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Abstract — In this paper, the ADI-FDTD (Alternating-Direction-Implicit Finite-Difference
Time-Domain) method is presented. As the algorithm of the method is unconditionally stable and
free from the Courant-Friedrich-Levy (CFL) stability condition restraint, a time-step size larger
than the CFL limit can be set and computation time can be saved for some problems. Numerical
formulations are explained and simulation results are compared with those of the conventional

FDTD method.

1. Introduction

The finite-difference time-domain (FDTD)
method [1][2] has been applied to various problems
related to electromagnetism. As the traditional
FDTD method is based on an explicit finite
difference algorithm, the numerical formulations are
quit simple and its computation is very efficient.
However, the Courant-Friedrich-Levy (CFL)
stability condition must be satisfied when this
method is used. Therefore, the maximum time-step
size is limited by minimum cell size in the
computational domain. As a result, if an object of
analysis has fine scale dimensions compared with
wavelength, the small time-step size creates a
significant increase in calculation time.

To eliminate the CFL stability condition,
applying implicit techniques to the FDTD scheme is
required. In 1984, Holland reported an implicit
FDTD method (3] but it was not completely stable.
There have been few works on the implicit
approaches since. Thus, no one had succeeded in
constructing unconditionally stable FDTD schemes
until 1998. We first reported the unconditionally
stable FDTD method in two- and three-dimensions
[4][5] in 1998. Because they are based on the
alternating-direction-implicit (ADI) method [6], we
called them the ADI-FDTD method. Our
approaches were also published in IEEE transactions
[7][8]. Soon after having published our findings,
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Zheng et al. reported the same approach [9] and
theoretically proved the stability of the scheme in
three-dimensions [10].

The ADI method is known as the implicit
finite-difference algorithm, which has the advantage
of ensuring a more efficient formulation and
calculation than other implicit methods in the case of
multidimensional problems. The ADI method has
been widely applied to parabolic equations for
solving heat transfer problems [6].

In this papet, numerical formulations of the
ADI-FDTD method are explained and simulation
results are compared with those of the conventional
FDTD method.

2. Numerical Formulations
2.1 Fundamental Equations [8]

The numerical formulations of the ADI-FDTD
method for a full three-dimensional wave are
presented in (1){12). The electromagnetic field
components are arranged on the cells in the same
manner as the conventional FDTD method. These
formulations are applicable to inhomogeneous lossy
medium as well as to nonuniform cells. The
calculation for one discrete time step is performed
using two procedures. The first procedure is based
on (1)-(6) and the second procedure is based on
(7)-(12) as follows:
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The coefficients are defined in the same manner as
the conventional FDTD method and they are as
follows:
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2.2 Tridiagonal Systems of Equations

Equations (1)-(12) can not be applied directly
for numerical calculation because they include the
components defined as synchronous variables on
both the left- and right-hand side, so modified
equations are derived from the original equations.

In the first procedure, the E, component on the
left-hand side and the H, components on the
right-hand side are defined as synchronous variables
in (1), thus, a modified (1°) for the E, component is
derived from (1) and (5) by eliminating the H,"*"?
components. The suffix & in (1°) spans all values in z
and indicates the maximum number of simultaneous
linear equations which are involved in the implicit
update of E,. This is called the z-directional scan of
E,.
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In the same way, the implicit equations for the £,
and E;"' components are derived from (2), (6) and
(3), (4), respectively. These update expressions
involved all index value of x and y, respectively. By
solving these simultaneous linear equations, we can
get the values of the electric field components at the
time of n+1/2. Thereafter, we can get the values of
the magnetic field components at the time of n+1/2
directly by (4)6).

In the second procedure, the E, component on
the left-hand side and the H, components on the
right-hand side are defined as synchronous variables
in (7), thus, a modified (7°) for the E, component is
derived from (7) and (12) by eliminating the H,""*
components. The suffix j in (7”) spans all values in y
and indicates the maximum number of simultaneous
linear equations which are involved in the implicit
update of E, . This is called the y-directional scan of
E;
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In the same way, the implicit equations for the E,"*'
and E;"*! components are derived from (8), (10) and
(9), (11), respectively. These update expressions
involved all index value of z and x, respectively. By
solving these simultaneous linear equations, we can
get the values of the electric field components at the
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time of n+1. Thereafter, we can get the values of the
magnetic field components at the time of n+1
directly by (10)-(12).

