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FROM THE EDITOR

The papers in this issue continue our tradition of featuring the latest computational
electromagnetics techniques, applications, and insights. Meanwhile, the response to our
forthcoming special issue on Electromagnetics Computer Code Validation, scheduled for
publication in January 1989, has been far greater than expected. Equally impressive has been the
interest shown in a second special issue for early 1990. To date, ten candidate topics have been
proposed. We are still accepting recommendations for topics and for special guest editors.
Selection will proceed in the near future.,

The recent upsurge of interest in such ACES activities is a consequence of two
developments, one of which is a general increase of interest in computational electromagnetics.
However, this interest is not unique among ACES members but instead is shared by other
publications and symposia. Furthermore, the interest level has thus far been sufficient to support
several publications and symposia, including our own. Even so, our success has been possible
only because of the second development —~ your increased support of ACES, a one-of-a-kind,
interdisciplinary professional society devoted entirely to computational electromagnetics,
particularly from a “"user” standpoint.

Lest we be viewed as merely one of several publications and/or symposia, we must realize
our full potential as a professional society. This is possible only if certain critical ACES committees
(above and beyond those responsible for our publication and our annual symposium) are active. It
is the activities of these other committees, more than anything else, which makes ACES unique.
For this reason, the renewed efforts of various committees are most encouraging.

At the same time, the ACES Journal and Newsletter will continue striving to be the best
possible publication that we can be. Indeed, it is largely because of the authors who have
published with us -- and those to follow -- that we can even speak in terms of excellence. We shall
also seek new ways to complement the efforts of those other publications with similar interests, in
manners which enable us to maintain our existing niche and scope.

As we complete our third year, we face new opportunities. The number of papers
submitted and accepted for publication may soon be sufficient to support a quarterly publication
schedule. This would shorten the “lead time" for publication. Authors could disseminate their
findings more rapidly, and ACES members could "hear from ACES" more often - all for the price of
a modest dues increase. Other tentative projects include the publication of peer-reviewed software
(as is already done by a physics publication), the inclusion of the ACES Journal and Newsletter in
literature-search data bases, and the publication of code user group news (which requires that we
identify various code user groups). Meanwhile, there remains unfinished business. The ACES
Modeling Short Note, which would have additional value in compiling a user-experience data base,
has not yet received much support, nor has "Pandora's Box". We still seek to publish other regular
feature columns dealing with modeling guidelines, particular codes, input/output issues, and
relevant hardware issues. Finally, in keeping with an initial purpose of ACES, we would like to
publish more codes, algorithms, and solved problems which would make it unnecessary for others
to "re-invent the wheel".

Most of these things will eventually come to pass, either in ACES or elsewhere. The
choice rests with us.

David E. Stein
Editor-in-Chief




PRESIDENT'S CORNER

James C. Logan

Here it is December already and we are publishing our second Journal and Newsletter for 1988.
Soon to be on the street is the special issue of our Journal on Software Validation. Our Software
Exchange Committee and Software Performance Standards Committee are very active. Planning
and preparation for the 1989 ACES Symposium is also well under way. There is a lot of activity
going on due to the efforts of many volunteers serving on ACES committees.

| wish to especially mention the efforts of the Meetings Committee. They are trying to line up
symposium sites for future ACES for the next three to five years. The intent is to alternate between
the East and West Coasts, so that the ACES Symposium may be more accessible to more
members. Suggestions should be directed to Bob Noel. Volunteers to serve on the Program
Committee for future Symposium should also contact Bob Noel.

The ranks of ACES membership is growing in leaps and bounds. As ACES grows, we are
experiencing some growing pains. This may be especially true for the newer committees. At the
1988 ACES Symposium and again in the last newsletter, we issued an appeal for volunteers to
serve on various committees. | wish to renew the invitation to get involved and make your
contribution to your Society. Please do so by directly contacting the Chairman of the committee of
your choice. If you previously offered to help and for some reason you have not heard from the
Committee Chairman recently, please drop a line or make a phone call. Get involved. It's good for
you and for ACES too.

I extend my best wishes to all fellow ACES members for a happy Holiday season. | hope to see all
of you in Monterey in March 1988.

1
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ACES NEWS

Membership has now reached the "magic mark™ of 500! Our Journal/Newsletter printing volume is
at a level where we can begin to benefit from offset printing. This will help up to keep our
subscription/membership rates low.

NEEDS 2.0 is nearing release. We have updates completed for IGUANA 5.4, GRAPS 2.0, ANTMAT
2.0 and MININEC 3.12. NEC2-PC has been successfully compiled under Microsoft FORTRAN 4.01
and equals or exceeds 32-bit PC versions of NEC3 in terms of accuracy for problems that push the
capability of the code" to the limit, such as a 299-segment half-wave dipole. Additional user
features are now being added and tested. Release is expected in February.

In the 1988 CONFERENCE PROCEEDINGS we goofed and printed a 1987 paper by George Hagn.
His '88 paper is being included in this J/NL and a copy will be sent to all who attended the '88
CONFERENCE or who purchased the PROCEEDINGS. Our apologies to George. (BLUSH!).

The SPRING '88 J/NL (Vol 3, No.1) contained a paper by Art Ludwig (pp.46-54), but it did not
appear in the Table of Contents. Please pencil it into your copy.

The 5th Annual Review, 21-23 March 1989, features a day of Short Courses on Monday, 20th. The
PC Demo room is much larger than at previous conferences and will easily accommodate upwards
of 75 people.

CORRESPONDENCE

Robert M. Bevensee
Lawrence Livermore National Lab

Corrections to Electromagnetic Theory, by J. A, Stratton, McGraw Hill, 1941,

Page 346. The integrand of Iu(x] - Jo[ix} should be cosh(x cos 1), not
cos(x cos 1).

Page 411. The right side of Eq. (69), j_ (kR)P[ (cose) for m20, should be
multiplied by

(_}m/2| m even iwy~T
i) ™12 g odg

Page 413. In Eq. (84) for p‘:m (0), the factor (n+2m-1)! should be multiplied
by (-)"'/2 {n even). This can be verified by Tables of Functions,
by E. Jahnke and F. Emde, fourth edition, Dover Publications, 1945,
p 110, Pl(x=0).

Page 465. In the right side of Eq. (16) the term fwyp (n x H) should be
jup {n x H)¢.

Page 469. In the right side of Eq. (31) the first integrand, § El- dS should
be ?¢[E1- ds).

Page 571. 1In Eq. (35) for jn{p} the denominator factor (2n+l) should be
(2n+2); the h : {p)- formula should have the factor -i instead of
i. I believe that the a:- expression of Eq. (39) should contain
the term 21“1‘”21 instead of ¥y =Hy ON the right side. And b; of
Eq. (40) should contain the additional term

1 Ne(N%-1) (N%+4) 5
10 (izvc'}é :

within the parentheses.




ACES SOFTWARE LIBRARY

CURRENT INDEX OF ITEMS IN LIBRARY:

ltem Description Computer
002 MININEC2F IBM-PC
frequency sweep
003 ENHANCED MININEC2 IBM-PC
double ARRAY size
to 20 wires, etc.
004 ENHANCED MININEC2 IBM-PC
005 THIN WIRE MININEC2 IBM-PC
006 NEC2 DEC VAX
007 NEC3 DEC VAX
008 NEEDS 1.0 IBM-PC/XT or AT
MININEC3, NEC-PC, IGUANA,
GRAPS
009 MININEC3/GRAPS IBM-PC/XT or AT
011 NAC-3 ver. 1.3 IBM-PC/AT or XT
Updated version
(see this issue)
012 SIGDEMO IBM-PC
013 Misc BASIC programs IBM-PC
RF Designers Toolbox
014 AT-ESP IBM-PC/XT or AT
015 VMAP IBM-PC
2-D vector field plot
016 DRESP,DRESV2 IBM-PC
Dielectric resonators,
field distribution plots
017 NEC-AM - IBM-PC/XT or AT
AM Broadcast array design
018 RFB5FT v2.0 IBM-PC/XT or AT
RF power density for FM/TV
via FCC OST BULL.65

10
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SOFTWARE EXCHANGE COMMITTEE REPORT

Charles M. Vandament

A letter was sent to all members of the committee, first thanking them for their interest and then
asking for their help in compiling a comprehensive catalog of software descriptions of all programs
related to the very general field of electromagnetics. Eight members have agreed to contribute;
most of them have been telephoned and have started writing or at least started organizing their
thoughts to start writing. The major programs are now covered by at least one experienced user
of the code; to wit, NEC-MOM, NEC-BSC, GEMACS, and MININEC/NEEDS/IGUANA. We are also
including some descriptions of more specialized codes, such as those relating to the analysis of
electromagnetics in particle accelerator design.

One purpose of this catalog is to list concisely the information needed, steps to be followed, and
people to contact in order to procure the various codes. Each code's capabilities and limitations
are to be described, but we especially desire knowledgeable comparisons between various codes
which can accomplish the same purpose. Handy ancillary codes are also to be included for such
mundane things as transmission line analysis, preprocessors and postprocessors for the major
codes, etc. Our target date for a first draft is January 10, 1988.

If anyone has a desire to contribute to the catalog, or to assist the contributers, they should
contact the appropriate person listed below.

Chuck Vandament - Catalog Manager
Mainframe NEC-MOM

Jim Akers - Personal Computer NEC-MOM

Bob Balestri - GEMACS (Lightning, EMP)

Richard Cooper - Accelerator Codes

Ron Marhefka, et. al. - NEC-BSC

Bob Noel - GEMACS (Antennas, EMI)

Michael Thorburn - Microwave Circuit Design EM programs.

A complete listing of the committee members is listed below:

1




C.H. (Chuck) Vandament, CHMN
Rockwell International

802 Brentwood Ln.

Richardson, TX 75080
214-231-1907

Richard K. Cooper

MS H829

Los Alamos National Laboratory
Los Alamos, NM 87545
505-667-2839

Thomas K Pollock

505 Camino del Mar

Del Mar, CA 92014-3005
619-259-6886

William J Ball

Carl J. Jones Corp
SAIC

7901 Yarnwood CT.
Springfield, VA 22153
703-569-7704

Deb Shortess

Science and Engineering Assoc.
701 Dexter Avenue N., Suite 400
Seattle, WA 98109
206-285-8686

Jim Akers

Drawer EE

Mississippi State University
Mississippi State, MS 39762
601-325-3669

Bob Balestri

Booz, Allen and Hamilton
4330 East-West Highway
Bethesda, MD 20814
301-951-2547

Ronald J. Marhefka
ElectroScience Laboratory
1320 Kinnear Rd
Columbus, OH 43212
614-292-5752

Robert A. Noel
Rockwell International
3370 Miraloma Ave.
MS OA13

Anaheim, CA 92803
714-779-3073
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Janet McDonald
COMMANDER
USAISEC/ASB-SET-P

Ft. Huachuca, AZ 85613-5300
602-538-7680

Alex Woo

NASA Ames Research Center MS 227-2
Moffett Field, CA 94035

415-694-6010

Paul N. Demmie

Division 9141

Sandia National Laboratories
Albuquerque, NM 87185
505-844-5554

Ted Roach

Microcube Corporation
P.O. Box 488
Leesburg, VA 22075
703-777-7157

Jim Hatfield

4226 6th Avenue NW
Seattle, WA 98107
206-783-9151

Ruediger Anders
Vorder Halden 11
D-7777 Salem 1

W. Germany
Int+49 (7553) 7349

Jim Logan

NOSC Code 822

271 Catalina Bivd.
San Diego, CA 92152
619-553-3780

Michael Thorburn

ECE Dept.

Oregon State University
Corvallis, OR 97331-3202
503-754-3617

Melvin W. Dill
9 Hartford St.
Bedford, MA 01730
617-455-3609
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LONG RANGE PLANNING COMMITTEE REPORT

R. Dawson Coblin

The Long Range Planning Committee was formed after the 1988 ACES meeting. Dawson Coblin
was appointed chairman of this committee. The purpose of the committee is to identify long range
objectives for ACES and present them to the ADCOM. Specific tasks are:

1. Update and publish Five-year Goals and Plans;

2. Update and publish One-year Goals and Plans;

3. Identify other overlapping and complimentary interests with other organizations;

4. |dentify and promote new and developing technical areas.
The first on-going activity is to find volunteers for the committee. Interest survey results were
acquired from Dave Stein and Dick Adler. Coblin is sending out a mailing to 35 interested people

to solicit committee volunteers. Once active members are identified, the tasks listed above will be
addressed for 1988/89.

