filters,  zero-memory
nonlinearities, and the total response for a
particular frequency mix were
mathematically described. It was shown
that because of the accuracy to which the
prefilter transfer function must be known in
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order to stay within a prescribed output
error, it may be exceedingly difficult to
make accurate predictions of nonlinear
responses when the number of terms, n, to
be considered is large. In the next article in
this series, we will continue to discuss the
various nonlinear modes and mechanisms
that arise in practical systems. The series
will conclude with a presentation on new
findings of research and development to add
nonlinear  analysis and  prediction
capabilities to existing CEM tools that are
used to determine detailed interference
rejection requirements for large, complex
systems.
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