The simultaneous equations can be written in
tridiagonal matrix form and (1°) is expressed as
follows:
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For the tridiagonal systems of equations, the
procedures of LU decomposition, forward- and
backward-substitution each take only OW)
operations, and the whole solution can be encoded
very concisely [11].

2.3 Treatment of Boundary Conditions

In the case of the ADI-FDTD method, we must
add special treatment in the matrix form for the
boundary conditions of the electric-field components.
The first and last rows in (1) indicate formulations
for calculating the E, components at the z-directional
terminals. Absorbing boundary conditions (ABCs)
are commonly set on the outer surfaces of the
computational domain, so they must be formulated
in the rows. For the implementation, ABCs based on
the one-way wave equation is applied. Mur’s
first-order ABC [12] is as follows:
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In the first procedure, E, components at the
y-directional terminals are calculated in the same
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way as the conventional method. Other ABCs are
also applicable to the ADI-FDTD method. In fact,
Bererenger’s PML [13] has successfully been
applied to this scheme [14][15].

Perfect electric conductor (PEC) boundary
conditions are also often used in the FDTD method.
At the surface of the PEC, tangential electric field
must be zero. For example, if the condition

Ex&) =0
is required, the following must be held:
% =0 Buy=1 vay=0, Tiy=0

Source conditions are applied similarly. If the
hard-source excitation

Eg"? = Bysino fy (n+1/2)ar]
is required, the following must be set:
Ky = 0, ﬁ(k) =1, Yo = 0, T(’i.) = sin[27t fO (n +1/2)Al]

However, the soft-source excitation is performed in
a different way [16].

As mentioned above, the implicit formulation should
be used to implement boundary conditions of the
electric fields.

3. Numerical Examples
3.1 Microstrip Linear Resonator [17]

Fig.l shows the horizontal structure of the
microstrip linear resonator and it is characterized as
follows. The substrate is 810 um thick with relative
permittivity of 3.25. The width and thickness of the
strip is 1.842 mm and 18 pm, respectively, thereby
rendering the thickness negligible for numerical
modeling. There are two gaps with widths of 80 pm.
The length of the internal strip is 22 mm. We use
nonuniform cells in order to treat the narrow gaps
and the long microstrip lines. The spatial modeling
is shown in detail in fig.2. The substrate region is
divided into 6 cells in the x-direction and the strip
region is divided into 12 cells in the y-direction. The
80-um-wide gap region is divided into 4 cells in the
z-direction, in which the minimum cells, which are
153.5 x 135 x 20 um’, are placed. The CFL stability
condition of this model is derived from the
minimum cells and is At € 65.4059 fs. The total



number of cells is 22 x 44 x 78 = 75504. PEC includes smaller minimum cells in the

boundary conditions are applied at the strips and at computational domain.

the ground plane. Mur’s first-order ABCs are

applied on all outer surfaces except the bottom
. . . z Strip conductor

ground plane. A Gaussian pulse is excited at one 1—' ]

terminal and the output voltage is observed at the Y

other terminal. By applying a Fourier transformation l ;

to the incident and output pulses, the insertion loss of

the resonator can be calculated. I P

The time-step size for the conventional FDTD L
method is set so as to satisfy the CFL stability
condition, and the time-step size for the ADI-FDTD Substm/t(e
method is set to 5, 10, or 20 times as large as the
previous size. A physical time of each simulation is Fig. 1. Microstrip linear resonator (horizontal plane).
required about 12 ns for the oscillation of the output
pulse to converge.

The calculated and measured insertion losses of
the resonator are shown in fig.3. The time-step size
and the required CPU time for each calculation are
shown in table 1. The required memory size for the
ADI-FDTD method is about 1.9 times as large as
that for the conventional FDTD method because of
the necessity of using extra electromagnetic
component and coefficient array storage, which is Fig. 2. Spatial discretization around the gap.
common to all examples. The calculated insertion
loss of the FDTD is quite similar to the measured
data although the level of the FDTD is a little high
and its response is shifted downward slightly in
terms of frequency. Comparing the results of the
ADI-FDTD method with those of the conventional
FDTD method, we can see that there are differences
depending on the time-step size. The resonant
frequencies extracted from the insertion losses are

L) S 9

$21 (dB)

_ ‘ ¢ -~—-— ADI-FDTD(c)
shown in table 2, which also shows the relative -50 o “‘ 6‘ é 1‘ o 12
errors of the calculated results with respect to the Frequency (GHz)
measured data. It can be seen, quantitatively, that the
increase in time-step size resulted in a reduction of Fig. 3. Insertion loss of the microstrip linear resonator.
the resonant frequency.