13




ACES SOFTWARE-PERFORMANCE STANDARDS COMMITTEE
PLANS FOR 1989 MEETING

Introductory Comments

The primary focus of the new ACES Committee is that of validation as elaborated on further below. As an
organization however, ACES has other interests in software, among them being acquisition and distribution,
I/O technology, and hardware options. The Software Performance Standards Committee that was approved
at our 1988 meeting in Monterey has been tasked specifically with validation. You might be interested to
know that at the June 1988 Antennas and Propagation Society AdCom meeting at Syracuse, the
Electromagnetic Modeling Software Modeling Committee was approved and | was designated as chairman,
going beyond the performance-validation function which | had proposed. The AP-S Committee is tasked to
look at the same kinds of issues as are of concern to ACES, and it is my intention to develop some
appropriate collaboration. The purpose of this report is to give you my present thoughts on how the ACES
Committee might work and on arranging a specific function for our 1989 meeting. Because ACES has a
parallel interest in the kinds of issues to be considered by the AP-S Committee, | include some discussion of
activities other than validation since where we have no identified committee or working group, we may want
to form one.

Software Performance Validation

It would be agreed | think, that the most important single attribute of model performance is that of accuracy,
for which some validation "protocol” is necessary. The value of a given code is first of all directly determined
by the numerical accuracy and physical relevancy of the results it produces. Fancy user interfaces and
graphical displays are irrelevant when the model produces misleading or wrong results. On the other hand,
a model that satisfies all accuracy requirements but which requires so much computer time and/or storage
that its routine use is inhibited, may be similarly devalued. That is why the most meaningful comparison of
alternate models for solving the same problem is probably from the viewpoint of comparing the solution
accuracy provided as a function of the associated computer cost, which is why this category includes both
performance and validation.

If we are in agreement that validation is a key attribute of modeling, then we must develop systematic and
consistent ways of quantifying what we mean by validation. | won't attempt doing that in this brief discussion,
but do expect that our new committee will need to do some hard and thoughtful work on this topic. The
outcome would be, | hope, an "experimental protocol" for guiding how models are validated, by comparison
with other models, by using experimental measurements, or by analytical requirements.

Among the other issues this process should raise are identification and development of "benchmark”
problems and solutions which could provide physically meaningful tests of any applicable model. Most
important | think, is that model performance and validation be done from an applications viewpoint, since it is
the end user who most needs help in model selection and application. That's not to say that this area is not
of interest to model developers also, as any deficiencies identified by a validation exercise should help
guide future needs and research. However, the end user has different interests, revolving not around
selection of basis and testing functions, iteration versus inversion of model matrices,etc. but rather: for what
problems can the model be used, at what cost, and to provide what accuracy?

An additional component of model performance and validation would be to develop a library of solved
problems. | have used the term "user-experience data base" in the past to describe this library. The goal
would be to collect information helpful to others in modeling the same or similar kinds of problems with
respect both to what was found to work as well as what difficulties were encountered. By including negative
as well as positive results, this data base would be much more useful than would be the case were it to
contain only successes. If the problems could be organized into various categories and into some logical
progression of increasing complexity in each, the collection would eventually become a "modeling
handbook" which could give guidance to the experienced and novice modeler alike. Results presented in
the modeling handbook could be "keyed" to the codes included in the catalog described below. It should
be observed that handbook results as well as those for benchmark solutions should be available in hard
copy as well as in electronic form.

Software Acquisition and Distribution
For the same reason that an accurate but computationally unaffordable model may be largely of only

14




academic value, an otherwise useful model that is unknown beyond its developer(s) or unavailable for
whatever reason, is of similarly limited value. As a minimum first step, there is needed a computer-code
catalog in which modeling software can be described in some consistent, uniform fashion. This would then
provide prospective users with the the information necessary for making informed comparisons and code
selections, as well as directions on how to acquire software of interest.

The catalog might have software of the following three (at least) types:

Public domain--available to anyone for at most a nominal charge;

Limited distribution--available to contractors and others approved by the sponsor, usually the US
government;

Vendor--available for purchase or lease from the developer/marketer.

While these various types of codes might naturally be distributed in different ways, it would be desirable for
those in the public domain to be made available via electronic mail. Possibly net/ib at Argonne National
Laboratory (see December 1987 PCs for AP) would provide a way to do this, but other outlets might also be
developed.

Input/Output Options

Probably the most labor-intensive part of modeling, especially as problems become electrically larger and
geometrically more complex, is that of model description (input) and results presentation (output). The
efficiency of both input and output can be immeasurably increased by use of computer graphics, interactive
digitizers, automatic mesh generators, etc. Decisions by users about which code is most appropriate for a
given application will increasingly be driven by the user interface provided by the various alternatives
available, As a matter of fact, the overall efficiency of the modeling process has an often-overlooked
component whose cost can greatly exceed that of the computer resources themselves, this being of course
the cost of the human resources incurred in exercising the model.

This activity would deal with the general problem of workstation environments designed for running EM
computer models. It would involve collecting information about software available for this purpose in any of
the three categories mentioned above. In addition, we could expect to consider the problem of validating
the input data needed for model description and whether some standards for model description would be
appropriate. Another area of concern would be graphics packages for displaying not only the input, but
especially the output as the amount of EM data produced for a given problem can greatly exceed that
needed to describe the problem itself. We need to explore unconventional ways of_ presenting
model-related data and results for improving our interpretation and understanding of what is being
computed.

Computer Hardware

As the bottleneck imposed by raw component speed is approaching, it is becoming apparent that alternate
architectures will be needed to continue the past exponential growth of computer throughput into the
future. Parallel and array processing offers some hope that the number of unknowns solvable per unit clock
time will continue to increase at least as fast as it has over the past 30 years if not more so. At the same time,
PCs, workstations, and minicomputers have greatly increased the scope of problems that can be solved
outside the mainframe environment. These are topics of general interest to users and developers alike and
therefore appropriate as well as another ACES activity.

Particular areas of interest in this activity would include the various parallel architectures that are becoming
available and whether they might be better suited for one kind of model/formulation than another. These
designs include those like the Hypercube, the Connection Machine, and possibly even neural nets as well
as array processors and special paraliel/parallelable microprocessors like the INMOS Transputer. If it
happens that such designs are significantly better suited for one kind of model than another, this could be
significant in determining where the greatest modeling improvements will be realized.

A PROPOSAL FOR YOUR CONSIDERATION

We learned in the special session on software validation at the AP-S Meeting in Syracuse, that both the
Acoustical Society and the eddy-current community have already initiated some activities to develop
benchmark solutions and intercompare models and codes. This seems like an appropriate kind of thing for
the EM modeling community to undertake. One possibility would be to develop a list of test problems for
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which solutions would be solicited and presented at a special session in Monterey in 1989. It would be
necessary to specify parameters to be used, observables to be computed, and how the results are to be
presented to ensure that convenient comparison could be made.

As a specific example, suppose that we consider the modeling of wire objects. Among the list of geometries
that could be considered are the linear dipole and circular loop, collinear and coplanar arrays, conical spirals,
and other more complex shapes, possibly including wire-mesh models of surfaces. Results could be
obtained for excitation as antennas or scatterers over some size-to-wavelength range in a free-space as well
as a half-space environment. Scattering and radiation patterns, near fields, and current and charge
distributions (including input impedance for the antenna) could be the observables chosen for comparison.
How this might be done and what is intended to be demonstrated are aspects of the "experimental protocol”
to which | referred above.

Similar sets of problems could be developed for 2D and 3D surface and volumetric problems involving
perfect conductors, and dielectric and lossy objects. In any case, the emphasis should not be on how the
answer is obtained, but on quantitatively determining how well it compares with other model resutts, exhibits
analytically required behavior, or agrees with physical reality. If you think that this would be a worthwhile
exercise, and if you would be willing to participate, please let me know.

In order to help structure the many responses that will be forthcoming (I am an optimist), | request your input
be provided via completing either, or both, of the sections below and mailing to the address above.

SOFTWARE VALIDATION COMMITTEE--Request for Input
NAME
ORGANIZATION
ADDRESS

TELEPHONE

| suggest that that the following problem(s) would be appropriate for use in developing a set of
test/benchmark results for model validation--

PROBLEM GEOMETRY (e.g, a straight wire of specified length-to-diameter ratio; provide the information
needed to define the geometry):

ELECTROMAGNETIC PROPERTIES (e.g., length-to-wavelength range of straight wire, impedance value(s)
and location(s) if discretely loaded, impedance/unit length if distributed loading, etc.):

EXCITATION (e.g., if straight wire as scatterer, angles of incidence, or if straight wire as antenna, source
location):

OBSERVABLES TO BE USED (e.g., current and charge distributions, near fields, far fields, irjtegrated
far-field power, etc., in order of their importance as a validating test refevant to a particular application):

I would would not (please check one) fike to present results for one or more test problems (to
be determined based in part on input received) at a special function at the 1989 meeting.

Please returnto: E. K. Miller, General Research Corporation, 5383 Hollister Avenue, Santa Barbara, CA
93111, Telephone (805) 964-7724.
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PANDORA'S BOX

Dawson Coblin

According to Greek mythology, Pandora opened her box only long enough for evil to
escape and roam the world. By closing it, she trapped hope in the box. So man is doomed to live
in an evil world without hope. In their less sanguine moments, code users feel the same way; lost,
abandoned and despairing. It is intended that in this column Pandora's box can be opened again
and hope allowed to excape.

The purpose of this column is to concentrate on unsuccessful applications of commonly
used codes. The goal will be to determine areas where the application may have forced the code
to break down and to make suggestions for improving the results. The success of this approach
depends on the responsiveness of the ACES members to share their less successful attempts and
quandaries.

The membership is therefore solicited to send their problem cases to me for review.
Please include the name of the code used (and version, if applicable), the specifics of the test
case, examples of the output, a list of the problems and contradictions observed, and your name,
address, and telephone number. Please respond to the following address:

R.Dawson Coblin

0/62-42 B/076

Lockheed Missiles & Space Co.
111 Lockheed Way

Sunnyvale, CA 94089-3504

MODELING NOTES

The Primary purpose of ACES and the Journal/Newsletter is to foster information
exchange among workers involved in developing and applying computer codes to model
electromagnetic problems.

This section features short articles about particular aspects of the more popular codes and
short notes which summarize user experience with specific codes. To facilitate the submission of
short notes in a standard form which can be easily referenced later, we include the ACES
MODELING SHORT-NOTES form for 1-3 page submittals.

Readers are encouraged to report their code experiences in these ACES MODELING

SHORT-NOTE forms and send them to the ACES Secretary, whose address is listed in the
FRONTISPIECE. Camera-ready SHORT-NOTE forms are preferred.
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EM Modeling Notes*

Gerald Burke
Lawrence Livermore National Laboratory
Livermore, CA 94550

Work on NEC has continued in an effort to improve the accuracy in modeling wires
with discontinuous radii and tightly coupled junctions, an effort sponsored by the U. S.
Army, Ft. Huachuca, ISEC. Developments, including modifications in the evaluation of
the kernel of the integral equation and a new condition on charge in the basis functions,
were sumarized in the last Newsletter. The results appear encouraging. While there will
still be lots of ways to get wrong results from NEC, this should correct some particularly
troublesome problems. The code with these and other enhancements should eventually be
released as NEC—4. An update of progress is given below.

As usual, there are a couple of errors to report in existing codes, although these should
not effect too many NEC users. The bad news is at the end of this column.

Junction Model Update

The problems with the present NEC model for a stepped-radius wire can be seen
by comparing the solution for charge with that from an accurate solution of a surface
model. Glisson and Wilton in [1] present results from a careful numerical solution for a
straight wire with a step in radius. They solved a surface integral equation for the body of
revolution with high sampling density at the step in radius and with no a priori conditions
on the charge density. Their results show that the charge density is singular at the outer
edge of a step in radius and goes to zero at the inner edge in a way similar to the edge
conditions at on infinite wedge.