As mentioned above, the tradeoff resulting from Table ! Time-step size and CPU time

an increase in time-step size, which effects a CrrP—— CPU tome
reduction in CPU time, is an increase in numerical fs ratio min ratio
errors. This is a sample indicating that the FDTD 65.0 1.0 68.1 1.00
ADI-FDTD method can be as accurate and efficient ADI-FDTD (a) | 3250 50 n7 107
as the conventional FPTD method. However, the ADI-FDTD () | 6500 —_— s 0.49
ADI-FDTD method will have an advantage over the

i . b ADI-FDTD (c) | 13000 200 1638 025
conventional FDTD method if a similar model
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Table 2 Resonant frequencies

First mode Second mode Third mode

Relative Relative | R Relative
fre error fi error freq; ermor
Measured 3.95GHz | —— | 7.85GHz | —— [11.76GHz [ ——
FDTD 3.90GHz | 13% | 7.72GHz | 1.7% |11.48GHz | 2.4%

ADI-FDTD (a) { 3.87GHz | 2.0% | 7.68GHz | 2.2% 11.46GHz | 2.6%

ADI-FDTD (b) | 3.83GHz | 3.0% | 7.58GHz | 3.4% |1131GHz| 3.8%

ADI-FDTD (c) | 3.66GHz | 7.3% | 7.32GHz | 6.8% |10.99GHz | 6.5%

3.2 Thin Conductive Enclosure [18]

Figs4 and 5 show a model for estimating
shielding effectiveness (SE). It consists of a
half-cubic conductive shell on a ground plane. The
shell is 56 x 56 x 25 mm’ and is composed of
24-um-thick conductive material with relative
permittivity of 1.0, relative permeability of 1.0, and
conductivity of 2400 S/m. Nonuniform cells are
used to treat both the thin sheets of the shell and a
wide computational region. A partial Gaussian pulse
is applied at the excitation point, and the field at the
observation point is output. Numerical calculations
are carried out two times, with and without the shell.
The SE values are calculated by applying a Fourier
transformation to each output field. To estimate the
electric field SE, vertical electric field components
are used. Mur’s ABCs are applied at all outer
surfaces of the computational domain except the
bottom ground plane. The SE values are calculated
for the shell using the ADI-FDTD method and the
conventional FDTD method. These results are
compared with experimental data and analytical
solutions.

Half-cubic conductive shell
1 £, on a ground plane (€, iy, 0)

N

Excitation pt.

Fig. 4. Half-cubic conductive shell on a ground plane.
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Fig. 5. Spatial discretization of the shell model.

%‘ 50 ©  Experimental data
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Fig. 6. Shielding effectiveness for electric field.

Fig.6 shows the SE values for fields for the shell.
The numerical results for the ADI-FDTD method
and the approximated analytical solution agree quite
well. Moreover, they are quite similar to the
experimental data.

There are no results for the conventional FDTD
method here due to the extreme computational costs,
Although numerical results cannot be obtained by
the conventional FDTD method, table 3 lists the
estimated computational effort for the two methods.
The time-step size for the ADI-FDTD method is set
62 times larger than that for the conventional FDTD
method. Consequently, the required CPU time for
the ADI-FDTD method is reduced to 6.2% of that
for the conventional FDTD method.

Table 3 Time-step size and CPU time

Time-step size CPU time
fs ratio s ratio
FDTD 15.38 1.0 60060 1.0
ADI-FDTD 960.0 62.4 3749 0.062




4. Conclusion

The ADI-FDTD method is unconditionally
stable, so the limitation of the maximum time-step
size does not depend on the CFL stability condition
but rather on numerical errors. The tradeoff resulting
from an increase in time-step size, which effects a
reduction in CPU time, is an increase in numerical
errors. What limits the maximum time-step size
depends on what kinds of problems or models are
calculated. There is no guideline to decide a most
appropriate time-step size for a problem. However, if
the size of the local minimum cell in the
computational domain is much smaller than the
wavelength, the error limitation of the time-step size
may be larger than the CFL limitation. In this case,
the ADI-FDTD method is more efficient than the
conventional FDTD method.

We have two subsequent works on the
ADI-FDTD method. One is applying the method to
many kinds of realistic problem and finding
numerical models in which the method has the
advantages compared with the conventional FDTD
method. The other is developing advanced
techniques on the method to improve the calculation
accuracy when a large time-step size is used.
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