Similar, although probably less accurate, results can be obtained from NEC by mod-
eling the stepped-radius wire as a cage of thin wires. Such a model is shown in Fig. 1
where twelve wires were used to model a monopole with the radius reduced by a factor of
two. The monopole in Fig. 1 is viewed at one degree from end on, but is actually very thin
relative to its length. As shown by A. Ludwig in [2], the error in modeling a thick wire
as a cage of n thin wires is least when the radius of the thin wires is approximately equal
to the radius of the thick wire divided by n. Since the radius of the monopole changes in
this case, and we did not want to change the radius of the individual wires, an average
radius of (a1 + a2)/24 was used. In order to resolve the behavior of charge at the step

*  Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.
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Fig. 1. A twelve-wire cage model of a monopole with stepped radius. The monopole is fed against a ground
plane at its thick end. Dimensions are a; = 0.00025), a; = 0.000125) and L; = L3 = 0.125).
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Fig. 2. Charge distribution determined by NEC for the twelve-wire model of the stepped-radius monopole;
a) total charge density on the monopole, b) detail of charge density at the step in radius.

in radius and at the wire end, the short radial wires at these points were modeled with
two segments each. The axial segments were tapered to have lengths equal to those of the
radial segments at their connections.

The solution for charge density on the monopole is shown in Fig. 2, where a continuous
curve has been plotted from the derivative of the NEC current expansion. The charge is
seen to have a sharp peak at the outer corners of the step in radius and the end of the
monopole and to go to zero at the inner corner of the step. Glisson and Wilton show in [1],
with a more finely resolved solution at the step in radius, that the surface charge density
is singular at the outer edge as |s — s2|~!/3 and goes to zero at the inner edge as |s — s;|
where s represents distance along the wire surface and s; and s; are the values at the inner
and outer corners of the step, respectively. This behavior, which matches the behavior of
charge on an infinite wedge, holds over a distance of about one wire radius from the step.
Over a considerably larger region the charge no longer conforms to the singularity for an
infinite wedge, but is strongly affected by the proximity of the step.

At still larger distances from the step the charge has a slower, nearly sinusoidal vari-

ation characteristic of a continuous wire. Glisson and Wilton show in [1] that if this
sinusoidal variation of charge is extrapolated to the junction the value on the wire with
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radius a; is approximately proportional to

1 = L7
(%) -]

which is the condition imposed in the NEC
basis functions. This condition was derived
by Wu and King in [3] by analysis of a wire
with continuously tapered radius. The same
condition can be derived, as shown in [1],
by equating the scalar potential at points
near the junction on each wire, with the po-
tential evaluated by treating each wire as
infinite and isolated from other wires and
with constant charge. An equivalent con-
dition for a step in radius was also derived
by Shulkunoff and Friss in [4] by equating
the potentials while neglecting the effect of

¥; = (1)
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Fig. 3. NEC-3 solution for linear charge density
on the monopole of Fig. 1 modeled as a single wire
with discontinuous radius. Segment lengths were
0.03125A.

distance to the wire ends and junction.

The NEC solution for charge on the stepped-radius monopole modeled as a single wire
is shown in Fig. 3, where each section was divided into four segments of length 0.03125).
The discontinuity in charge, which is enforced in the current expansion through the Wu-
King condition, is evident in this plot, but the edge singularities could not be resolved due
to the segment length. The change in slope of the charge curve on the last segment can be
considered to represent the end singularity spread over the segment length. This behavior
is typical of moment-method solutions in which the edge singularity is not resolved. Ex-
amination of the near electric field along the wire would show a large error in the boundary
condition near the end but little error in a power integral since the current is small at the
end. Good results for the overall current distribution can generally be obtained from such
solutions.

The segment length at the step in radius was then reduced to 0.0005\ by putting
twenty segments on each section and tapering the lengths for shorter segments at the
junction. Two problems are evident in the solution for charge shown in Fig. 4. Excluding
the segments adjacent to the junction, the charge has become nearly continuous, while the
discontinuity of the Wu-King condition is enforced at the junction where it is inappropriate.
Similar results are obtained when NEC’s extended thin-wire kernel is used.

The convergence of the NEC-3 solution to continuous charge at a step in radius
appears to be the most serious failure of the model and points to a problem in the imple-
mentation of the thin-wire approximation. The moment-method solution should converge
to the correct result despite the choice of basis functions, but it does not. With large
segments, as for the results in Fig. 3, the Wu-King condition in the current expansion is
able to force an appropriate discontinuity in the charge distribution. The input impedance
obtained from this model, shown on Fig. 3, is in reasonable agreement with the impedance
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Fig. 4. NEC-3 solution for linear charge density on the monopole of Fig. 1 modeled as a single wire with
discontinuous radius; a) Charge density along the monopole, b) detail at the step in radius. Segment lengths
were tapered with lengths of 0.0005A adjacent to the step.

from the twelve-wire cage model of Fig. 2. As the segment length is reduced the charge
becomes nearly continuous, and the impedance, as in Fig. 4, is closer to that for a wire
with continuous radius of either a; or as.

To correct these problems, a new thin-wire kernel evaluation was developed with the
current treated as a tubular distribution on the wire surface and the boundary condition
enforced on the axis. This convention, when all openings in the wire surface are closed by
end caps, can represent an exact model in the sense of the extended boundary condition
developed by P. C. Waterman [5]. Waterman noted that, due to the analytic continuability
of the solution of the integral equation, forcing the field to vanish over any region within
a closed surface is sufficient to make it vanish everywhere within the surface. The electric
field then must also vanish on the outside of the surface. Waterman develops this approach
to avoid singularities of the operator at internal resonances of the structure. For the thin
wire, it is a convenient way to avoid problems with the singularity of the integral equation

kernel.

While wire ends and the annular surface at a change in radius should be closed with
caps, it is interesting to examine the result of simply locating the current on the surface and
match points on the axis. With this change, the solution for charge on the stepped-radius
monopole is shown in Fig. 5. It is seen that the smoothly varying charge on opposite sides
of the junction now differs by approximately the ratio predicted by the Wu-King condition.
Closer to the junction there is some suggestion of the correct behavior of charge at the
inner and outer corners of the step, while at the junction the charge is discontinuous by the
ratio set in the current expansion. Locating the current on the surface in NEC-3 would
not work, since the point charges at the displaced ends of the current tube would introduce
errors. However, the present code is built on NECVLF [6] in which the fields of these point
charges have been dropped.

Wire ends were then closed with caps, using a simple approximation that would be
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Fig. 5. Solution for linear charge density on the stepped-radius monopole as in Fig. 4 but with current on
the surface and match points on the axis; a) Charge density along the monopole, b) detail at the step in
radius. Segment lengths were tapered with lengths of 0.0005A adjacent to the step.

practical for large complex models. Flat end caps were assumed with constant charge
density to maintain continuity of current and charge density with the wire. Thus the actual
singularity of charge density was neglected, the objective being the minimum complexity
that would do the job. The field of the charge on the end caps is included in the moment-
method impedance matrix. Caps were also included on voltage sources to prevent the
source field from exciting the inside of the wire. The charge on the source caps is determined
by the capacitance of the gap and the source voltage. Since the voltage is a known value,
the field due to the charge on the source caps is added to excitation vector on the right-
hand side of the matrix equation. As expected the end caps have a significant effect on
the solution only when segment lengths are on the order of the wire radius or less.

The effect of including end caps on wire ends and voltage sources is shown in Figs. 6
and 7 for a quarter wave monopole with a wire radius of 0.01\. The monopole was divided
into 80 segments so that the ratio of segment length to radius was 0.3125. Since the
radius is constant, the thin-wire kernel (TWK) in NEC-3 is equivalent to putting the
current on the surface and the match points on the axis. The invalid condition of zero
field on the axis of an open cylinder results in non-physical oscillations of the current.
These oscillations become apparent for segment lengths shorter than about two times the
radius. The extended thin-wire kernel (ETWK) represents a physically valid condition,
with the current and match points on the surface of the cylinder. However, the field is
evaluated with only the first two terms of a series expansion in radius. Hence oscillations
in the current are greatly reduced but are still present. Similarly, with the new code NEC-
4X the oscillations are reduced at the end and eliminated at the voltage source. That
the oscillations are not completely eliminated at the end is probably the result of the
approximation of a constant charge density on the end cap, neglecting the actual singular
behavior of charge at the edge.

To completely close the wire surface, the field due to charge on the annular surface
at a change in radius should also be included in the solution. Work on this is underway,
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and initial results show a cleaner behavior of the charge near the step in radius when the
segment lengths are short.

While the solution now appears to converge to the right result, the convergence would
be very slow without a better condition than that of Eq. (1) for the charge at junctions.
This condition fails to take into account the effect on charge due to the proximity of a step
in radius. It also does not account for coupling of closely spaced wires which results in a
greater charge density on the outer wires at a fan-shaped junction. In NEC—4X, accurate
charge distributions for the basis functions are determined with minimal computational
overhead by executing a small moment-method solution for each junction. Any junction on
which the charge cannot be determined as uniform due to symmetry is considered isolated
from the rest of the structure with the wires extended to infinity away from the junction.
An integral equation based on continuity of scalar potential is then solved to determine
the distribution of charge. The charge is represented in a piece-wise linear expansion,
with triangular basis functions and one semi-infinite basis function on each wire. A single
half-triangle and the semi-infinite function were found to be sufficient for convergence.

The new code has been tested on a number of wire structures for which results could be
validated against available measurements or independent numerical solutions. One antenna
of interest is the stepped radius monopole shown in Fig. 1. It was shown in [7] that NEC-3
yields an inaccurate input reactance for this monopole when it is modeled as a single wire.
Results for input impedance and resonant frequency, computed by NEC-3D and NEC-4X,
are shown in Table 1 for varying length of the segments adjacent to the junction. For A
less than 0.00625 m the segment lengths were tapered for shorter segments toward the
junction. These results should be compared with the twelve-wire cage model of Fig. 1
which yielded an impedance of 38.69 + j4.03 ohms. Improved accuracy and convergence
are apparent.

Table 1. Input impedance and resonant frequency of the stepped radius monopole computed by NEC-3D
and NEC-4X. Monopole length is 0.25 m with radius 0.00025 m on the lower half and 0.000125 m on the
upper half. Each section was divided into N segments with segment length A at the junction. The impedance
was computed at 299.8 MHs.

NEC-3D NEC—4X

N A R X fres R X fres
(m) (ohms) (ohms) (MHz) (ohms) (ohms) (MHz)
2 0.0625 39.05 7.66 296.15 38.91 2.89 298.44
4 0.0312 38.21 9.58 295.08 37.88 3.21 298.23
8 0.0156 38.24 11.56 294.06 37.73 3.59 298.02
20 0.00625 38.54 1422 292.73 37.80 431 297.65
20 0.002 38.80 17.47 291.18 38.02 5.52 297.08
20 0.001 3892 19.24 290.34 38.11 5.67 297.01
20 0.0005 39.01 20.45 289.77 38.09 3.78 297.95
20 0.00025 39.06 20.89 289.59 38.08 1.43 299.10
20 0.000125 39.11 20.97 289.58 38.18 0.93 299.35
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The decrease in reactance in the NEC-4X results for segment lengths less than 0.001
m may indicate the need for including the field due to the charge on the annular surface
of the step in radius for such short segments. This comparison will be repeated when
we have closed the annular gap. For a monopole with continuous radius of 0.000125 m,
NEC-3D predicts an impedance of 40.16 + 723.05 ohms and resonant frequency of 289.54
MHz, while for a continuous radius of 0.00025 m the impedance is 40.76 + 723.45 ohms
and resonant frequency of 288.24 MHz. Hence, the NEC-3 results for the stepped-radius
monopole appear to converge toward the result for a continuous radius.

A test of modeling a tightly coupled junction is provided by the strip-line EMP sim-
ulator constructed from 18 wires, as shown in Fig. 8. This structure was built at the
Commissariat a L’Energie Atomique in France [8] where measured fields were compared
with results obtained from NEC-2. The NEC results for the vertical electric field within
the simulator were about a factor of two larger than measured values. Also, NEC-2 pre-
dicted nearly equal current in the 18 wires, while measurements showed that currents in
the outer wires were about three times as large as on the wires at the center.

Results from NEC-3D and NEC-4X are shown in Fig. 9 for the currents in the wires
when the line is driven by a one volt source at 4 MHz. NEC-3D is seen to produce nearly
equal currents while results of NEC-4X show larger currents in the outer wires as had
been measured. Integrating the vertical component of electric field from the ground plane
to the center of the wire nearest the center plane at z = 0 m, y = 0.02 m yielded 1.93 volts
in NEC-3D and 1.05 volts in NEC-4X further confirming the accuracy of NEC—4X.

Fig. 8. Strip-line EMP simulator constructed from 18 wires. The line is driven by a voltage source against
the ground plane and the other end is terminated in a 150 ohm load. All dimensions are in meters, and the
wire radius is 0.0008 m.
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Junctions of wires driven against a gro-
und plane can sometimes be modeled more
accurately in NEC-3 if the vertical wire is
omitted and the individual wires are con-
nected to the ground plane. This cannot
be done with the terminating load, however,
since the currents in the wires would then be
forced to be equal by circuit considerations.
Hence an accurate model of the junctions is
necessary to model the strip line.

Several tasks remain to be completed
before NEC-4X can be released as NEC-
4. One is to investigate the importance of
including the field due to charge at the an-
nular surface at a change in radius. The ex-
tended thin wire kernel evaluation, that is
an option in NEC-3 for segments that are
short relative to their radius, has been elim-
inated in NEC—4X due to the effectiveness
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Fig. 0. Magnitude of current on the wires of the
strip-line EMP simulator. Current is computed at
a point 0.4 m from the center of the simulator to-
ward the source. -

of caps on wire ends and voltage sources. Caps could also be included on segments with
impedance loads or connections to network ports.

The new solution for charge density at a junction, based on continuity of scalar poten-
tial, considers the junction to be in an infinite medium. The result should be appropriate
for junctions above or below an air-ground interface unless some junction wires are very
close to the interface. However, a condition taking the interface into account may be
needed for a model such as a monopole on a wire ground screen. For such cases, an option
should be available to leave the charge density as an unknown to be determined in the
full moment-method solution. This can be done by including an additional basis function
and match point at the junction. Such a treatment might also be useful for modeling an
insulated wire with discontinuous sheath, for which an appropriate condition on charge is
not presently known.

If time permits, we would like to include other recent NEC developments, including
loop basis and weighting functions, the model for insulated wires and some restructuring
of the Fortran. Of course, much more testing and debugging is needed. When finished,
the NEC—4 code should offer substantial advantages over NEC-3 for some of the modeling
situations that have caused problems in the past. '

Code Error Reports

An old error has come back to haunt us in the code NEC-GS for modeling monopoles
on radial wire ground screens. Several errors were found in this code in December 1986
that effected models with sources or loads located on the radial wires. However, only
the single precision source file was corrected on our distribution directory on the VAX.
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The double precision source and all executable and object library files were not corrected.
Persons having NEC-GS should contact Jerry Burke (415-422-8414) for corrections.

An error of a more esoteric nature has been pointed out by Dr. Melvin Weiner of
MITRE Corporation. He noted that when the reflection coefficient approximation in NEC
is used with a negative permittivity and zero conductivity the wrong branch of the square
root is used in calculating the reflection coefficient. Negative permittivities can occur in
equivalent ground parameters to approximate a wire ground screen, and the conductivity
would be zero if the screen was in free space rather than over ground.

This problem can be fixed by testing each result of a complex square root and chosing
the sign to give a negative imaginary part. In NEC-3, this must be done in the calculation
of the wavenumber in the main program as well as in the reflection coefficients. Alterna-
tively you can avoid the problem by making sure that there at least a small amount of
conductivity when the permittivity is negative. The accuracy of the reflection coefficient
approximation for negative permittivity also remains to be determined.
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A DUAL NORMAL MODE REPRESENTATION
FOR ELECTROMAGNETIC SCATTERING:
SOME INITIAL CONSIDERATIONS

T. H. Lehman
927 Camino Del Rio NW
Albuquerque, NM 87114

ABSTRACT

This paper presents a new technique for characterizing the electromagnetic interaction with
and scattering from objects of finite extent. By exploiting the structure of the operators
in this case matrices) associated with the interaction, it is shown that both the system
impedance) matrix and the transfer (admittance) matrix can be partitioned into the sum
of two matrices such that each of the resulting matrices can be decomposed into a set of
normal modes. As a result, the number of parameters needed to describe the interaction is
now significantly reduced and the parameters identified by this technique are model
independent, i.e. they are measurable parameters. Potential applications of the technique
include EM computations, compact descriptions of scatterers and antennas, interpretation
of measured data, and algorithm development applicable to scattering and inverse
scattering problems.

INTRODUCTION

There are a number of numerical methods available for determining the induced
currents on or fields scattered from a wide class of objects. Direct applications of all of
these methods — which include method of moments, finite element, finite difference, etc. —
yield interaction or scattering representations which are exclusively in terms of a large
number of abstract parameters (model dependent parameters). Although, in principle,
these parameters can be related to the measured or observed parameters (model
independent parameters) of the interaction, this usually is very difficult to accomplish
when it can be done at all. This disparity between measured and model parameters
siiniﬂca.ntly reduces the utility of these models for most applications to practical problems
other than as computational tools for specific cases.

This requirement for an "observable parameter based EM model" is not new and
has provided the impetus for considerable research in the area. Two methods resulting
from this research are worth noting. The first of these methods is the Eigenmode
Expansion Method (EEM) which is simply a re—statement of the fact that a non—normal
matrix, say Z, can be diagonalized by a similarity transformation or

e=T1ZT (1)

where the elements of the diagonal matrix e are the eigenvalues of Z, T is the matrix of
right eigenvectors and T-1, the inverse of T, is the matrix of left eigenvectors. If Z is the
impedance matrix obtained by application of the frequency domain method of moments
formulation to an antenna or scatterer, then not only is Z a function of the frequency, f,
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but in general, e and T are also functions of f (usually complicated and irrational
functions%). The only real advantage of this formulation is that each eigenvector (T); is
orthogonal with respect to all other eigenvectors (T)y.

The second method worth noting is the Singularity Expansion Method (ZSEM)
[Baum (1971)]. It is intimately related to the EEM method in that it decomposes Z (the
system matrix) or Y = Z-1 qt/he transfer matrix) into a set of time invariant vectors
(independent of f or the complex frequency s) and a diagonal matrix representation that
contains all of the time or frequency dependence. For the interior problem with only
ohmic losses (restricts Z(s) to be second order in s), it is straight—forward but tedious to
show [Richardson and Potter (1974)] that each element of the admittance matrix Y can be
exp;m}ed into a partial fraction expansion about each pole of Z(s) so that Y can be written
in the form

M
Y= Z Ax/(5-s1) : (2)
k

=1

where M = 2N, the Ay's are matrices independent of s, and the sy's are the poles of Z(s).
The Ay's are evaluated by setting s=sy in the following equation

Ak = T(s)(s—sx)e"}(s)T"(s) (3)

where T and e are defined by equation (1). In this formulation, the sy's are referred to as
the complex natural frequencies of the system.

Applications of this methodology to the exterior problem where ohmic losses are
replaced by radiation losses significantly increases the complexity of the formulation and
its understanding. First of all, the impedance matrix Z is no longer second order in s and is
at least of order N [Cordaro and Davis (1981)] where N is the dimensionality of the
impedance matrix. There are now on the order of 2N2? natural frequencies instead of the
2N natural frequencies associated with the internal problem (the factor of 2 arises because
the poles occur in conjugate pairs). Secondly, the mode shapes associated with the natural
frequencies are no longer orthogonal or real (this was also true for the interior problem).
Lastly, only the first row of the natural frequencies sy have been observed experimentally.
As a consequence, the admittance matrix has been written in the form

M
Y= Z Aik/(s—s81k) + "entire function" . 4)
k =

Here the "entire function" somehow accounts for the driven response of the scatterer while
the sum over the poles accounts for the undriven response. The functional form of the
entire function has yet to be uniquely defined. To date the SEM representation has proven
to be too complex and too difficult both theoretically and experimentally to be of much
practical value except for a few specific cases. It seems rather obvious that the “entire
function" in equation (4} arises because the Ayx's do not form a complete set of natural
frequency mode shapes. If all of these mode shapes are required, then the SEM formulation
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results in replacing one NxN frequency dependent full matrix by N NxN frequency
dependent diagonal matrices and N NxN frequency independent full complex matrices.
But, "Is this representation simpler than the original matrix?"

The next question is "Where does one go from here?" It appears that the cure is
worse than the disease. There are three possible cases. The first is that there are no
"measurable parameter based EM models" that are simple and easy to apply. Certainly,
the results obtained to date seem to support this argument. The second is that simple and
easy to apply "measurable parameter based EM models" do exist but that the theoretical
and experimental tools necessary for developing these models currently do not exist. The
third is that these models have not been developed primarily because of misconceptions
held about the nature and existence of normal modes. It is this last case that is examined
in some detail in the remainder of this paper.

We begin by examining the concept of classical normal modes. It is well-known
that for a linear phenomenon which obeys the wave equation and for which the interaction
takes place within a bounded region of space (an interior problem), the "system response"
can be decomposed into an infinite number of normal modes as long as all losses or
damping mechanisms are ignored. As the name implies, these modes represent independent
degrees of freedom (they are orthogonal to each other) and they are defined to be
measurable parameters because they do not depend on the analytical formulation of the
problem. If a loss or damping mechanism is now introduced into the interaction, then, in
general, the response can no longer be decomposed into normal modes and the modes are
no longer independent (although for most problems of interest, orthogonality is a good
approximation even for the case of large damping coefficients). As a result, it is generally
accepted that normal modes exist only for those interactions for which there is no loss or
damping, although it has been shown [Caughey and O'Kelly (1965)] that this is not
universally true. It should be noted that for interior problems, damping is directly related
to the constitutive parameters of the media; for example, for a cavity problem we have no
damping if we assume that the cavity walls are perfectly conducting. For the exterior
problem }sca.t.terin ), we know that radiation damping is always present independent of the
nature of the media parameters. Therefore, it is easy to assume that the response of
scatterers cannot be decomposed into normal modes, even though a few objects (most
lﬁgﬁably a circular wire loop and a perfectly conducting sphere) 50 exhibit normal mode

avior.

The behavior of the circular wire loop and the sphere pose some interestin
questions. "Is it an accident of nature that their response can be decomposed into norm
modes?" These two objects still radiate, so is there some property of their radiation
mechanism that makes them different than say a thin straight wire? Or is it possible that
the response of all perfectly conducting scatterers can be decomposed into normal modes
and that the wire loop and the sphere are limiting cases of some yet to be determined
higher order normal mode theory (i.e. for these geometries the higher order theory reduces
to the canonical form of normal mode theory)? We now investigate this possibility.

THE DUAL NORMAL MODE REPRESENTATION OF THE IMPEDANCE MATRIX

Consider a thin straight wire defined by a length 2L, a radius a and an impedance
matrix Zy(f) obtained from discretizing Pocklington's equation with the reduced kernel.
We do not have to specify the discretization procedure since the structure of Zy is form
invariant with respect to the method of discretization. In other words, Zy is a Toeplitz
matrix irrespective of how it was obtained. The second attribute of Zy of note, is that if
we evaluate it at two different frequencies, say f; and f;, then the two matrices that result
from this calculation, do not commute:
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[Zw(f1),Zw(f2)] = Zu(f1) Zw(f2)—Zw(f2) Zw(f1) # 0

unless f; = fo. Therefore, we know that Zy(f;) and Zw(f2) cannot be diagonalized by the
same similarity transformation and that "classical" normal mode theory is not applicable
to a thin wire scatterer.

Since Z, does not exhibit normal mode behavior, the next question is-"does any part
of Z., exhibit normal mode behavior?" The answer to this question is yes. By carefully
examining the structure of Zy, it can be shown that Zy can be partitioned into the sum of
two matrices (see Appendix A) such that each matrix can be diagonalized by a frequency
independent similarity transformation:

Zu(f) = Z4(f) + Zoff) (5)
where
(Z4(f1),Z4(f2)] = 0 (6)
and _
[Za(f1),Z2(f2)] = 0 ()

for arbitrary f; and fo. Therefore, there exists two time or frequency independent matrices,
Ty and T, [Arfken (1966)] such that

T1*Z4(f) T1 = z(f) (8)
and

T2'Za(f) T2 = 22(f) (9)

for all values of the frequency, f, where z,(f) and zy(f) are diagonal matrices and
T* = Ty = transpose of T (10)

Tyt = Ty = transpose of Ts. (11)
Therefore, both Z; and Z, are diagonalizable by orthogonal similarity transformations.

Equations (8), (9?, (10) and (11) allow us to write the impedance matrix, Zy, for the
thin wire in a very simple and compact form:

Zw(f) = lel(f)T]" + Tng(f)Tgt . (12)
Thus Zy can be expressed in terms of two frequency dependent diagonal matrices and two
frequency independent orthogonal matrices. Some of the interesting properties of these
matrices are:

(1)  The matrix elements of both Ty and T are real.
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(2)
®3)
(4)

(5)

(6)
()

(8)

The first N/2 columns of Ty and T represent symmetric mode shapes and
the second N/2 columns of Ty and T represent anti—symmetric mode shapes.

Both T; and T form complete sets of eigenvectors; so that the current and
the incident field can be expanded in terms of either set.

Both the symmetric (T;)s and anti—symmetric (Ty)a modes of Z; are analytic
functions of the position, x, along the length of the wire and are of the form

(T4)s = cos ((2n+1) v x/2L), n = 0,1,2,...
(Ty)a = sin ((2n+1) 7 x/2L), n = 0,1,2,...
i.e. they are symmetric and anti—Ssymmetric odd multiple half wavelength
(Spatia.lx modes. Note that the anti—symmetric modes do not vanish at the
ends of the wire.
Both the symmetric (T2)s and anti—symmetric (T2)a modes of Zy are also
analytic functions of the position, x, along the length of the wire and are of
the form
(T9)s = cos(n 7 x/L) , n =0,1,2,....
(T3)a = sin(n 7x/L) , n = 0,1,2,....
i.e. they are symmetric and anti—symmetric full wav&len&th (spatial)
}nodﬁs. Note that the symmetric modes do not vanish at the ends of the wire
or this case.

The matrix elements of the diagonal matrices z; and z2 are complex; so that

. radiation damping is included in this representation.

The set of eigenvalues z; and the set of eigenvalues z; are both doubly
degenerate. The eigenvalue (z1), of the eigenvector (T;)s is equal to the
eigenvalue of the eigenvector (Ty), for the same mode number n. Similarly,
(T2)s and (T2)a have equal eigenvalues for the same mode number n.

The resonances of the z, eigenvalues occur exactly at odd multiples of the
half wavelength for the thin wire (Figure 1). Similarly, the resonances of the
75 eigenvalues occur exactly at multiples of the full wavelength (Figure 2).
These eigenvalues do not exhibit any mode—to—mode coupling. In both
Figures 1 and 2, the inverses of the eigenvalues, z;"! and z3°!, are presented so
that the resonances are easier to identify.

Two aspects of this dual normal mode representation of the impedance matrix
require more discussion: (1) the resonant frequencies of the impedance matrix eigenvalues
are not equal to the measured values of the resonant frequencies for the thin wire and (2)
the (T})a and the (T2)s mode shapes do not have zero amplitudes at the ends of the wire.
Of the two, the first is the least disturbing since we will show later that the resonant
frequencies of the admittance matrix do indeed correspond to the measured values. The
physical significance of the impedance matrix eigenvalues is unclear at this time. The
second aspect of the dual normal mode representation is more disturbing. One would feel
more comfortable if all the mode shapes vanished at the ends of the wire. However, the
"unnatural" mode shapes are just the derivatives of the "natural" mode shapes suggesting
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that they are somehow related to the charge distribution on the wire. Another possible
explanation is that one set of modes corresponds to magnetic field modes and the other to
electric field modes. This imposed duality is not new in electromagnetics and raises the
serious question as to whether a first order time formulation is more natural than a second
order time formulation. Perhaps a formulation fashioned after the Hamiltonian theory of
classical mechanics [Goldstein (1957)] would shed some light on this subject.

Before concluding our discussion of the impedance matrix, we return once again to
our original supposition that the impedance matrix Zjoop Of a circular wire loop is just
some limiting case of a higher order normal mode theory. To support this supposition we
note that in the limit as the thin straight wire evolves into a circular loop

Zw-:Zz

and the Z; contribution to the impedance matrix vanishes. But Z; is just equal to Zjoop 80
that for thin wire scatterers our initial supposition is true.

THE DUAL NORMAL MODE REPRESENTATION OF THE ADMITTANCE MATRIX

We have been able to demonstrate up to this point that the impedance matrix for
the thin wire can be put into an extremely simple form. A more important question is
what about the admittance matrix, Yy, which is, of course, just the inverse of Zy? The
most desirable behavior would be that the structure of the impedance matrix is form
invariant under inversion. This would imply that for the thin wire, Yy would also be a
Toeplitz matrix. From experience, we know that, in general, this is not true.

_ The next best situation would be that the form of the normal mode decomposition
as defined by equations (5)6,36),(7) and (12) is preserved under inversion. This would imply
that Yy could be partitioned into the sum of two commuting matrices as before or

Yw(f) = Ya(f) + Ya(f) (13)
where
[Y1(f1), Yi(f2)] = 0 (14)
and
[Ya(fy), Ya(f2)] = 0 (15)

for arbitrary f; and f. We would also require that Y, is diagonalizable by the same
orthogonal similarity transformation that diagonalized Z; and similarly, that Y, is
diagonalizable by the same similarity transformation that diagonalized Z or

yi(f) = Ti*Y1() T (16)

and

ya(f) = T2'Yo(f) T2 (17)

where y;(f) and y(f) are frequency dependent diagonal matrices and Ty and T, are
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frequency independent orthogonal matrices as before. If equations (13) through (17) prove
to be true, then the admittance matrix Yy(f) for the thin wire can be written in a compact
form given by

Yu(f) = Tiyi(f)Te* + Taya(f) T2 (18)

As was the case for the impedance matrix, the admittance matrix can also be written in
terms of two frequency dependent diagonal matrices and two orthogonal frequency
independent matrices.

The proof of the identity

[lel(f)Tlt + Tng(f)Tg"]-l = lel(f)Tll' -+ Tg}'g(f)th' (19)

turned out to be non—trivial. However, for the decomposition of the impedance matrix as
presented in the previous section to be of more than just academic interest, the admittance
matrix must also exhibit a similar behavior. Therefore, the proof of the above identity or a
similar identity is a very crucial step in the development of this dual normal mode theory.

The first thing of note about the above identity is that
n1(f) = z17(f)

and

ya(f) = z271(f)

is not a solution. Therefore, in general, y; and y; are probably non—linear functions of z;
and zs.

A review of the literature on inverse matrix theory failed to provide any insight into
the proof of the identity given by equation (19). Finally, a numerical demonstration of the

validity of the identity was attempted. To do this, we pre-multiply equation (18) by T;*
and post—multiply by Ty which results in the equation

yi(f) + T1*Taya(f) To'Ty = T1*Yw(f)Ty (20)

Next, we pre—multiply equation (18) by Ts* and post—multiply by T3 which results in the
equation

To'T1y1(f)T1*T2 + ya(f) = T2*Yu(f)T2 (21)

First of all we note that S* = T2'T; and S = T,'Ty are both frequency independent

orthogonal matrices with S'S = SS* = I (the identity matrix). Next, we note that
equations (20) and (21) yield 2N2 equations for the 2N unknowns y; and y;. Using only the
2N equations provided by the diagonal elements of the matrices defined by equations (20)
and (21), y; and y2 can be determined from solutions of the equation




e e S e [

Hy(f) = h(f) (22)

where y(f) and h(li;; are 2Nx1 column vectors and H is a 2Nx2N frequency independent
matrix. The first N elements of y(f) correspond to the N diagonal elements of ylg) and the
second N elements of y(f) correspond to the N diagonal elements of ys(f). The first N
elements of h(f) correspond to the N diagonal elements of the matrix TytY(f)T; and the
second N elements of h(?qcorrespond to the N diagonal elements of TatYy(f)Te. If H is
partitioned into the four NxN matrices: Hyy,Hyo,Hoy,Hoo; then Hyy and Hay are equal to the
NxN identity matrix I, or

Hyy =Hp =1,

the elements of H;s are given by

(Hiz)ij = (1)
and the elements of Hy; are given by

(Hap)ij = (8;3)?
where

Sij = (T1tTo)s;.

Equation (22) was solved numerically over a frequency range corresponding to a
wire length—to—wavelength ratio of 0.05 to 2.0. The impedance matrix, Z(f), was derived
from a hybrid finite (fifference/method of moments technique using pulse expansion
functions with point matching. The wire was divided into 20 segments and the wire
radius—to—length ratio was 0.005. Since H is independent of frequency, the resulting 40x40
matrix only had to be inverted once. The values of y;(f) and y»(f) obtained from equation
(22) were inserted into equation (18) and the resulting values obtained for Yy(f) were then
compared to the values Yy(f) obtained by directly inverting Zy(f). The results for 6
elements of the admittance matrix are shown in Figures 3 through 8. Comparisons for
other matrix elements showed similar agreement.

Although the comparison of the results of the two calculations was excellent, they
still were not exact. This could either be attributed to numerical round—off error since the
calculations were performed on a PC AT computer using single precision or it could be
attributed to small contributions to the admittance matrix that were not included in
equation (18). Another literature search on the subject of inverse matrix theory failed to
provide any new insight. Then it was discovered that another matrix besides the identity
matrix commutes with both Z;(f) and Zy(f) of equation (5), therefore, it is also
diagonalizable by both the orthogonal similarity transformations defined by T; and T of
equations (8) and (9). This matrix is the cross identity matrix, E, i.e. the major cross
diagonal elements of E are equal to one and all other elements are zero. With the aid of
this matrix, one can then show that if a matrix Z can be partitioned into the sum of two
commuting matrices as defined by equations (5),(6) and (7), then Z2 can also be
partitioned into the sum of two matrices (but not the same two matrices) that have the
same properties. If this is true for Z2, it is also true for Z3 and all higher powers of Z (the




roof for a 4x4 matrix is shown in Appendix B). Using the Cayley—Hamilton theorem
rWilson, Decius and Cross (1955)], the inverse of the NxN matrix, Zw, can be written in the
orm '

qu = Yw - _[CN—l + CN_2ZW + CN_3Zw2 + ...

A4 CZN 242, Y e (23)

and therefore, equations (13) through %17) follow and we have proved the identity given by
equation (19). In equation (23), all of the C's are scalars and they are the ficients of
the characteristic equation for Zy; for example, C; is the negative of the trace of Zy, and CN

is the negative of the determinant of Zy. Equation (18) also follows and we have succeeded
in demonstrating that the admittance matrix can be written in the very simple form

Yu(f) = Tiyi()Ti* + Taya(f) T2 (18)

which only requires two frequency dependent diagonal matrices and two frequency
independent orthogonal real matrices as compared to the 2N frequency dependent diagonal
matrices and the 2N frequency independent non—orthogonal complex matrices that result
from the SEM formulation.

The eigenva,lues, yi(f) and yo(f), of the two admittance matrices Yy(f) and Yo(f)
were calculated over the frequency range corresponding to a wire length to wavelength
ratio of 0.05 to 2.0. The calculations were performed for a 20 segment wire, again using a
hybrid finite difference/method of moments technique with pulse expansion functions and
point matching. Results of the calculations are presented in Figures 9 through 12. Some of
the interesting behavior exhibited by these eigenvalues is:

(1)  The response resonances of these eigenvalues occur at the same frequencies as
observed in measured data, i.e. they are no longer "exact" multiples of half
and full wavelengths as was the case for the eigenvalues of the impedance
matrix.

(2) The eigenvalues (Figures 9 and 11) associated with the symmetric mode
shapes exhibit odd multiple of half wavelength resonances while the
eigenvalues (Figures 10 and 12) associated with the anti—symmetric mode
shapes exhibit multiple of full wavelength resonances. Remember that this
was not true for the impedance matrix eigenvalues.

(3) While the impedance matrix ei%envalues did not exhibit any mode—to—mode
coupling, the eigenvalues of the admittance matrix exhibit strong
mode—to—mode coupling behavior for some of the eigenvalues.

(4) The admittance matrix appears to exhibit a very high degree of degeneracy
(or "near" degeneracies) over the frequency range for which the eigenvalues
were calculated. This degeneracy persists even for the phase of the
eigenvalues (Figure 9.b) with similar results for the other set of eigenvalue
phases (not shown).



It will be interesting to see if the redundancy which manifests itself through the
degeneracies of the admittance matrix eigenvalues persists over a higher frequency range.
The thin straight wire is only a two parameter problem, namely lengti to wavelength ratio
and length to radius ratio, therefore one would expect considerable redundancy in its
response characterization over a considerable frequency range.

One of the features that will require more investigation is the strong mode—to—mode
coupling exhibited by the symmetric modes (Figures 9 and 11) at frequencies near the first
resonance (approximately half wavelength) of the thin wire. It appears that all of the
symmetric modes contribute signiﬁcant% to the first resonance response. For frequencies
near the second symmetric resonance ()ii‘igures 9 and 11), the nearest neighbor modes,
modes 0 and 2, are coupled more strongly than the higher order modes. For the
anti—symmetric modes (Figures 10 and 12), the modal coupling is also the strongest for the
nearest neighbor modes.

POTENTIAL APPLICATIONS

For many years, normal mode techniques have played a powerful role in the analysis
of the dynamic response of complex structural systems and their environments. This role is
not limited to numerical response predictions but has included test definition, data analysis
and system identification. These normal mode techniques provide a convenient bridge
between model predictions and test results which is always an important consideration in
any area of physics. Although, there is no guarantee that normal mode techniques will
display a similar robust character when applied to the exterior EM interaction problem,
there is also no reason, at this time, to assume otherwise.

The first and most obvious benefit of the technique would result if it provides better
understanding and insight into the physics and the nature of EM coupling problems. This
could potentially lead to the development of good self—consistent approximate models and
to simpler and more meaningful measurement techniques.

From strictly a computational point of view, there are several possibilities. First a
significant reduction in the number of unknowns can usually be achieved by making the
transformation to normal coordinates. For example, if the expansion functions used in the
discretization require 10 segments per wavelength from accuracy considerations, then only
the first N/10 modal coordinates need to be retained in the calculations since the higher
order mode contributions will be in error. Also, it maybe possible to partition a complex
scatterer into several distinct regions such that the total system can be reconstructed by
using the modal coordinates of each region as the expansion functions. Another possibility
includes reducing matrix fill time for applications that require the prediction of responses
over a wide frequency range. Also, it may be possible to treat the mode density as a
continuum (rather than discrete) which potentially could provide us with a method for
increasing the upper frequency limits for the numerical techniques currently in use.

One area that has a great practical potential is the whole field of EM measurements.
If it can be shown that the eigenvalues of the admittance matrix can be directly or easily
related to measurements, then the technique will provide a simple format for categorizing
the response of radiating structures. This will be useful as a tool for retaining information
about general classes of radiating objects, for extrapolating near field measurements to far
field responses and possibly for identifying objects from far field measurements. However,
for the last application to be feasible, algorithms that relate the impedance matrix
eigenvalues to the admittance matrix eigenvalues will be required, since the impedance
matrix "footprint" is significantly simpler than that of the admittance matrix.
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SUMMARY

We have demonstrated that both the impedance and admittance matrices for a
straight thin wire can be put into a simple form by using a dual normal mode formulation.
The mode shapes associated with the normal modes are real and are neither functions of
time nor frequency. They can be represented numerically by real orthogonal matrices.
The dynamic or transient part of the interaction can be characterized by diagonal matrices
which are complex numbers (in the frequency domain) and are functions of either time or
frequency. These elements of the diagonal matrices could be referred to as the modal
frequencies. However, one must keep in mind that there is no one—to—one correspondence
between the modal frequencies associated with the impedance matrix and the modal
frequencies associated with the admittance matrix. The impedance matrix modal
frequencies have only one resonant frequency but that frequency does not coincide with
measured resonant frequencies. The resonances of the admittance matrix modal
frequencies do coincide with the measured resonant frequencies but each of these modal
frequencies possess multiple resonances. Maybe it would be less confusing to refer to the
impedance matrix modal frequencies as the system frequencies and the admittance matrix
modal frequencies as the transfer frequencies.

In many respects, the dual normal mode representation is much simpler than the
representation provided by the Singularity Expansion Method. However, the transfer
frequencies (eigenvalues of the admittance matrix) are no longer one—parameter rational
:'lunctions e?lf the frequency. The functional behavior of the transfer frequencies needs to be

etermined.

Clearly, much work on the dual normal mode representation needs to be done.
Issues regarding its extension to more complex scatterers need to be investigated. The
physical significance of the system frequencies (eigenvalues of the impedance matrix) and
the mode shapes that do not satisfy the boundary conditions at the end of the wire needs to
be determined. The relationship between the transfer frequencies and measured data must
be established. However, if it can be demonstrated that the dual normal mode
representation simply and efficiently bridges the ga}) between models and measurements, it
has the potential of providing us with a very powerful tool applicable to almost every facet
of the EM interaction and scattering problem.
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APPENDIX A

To prove that the impedance matrix, Zy, can be partitioned into the sum of two
;:ommuting matrices as defined by equations (5), (6) and (7), we begin by writing Zy, in the
orm:

N-1
Zu() = ) oall)da (A1)

n=0

where the a's are just frequency dependent scalars and the ¢'s are frequency independent
NxN matrices of the form

¢o = I (identity matrix),

ccccccccc

= NN
00---1010
00---0101
00---0010
00100--00
0001000
1000100
Gr = e
00--10001
00--01000
00--00100
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---------

.........

. 100----00
010 - - 00

00+ - - 01

00 .+« - 00

¢N—1= .........
0l 5o 00

10+« 00

¢y = 0 (null matrix).

The ¢'s do not commute or

[¢D: q)m] = ¢n¢'m = ¢m¢n #0 (A.?)

unlessn =morn=00rn=Norm=0or m=N. If we define two new sets of matrices,
in and xn, by the relationships

Xn =¢n_¢’N_n (AS)

In=0n+ &y _, (A.4)

and add equations (A.3)and (A.4) we can write §p in terms of these new matrices or

Gn = (xn + ¥n)/2- (A.5)
substituting equation (A.5) into equation (A.1) yields
N—-1 N-1
Zu®) =12 Y, ca(xa+2 Y, on () (A.6)
n=0 n=0
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and by defining

N-1
Zi(@ =12 Y, oa()xn
and nee
N-1
Zy(f) = /2 2 an (f) fn
n=0
equation (5) follows or
Zw (f) = Zy () + Z2(f) (5)
But
[me-] =0
and
[¥n,in] =0
for all n and m. Therefore, equations (6) and (7) follow or
121 (f1), Z1 (f2)] = 0 (6)
and
[Z2 (1), Zo(f2)] = 0 (7

for all f; and fo. One possible generalization of equation (A.5) to arbitrarily ghaped wires
vt.)vas suggested by J. W.Williams [private communication]. This generalized form is given
y
¢n =g xn + (1-8) In (A.7)

where g is now a geometric shape factor. For a straight wire, g = 1/, and equation (A.5)
follows. For a wire loop, g = 0 and Z reduces to

-1

Zo (= Y, (D) (A8)

which is the form of the impedance matrix for a wire loop.




APPENDIX B

To show that the admittance matrix, Yy, can be written in the form
Yy = Tiy1 Tyt + Tay2Tat (18)

for the case of a 4x4 impedance matrix, we begin by writing the normalized impedance
matrix, Z, given by

Z - Zw/c‘.o
= I4 + X4 (B.1)

where

Xs = fis + Bodo + B3ds,
ﬂl = al/“ﬂa _ﬂ2 = %/%1 ﬁ3 = (13/00,

1000 0100]

~ lo1o0 _l1o010
L= o010 = fo101
0001 0010

0010 0001

_ looo1 _ |oooo
¢2= |1000 ¢3= 10000
0100 1000

and the a's are the frequency dependent coefficients defined by equation (A.1) of Appendix
A. The Cayley—Hamilton theorem states that a matrix satisfies its own characteristic

o o Z4+ CyZ3 4+ C3Z2 + C3Z + C4 =0 (B.2)
where the C's are scalars. Therefore,the inverse of Z, Y = Z1, is given by
Y = —{C3 + C2Z + C1Z2 + Z3]/C4

= —[(14+C14+C2+C3) + (Ca+2C1+3)X4 + (C1+3)X42 + X43]/Cy (B.3)

We have already shown in Appendix A that the first two terms of equation (A.3) can be
reduced to the desired form; therefore we will address only the X42 and X43 terms.




2

Expanding X42 in terms of its primitive matrices we have

Xe2 = 212 +022 Go? + P32 §a2 + 1 2 (¢rd2 + G2br)

P1 B3 (b1dbs + ds1) + faBs (bobs + dsdo) (B.4)
with
12 =24 —Es + ¢
b =14
$32 = Eqbs
P12 + ¢t = 2E4 + 2E4d2
b1 + dadr = ¢»
o3 + bad2 = Eatp
where
0001
s (8822
1000 |.
X43:

Similarly, expanding X43 in terms of its primitive matrices we have
X = B33 + f23023 + F32%s? + f1B2? (G122 + b2 + D22P1)
+ BiBs?(0rda? + batuds + Gs2) + Ai2Ba(Gah? + Dubods + Bi%)
+ B2032(92ds? + bsbads + d32d2) + Bi2B3(shr? + Pihsdr + di%bs)
+ B22B3(93d2? + bosd2 + $23s)
+ P182B3(Pihods + Grbsba + Goids + dadads + Gsbrde + Gsdody)  (B.5)
with
$:3 =201 + E4
¢23 = o
¢33 = 3
bi23 + adide + $o2P1 = ¢1 + E4 + 2E4de
biPs? + dadids + P31 = Eado
Godr2 + Prbodr + 122 = 414 + 4¢2 — 2E4¢3
556




bobs? + Gads + 322 = b2

babi2 + dibadr + 123 = b1 + 203

Gada? + dodade + $a2ps = b3 + E4

Oihads + Duhade + Gadida + Godadr + dabide + dados = 2Ls + ¢z + 2Eads.

Collecting terms, equation (B.3) can now be written in the form

3
Y= 2 Ta(f:Le,Eq)n. (B.6)
n=0
But since
[[4!%] =0
and [E4,¢u] =0

for all n, the results of Appendix A also hold for equation (B.6) and equation (18) follows:

Yy = Ty T1* + TaysTo* (18)



Comparison of Methods for Far Zone
Scattering from a Flat Plate and Cube *

- R. J. Marhefka
T. J. Brinkley
The Ohio State University ElectroScience Laboratory

Department of Electrical Engineering
Columbus, Ohio 43212

Abstract

Different high frequency methods are used to analyze the backscat-
ter and bistatic scattering from a flat plate and a cube. The results
are compared and their validity is checked against method of moments
and measurements. A newly developed far zone corner diffraction co-
efficient based on the latest equivalent current and PTD solutions cast
in UTD form is discussed.

I Introduction

The validity of various methods for determining the far zone bistatic scat-
tering from a flat plate and convex flat plate structure such as a cube is
presented in this paper. This is accomplished by comparing the meth-
ods in various basic situations. The specific techniques to be compared
in this study are the classical equivalent currents with “stripping” [1], the
previous corner diffraction coefficient [1], the newly developed equivalent
currents by Michaeli (2], and an extension to this method cast in the form of

*This work was supported in part by Contract No. F33615-86-K-1023 between Wright
Patterson Air Force Base and The Ohio State University Research Foundation.
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a Uniform Geometrical Theory of Diffraction (UTD) far zone corner diffrac-
tion coefficient [3]. In addition, the Method of Moments (MOM) using the
Electromagnetic Surface Patch (ESP) code [4] and measurements from The
Ohio State University ElectroScience Laboratories compact range are used
to further validate the results.

A recent paper by Ludwig [5] compares three methods for backscatter-
ing from a cube, that is, the MOM using the Numerical Electromagnetics
Code (NEC-MOM), physical optics (PO), and the previous UTD corner
diffraction solution. In this paper, it will be shown that methods which
give comparable results for backscatter can differ for bistatic scattering.
The emphasis here is to present basic examples that can be used to val-
idate existing codes and to suggest a numerically efficient and accurate
method for convex flat plate structures to first order.

An approximate expression for the far zone field scattered by the ver-
tex of a finite perfectly conducting wedge is presented in this regard. The
solution is cast in the form of the UTD and is based on asymptotic equiv-
alent currents found using modified Physical Theory of Diffraction (PTD)
concepts [2,3]. The faces of the wedge must be flat (the normal to each
individual face is a constant everywhere on the face except at the edge)
and the edges must be straight. For plane wave incidence from an arbi-
trary direction, the first order contribution from each vertex to the far zone
scattered field is obtained.

Since diffraction is a local phenomena at high frequencies the results
obtained for a finite wedge may be applied to much more complex bodies
made up of simple shapes. The field scattered by a three-dimensional shape
constructed from flat plates may be approximated to first order as the sum
of the contributions from each individual corner. The first order solution
should be reasonably accurate in or near the specular regions as long as
the object is convex. A convex body is defined here as a closed surface
made up of flat plates such that all of the exterior wedge angles, taken
between faces and exterior to the surface, are greater than 180 degrees. A
simple example of an object that does not meet this requirement is a corner
reflector. In this case, the effect of the interaction between the faces must
be taken into account. Higher order effects such as double diffraction [6]
and edge waves [7] are not considered here.

Note that the results presented in this paper are for a parallel ray type
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solution, that is, for a radar cross section result. The NEC - Basic Scat-
tering Code (NEC-BSC)[8] is a near zone formulated code, that is it has
a finite range involved. The UTD solutions are slightly different for this

non-parallel ray case. The capabilities of the NEC-BSC and a comparable
far zone code called the RCS-BSC are discussed in Reference (9].

II Theoretical Background

There are many approximate solutions to the scattered field from a finite
perfectly conducting wedge. Physical Optics and its extension the Physical
Theory of Diffraction [10] is surface and edge current based. Geometri-
cal Optics (GO) and its extensions the Geometrical Theory of Diffraction
(GTD) [11] and the Uniform Geometrical Theory of Diffraction [12] are ray
based. The Method of Equivalent Currents (MEC) [13] is an intermediate
type solution that was developed to handle caustic regions in the GTD.
This has been augmented with the concept of stripping to provide better
answers for flat plate problems [1]. Recently, Michaeli [14] showed a more
rigorous approach in deriving equivalent currents. This was shown to be re-
lated to the incremental length method of Mitzner [15] by Knott [16]. These
equivalent currents still had singularity problems that have been remedied
by Michaeli [2] using a skewed coordinate system. Ufimtsev also derived a
similar solution [17,18).

The above solutions can be cast in a corner diffraction coefficient form.
These UTD ray type solutions have the advantage of being efficient for
far zone flat plate problems since only the fields scattered from the corners
need to be added. It also has the advantage that the results correlate to the
scattering centers seen in high resolution measurements. Just the corner
diffraction coefficient forms are outlined in this section.

A previous diffraction coefficient for a corner formed by the intersection
of two straight edges was derived by Burnside and Pathak [1]. It is based on
the asymptotic evaluation of the radiation integral containing the equivalent
currents of Ryan and Peters [13]. The result was then empirically modified
so that the diffraction coefficient would not change sign abruptly as it passes
through the false shadow boundaries. It was derived for spherical wave
incidence and remains valid for cases when the diffraction point is near the




corner since the integral was evaluated for a saddle point near an end point;
however, only the far zone result is shown here. The corner diffracted field
due to one corner and one edge in the case of plane wave incidence and a
far zone receiver is given by

[ Ec, = - E&; (Qc) D: (¢s¢'s ﬂmﬁoc) i:i*_'
E; Elé’ (Qc) Df; (¢1 ¢'s ﬁw ﬁoc) 8
[ De ] - & [ C.(Q.) Jenp,snp,. et (1)
h Ch(Qe) ] (cos B + cos ;) V2rk
Cur(@) = g (D@ = 4)+ D6~ 4)
F [Di(¢+¢)+ Da(é+¢)}
c _ sin’ ﬁa“¥(¢)
Dia¥) = Duntw)|P [2m L
a(B) = 2cos’ (g) , a¥(¥) =2cos’ (ﬂ%;—_—ﬂ)

where N¥ is the integer which most nearly satisfies 2n# N¥ —¢ = Fm, and

Don(¥) = cot [”;f

7 + B, — Boc

ﬂa D)
F(z) = 2j|\/5|e5‘f|:;|c“j"dr

where the angles are shown in Figure 1. The sign on the diffraction coef-
ficient may be plus or minus depending on which endpoint of the edge is
being considered. The correct sign in front of the C, terms in Equation 1
is chosen based on the direction edge vector shown in Figure 1.

It is assumed that the incident field, and therefore the scattered field,
is a time harmonic field with time dependence given by e/**, which is sup-
pressed.

The new far zone corner diffraction solution is based on the PTD and
cast into the form of the MEC and then into a UTD diffraction coefficient.
The details of this procedure are given in [3], while a brief outline of how this
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Figure 1: Definition of angles for the Previous Corner Diffraction Coeffi-
cients.

is done follows. The PO is first used to approximate the currents resulting
in a double integral over the surface. Stokes theorem is then applied to
reduce the equation to a line integral {19,20]. The Michaeli currents are
added to produce a total first order MEC result. This integral is then
evaluated using the method of stationary phase to obtain the contribution
from each corner [21].

The new corner diffraction coefficients are given in a form similar to
previous expressions for diffraction coefficients:

EIR DeHE*']

¢ = + J 1 LPO 3 TD __ PO
8,h,2 drk cosﬁ — CO8 ﬁ; a,h 2 2,h,2 l,h,!

where the plus or minus sign is chosen depending on which endpoint con-
tribution is being calculated. The minus sign is used for the corner con-
tribution associated with the negative t-axis, while the plus sign is used
for the corner contribution associated with the positive t-axis. The edge
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fixed coordinates shown in Figure 2 are chosen such that # is the outward
normal of the O-face, { is tangent to the edge, the positive b-axis lies on
the O-face, and £ = b x #. The expressions for dihg, dif2, and dFg, are
given by (O-face contribution only)

o - dool [ (=428 2022

T [cot (L:%ﬂ.l)  cot (__,, to w)]}
d:gD = lf-‘ a’(a,'ﬂ' - a) [cot (E;M)

nh 2n
T—(a+¢')
e

o = -;—U"c’:z(a,tﬁ') { [cot (-—-———-—’r = (‘: = ¢’)) — cot (-—-——--—"r L (Z = ¢‘))]

T [cot (“—:-(Z—tﬂ) — cot (ﬁ—(—‘}ﬂl)]}

where the + sign is associated with dfF°, diF0, d/TP, dUTD dPO and e
while the — sign is associated with the 9, dUTP and dF° terms. The
functions c,, cx, and c; are given by

_ sin 3
clbe) = sinf’
it - 22t
ca(b,€) = _:1;,4: (cot B cos ¢ + cot B’ cos €)
i 0 T - ¢' <0
GE = { 1 ,m—¢'>0
_ sinfBcos¢ (cos 8 — cos B')?
cosy = sin 8’ sin #'(sin B cos ¢ + sin 3’ cos ¢')
cos e — sin 3 cos ¢ 5 (cos 8 — cos ') cos B’

sin 3’ sin’ '
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Edge of
Interest X

Figure 2: Definition of the Angles used in the New Corner Diffraction
Coeflicients.

from which 4 and a are determined using

coalp = -jln(.u+ p.=—1)

—-—l\/ﬁr—_l| p<-1
V-1 = {lvi—@| -1<p<
l\/ﬁ!-—-_ll u>1

Notice that v and a do not correspond to physical angles and become
complex for some cases. The angles ', ¢', B, and ¢ are defined in Figure 2.
Since only convex structures are considered here proper shadowing of the
rays is fairly simple. The shadowing of the incident field is accounted for
by Ei, and E;. which are the components of the GO incident field. The
shadowing of the diffracted ray is more complicated. The contributions
from the LPO and PO components, d-59 and df2,, are present everywhere.
The UTD components, djp 15, are shadowed like diffracted fields. They do
not contribute if the observation point is inside the wedge (¢ > nm).

For the special case of a flat plate (n = 2) the contribution from both
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faces may be found using
70 = 35cs (0,0 { oot (F20E) - oo (12O =) )|

+ [cot (1:%12_)) ot (« +t w))]}
o %cgz(a,, —a) { [cot (w_—_(_;_—_é;_)) + ot (« LR ¢')) ]
¥ [cot (12%*'-‘@) + cot (li_(%tﬂ)]}

¢ fo(2252) o (22 )

S.- - {‘—1 ,T*-¢<0

I
|
9
0
L]
—~
k
-
S

where v, a, and the other variables have been defined previously.

It is interesting to note that by writing the equations for the Michaeli
equivalent currents and the new corner diffraction coeffients in cotangent
form provide more insight into the connection of the new solutions with the
previous methods. The new parameters separate out the optics currents and
diffraction currents. This separation manifests itself in new parameters for
the ¢ angles. They arise from the asymptotic evaluation of the currents in
the skewed coordinate system chosen in physically meaningful directions.
The LPO factor (v) is related to the projection of the average of the incident
and diffraction planes on to the plane of the plate {3]. The PO and UTD
factor (a) relates to the projection of the Keller diffraction cone on to the
plane of the plate. It is easy to see in this form that in the Keller directions
the LPO and PO cancel, leaving the UTD result formally used in many
solutions.
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Figure 3: Two wavelength plate in the x-z plane.

III Comparisons

The first example compares the Ryan and Peters equivalent currents, the
previous and new corner diffraction solutions. The simple example of
backscatter from a two wavelength square plate lying in the x-z plane,
as shown in Figure 3, is used. This illustrates that for backscatter these
different methods produce very similar results, except for the very low level
regions.

The co-polarized fields, in the principal plane, calculated using the three
different methods are shown in Figures 4 and 5. All three methods give
essentially the same results for the principal plane pattern cuts shown here.
This is not surprising since the major contributions to the fields are the
scattering from the two edges in their Keller cone directions. The new cor-
ner diffraction solution reduces to the Ryan and Peters equivalent current
solution for points on the Keller cone [3], and the previous corner diffraction
solution is essentially the same as Ryan and Peters equivalent current solu-
tion for most regions of space. The results in Figure 5 are for the horizontal
(0¢¢) polarization. For a knife edged plate such as this, the scattered field
should be zero in the plane of the plate. Note that this is not the case in
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Figure 4: Backscatter from a 2 wavelength plate (6 = 90° pattern).

~— New Corner Diffraction
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~-=— Prev. Corner Diffraction

ces (dB/2?)

'\

Figure 5: Backscatter from 2 wavelength plate (6 = 90° pattern).
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Figure 6: Backscatter from 2 wavelength plate (§ = 60° pattern).

these first order results. The higher order terms (i.e. the double, triple etc.
diffractions) produce the null for this polarization when they are included.

For patterns away from the principal plane, the higher levels are the
same but the lower levels differ. This is illustrated by taking a conical cut
(8 = 60°) for the two wavelength plate. The results for the same three
methods used previously are shown in Figures 6 and 7. In this case the
methods agree well for the main lobe, however, they differ in the lower
levels of the pattern.

The differences in the three methods mentioned earlier are greatly in-
creased for bistatic scattering problems. The bistatic scattering from a
square plate two wavelengths on a side is examined to illustrate the point.
The complete scattering matrix (all four values of ¢) is found for a plate
in the x-y plane with a fixed source located at 8 = 45° and ¢' = 0° as
shown in Figure 8. The results for the ¢ = 60° pattern cut are compared
with the previous corner diffraction solution and Method of Moment calcu-
lations for co-polarized fields in Figures 9 and 10. Similarly the results for
the cross-polarized fields are given in Figure 11 and Figure 12. Overall the
new solution agrees well with the Method of Moment calculations and does
not exhibit the discontinuities which appear near § = 240° and 8 = 300°
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Figure 7: Backscatter from a 2 wavelength plate (8 = 60° pattern).

Figure 8: 2) square plate in the x-y plane with a fixed source at ¢ = 45°
and ¢' = 0.
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Figure 9: Co-polarized RCS in the ¢ = 60° plane of a 2) square plate with
a 6 polarized fixed source at 8 = 45°, ¢* = 0°.
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Figure 10: Co-polarized RCS in the ¢ = 60° plane of a 2) square plate with
a ¢' polarized fixed source at §' = 45°, ¢* = 0°.
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Figure 11: Cross-polarized RCS in the ¢ = 60° plane of a 2) square plate
with a 6% polarized fixed source at # = 45°, ¢ = 0°.
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Figure 12: Cross-polarized RCS in the ¢ = 60° plane of a 2) square plate
with a ¢*' polarized fixed source at ¢ = 45°, ¢' = 0°.
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in the previous corner diffraction solution. The discontinuities in the pre-
vious corner diffraction solution are caused by the so called false shadow
boundaries where the associated two-dimensional problem passes through

" a shadow boundary, but the three-dimensional problem in reality does not.

The Ryan and Peters equivalent current results are not shown here, but
they behave differently for similar reasons; that is, the solution still con-
tains two dimension information in regions that it should not. In the region
from 8 = 60° to 120° (i.e. near the plane of the plate) the new solution and
the Method of Moments solution differ by more than 20 dB. 1t is suspected
that most of these differences are due to the effects of higher order terms
(double and triple diffraction, edge waves) which are not included in the
new solution.

In this example the new solution is compared to backscatter measure-
ments [22] made at 10 GHz on a 6” cube. The geometry of the cube, tilted
45° in the x-z plane, is illustrated in Figure 13. The results for the H-plane
and E-plane patterns taken in the x-y plane are given in Figures 14 and 15,
respectively. The results agree well to first order over most regions of the
pattern. The discrepancies are probably due to a combination of higher
order terms not being included in the analysis and in measurements errors.
The error in the measurements is likely two fold. First the faces of the
cube model were misaligned slightly so they did not form edges as sharp
as may be required. Secondly, it seems that there was some deviation from
the desired pattern cuts as can be seen from the lack of symmetry in the
measured patterns. In any case, they confirm the validity of the new corner
diffraction solution within first order accuracy for wedge type structures.

IV Discussion

The new corner diffraction coefficient in the above examples has been shown
to provide improved results over other methods, especially in bistatic sit-
uations. The Michaeli equivalent currents have not been shown since they
provide the same results as the new corner diffraction coefficient. Certain
properties of these new solutions, however, may still cause patterns taken
in some regions of space to be discontinuous.

It has been shown [2,3] that D and Dj do not tend to definite limits
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Figure 13: 6” Cube tilted 45° in the x-z plane.
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Figure 14: H-plane pattern for 6” cube tilted 45° in the x-z plane.
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Figure 15: E-plane pattern for 6” cube tilted 45° in the x-z plane.
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Figure 16: RCS for the 8 = 89° cut of a 2) square plate with a ¢* polarized
fixed source at ' = 45°, ¢' = 0°.

as § — & (i.e. the intersection of the associated half-plane and the Keller
cone), where & = {sin ' + bcos 3, but they remain bounded. In practice,
this means that both Dj and Dj, and therefore Eg and Ej, are discontin-
uous at this point in the pattern. A simple example illustrates how this
discontinuity can affect a pattern. The bistatic RCS from the flat plate
shown earlier in Figure 8 is considered. The source, linearly polarized in
the ¢ direction, remains fixed at #° = 45° and ¢* = 0° while the pattern is
taken near the x-y plane (8 = 89°). The bistatic RCS is given in Figures 16
and 17 for the co-polarized and cross polarized fields, respectively. The
abrupt null at ¢ &~ 135° in the co-polarized pattern and the spike at the
same location in the cross-polarized pattern are due to discontinuities in
the contribution from edge 4 (indicated in Figure 8). The point ¢ ~ 135°
coincides with 8, = §;, and ¢4 ~ 0 where 8, 8, and ¢4 are the edge fixed
coordinates for edge 4. Due to the geometry ﬁ., ~ ¢ and ¢, ~ 8 so the
discontinuity in o4y is due to the discontinuity in D5 and, likewise, the
discontinuity in 044 is due to the discontinuity in Df.

Therefore, the discontinuity in the new diffraction coefficients at the
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Figure 17: RCS for the 6 = 89° cut of a 2) square plate with a ¢* polarized
fixed source at & = 45°, ¢' = 0°.

intersection of the Keller cone and the infinite half plane associated with
the edge (3 = A’ and ¢ = 0) may be expected to cause discontinuities
or narrow spikes depending on the polarization and the pattern cut. As
the examples illustrate these disturbances only affect a typical pattern cut
for around 5° to 10°. In addition, they are in the low level regions of the
returns.

It is easily seen that the diffraction coefficients D; and Dj are discon-
tinuous as the source passes through the half plane ¢' = . In the general
case of bistatic scattering, these discontinuities in the sign of the field scat-
tered by a corner will result in discontinuities in the total scattered field.
However, the diffraction coefficients are continuous here (¢' = ) for the
special case of backscatter.
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V Conclusions

The objective of this paper has been to compare different methods for
the analysis of the high frequency far zone scattering from flat plate and
convex flat plate type structures. Ryan and Peters equivalent currents and
the previous corner diffraction coefficient are compared with the Michaeli
equivalent currents and the new corner diffraction coefficient. The method
of moments and measurements are also used to validate the solutions.

It has been shown that for backscatter all the methods compare rea-
sonably within engineering accuracy. For bistatic scattering, however, the
two dimensional nature of the old methods lead to inaccuracies. The newer
methods, based on more rigorous three dimensional analysis, remove most
of these problems.

A new corner diffraction coefficient is presented that provides an efficient
and accurate solution to within first order. It provides the same level of
accuracy as the Michaeli equivalent currents with the added benefit of not
needing integrations for flat plates. All the optics and edge scattering
effects have been lumped into the corners of the plate with nice physical
interpretations.
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On the Comparison of Numerical Methods
Ch.Hafner, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland

Abstract

Serious comparisons of numerical methods are important for scientists who develop
new codes as well as for those who use programs. Historical considerations show
some errors which were made in the past and should be avoided in the future.
Every numerical code is based not only on numerical but also on analytical con-
siderations. Both of them have to be taken into account. As a result, benchmarks
for complicated topics (numerical calculations of electromagnetic fields) should give
more informations than just numbers like ’speed’, 'memory requirement’, etc.

Historical considerations

In the early times of numerical calculations many codes were implemented and
tested. They were all based on a mixture of ideas and were usually named after
the most important idea. Several people believed that their method was the best
and many of them tried to show this ’analytically’. But very often the mathemat-
ical knowledge of engineers dealing with numerical techniques was insufficient and
sometimes the questions which arose simply could not be answered by analytical
considerations. To overcome such problems the application of physical knowledge
was helpful in many cases. For example, the simple Point Matching (PM) tech-
nique was used together with ’circular harmonic’ analysis (Rayleigh hypothesis)
in the sixties. Different people showed analytically’ that PM could be used only
for circular domains while non circular problems were solved sucessfully. Others
claimed that only ’single valued’ boundaries should be admitted, that 'non integer
orders’ should be used and so on. In fact, Russian mathematicians [1] had already
given a strong analytical basis for this technique years ago. The experience with
elaborated PM programs [2] made clear that the method failed in complicated cases
for numerical reasons (bad convergence, under- and overflows, cancellations). The
treatment of numerical details seemed to be even more important than the main
ideas (This might be true for any numerical method.). At that time, the PM had
already been pushed aside by the Method of Moments (MM) which seemed to have
a more physical basis. The consequent improvement of both the analytical and
numerical parts of the PM led to the Multiple MultiPole (MMP) method (better
known in the USA as SPEX (SPherical wave EXpansion) for 3D scattering [3])
which has been sucessfully applied to various problems of 2D and 3D, static and
dynamic, scattering and guided waves etc. [4].

A second approach to show the superiority of a method lies in a generalization
which allows to consider 'concurrents’ as special cases of the 'favorite’. For example
if a Projection Technique (PT) is used (like in the MM) the PM is a special case if
Dirac functions are used as testing functions. Since Dirac functions are known to be
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simple but otherwise not very good testing functions, the superiority of PT over PM
seems to be clear. The best choice of testing functions are the expansion functions
themselves (Galerkin). The disadvantage of this choice is the occurance of integrals
(scalar products of functions) which usually have to be solved numerically. On the
other hand, it has been shown [4] that the generalization of PM (overdetermined
systems of weighted equations) leads to the same results as PT with Galerkin’s
method if an adequate weighting is chosen. This means that generalized PM is
superior to PT because it avoids time consuming numerical integrations without
lack of quality.

A third attempt in knocking out concurrents consisted of specially tailored
numerical ’comparisons’: Elaborated forms of the favorite’ were compared with
weak forms of the ’concurrents’. Examples which were known to be easily solvable
by the ’favorite’ have been preferred and so on.

It may be surprising but the described proceeding was successful in many cases.
As a result, only a few methods survived, or, more precisely, the names of only a
few methods survived, because sometimes people saved their programs by simply
renaming them. This is of course a legitimate consequence of the generalization
of the methods. For the users it has, however, become very difficult to see which
program is most suitable for their problems. Codes with the same name may differ
one from another much more than codes with different names.

In the last years it has been recognized that every elaborated program has its
own advantages and disadvantages too. The hope of finding ‘the one and only’
method seems to disappear because the implementation of huge programs show
a very annoying effect: The probability of errors and the possibility of generating
new errors while attempting to eliminate other errors increase with the length of the
code. Though it has become possible to reanimate old ideas, to combine different
methods, to look for new directions, and to compare numerical programs seriously.
The question is now: How should such a comparison look like? It seems to be clear
that both analytical and numerical considerations are important and that the 'dirty
tricks’ mentionned above should be avoided.

Analytical considerations

If a numerical program is designed, various considerations show different ways and
choices are necessary to get a certain code. The program usually gets a name which
does not say anything about these choices and the details of implementation, but
such informations are very important and should be known for serious comparisons.
In most of the methods for calculating electromagnetic fields, the following choices
are important:

1.) Field equations: Maxwell’s equations in differential or integral form, wave
equations, Helmholtz equations, variational integrals, other integral equations etc.

2.) Continuity /boundary equations: Continuity of certain components of the elec-
tric or magnetic field, potentials, derivatives of potentials, current density, energy
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flow etc.

3.) Primary functions (functions which are approximated directly by a series of ex-
pansion functions): Certain field components, potentials, charges, currents, energy
densities etc. ‘

4.) Type of expansion functions: Dirac functions, piecewise constant functions,
linear functions, continuous functions, differentiable functions, solutions of the field
equations, Green functions, etc.

5.) Method to get a system of equations for the unknown parameters in the expan-
sions: Error Method (EM), PT, PM etc. (The EM defines a certain error which
has to be minimized.) Since different forms of these methods exist some more in-
formation is necessary here: Definition of the error (EM), the scalar product and
the testing functions (PT), the weighting (generalized PM) etc.

6.) Algorithm to solve the system of equations: Gauss, Cholesky, least squares,
iterative methods etc.

In practice, different approaches sometimes lead to identical solutions. Good
codes should usually be derivable with different approaches. For example, the MMP
programs were designed with this intention. They use analytical solutions of the
field equations (This means that automatically different forms of field equations
may be used with identical results.). These solutions are continuous, differentiable
Green functions. Usually but not necessarily the continuity of all field components
is used and certain field components are chosen as primary functions. The system
of equations in the MMP programs may be derived with EM, PT or generalized
PM and is solved by fast updating routines using Given’s plane rotations.

Numerical considerations

To get information about the speed and application range of numerical programs,
numerical comparison standards seem to be useful. The problem of benchmarks
for computers is already well known: Tests which give one single number which
represents the ’speed’ of a machine are misleading in many cases. For example
benchmarks show that an 80286 based AT personal computer is much faster than
an 8088 based XT. The MMP programs have been implemented and tested on
such machines. It has been shown [5] that these programs run faster on an XT
(with 8MHz clock) than on an AT (with 8MHz clock) for not too small problems.
Comparisons of the MMP programs on very different machines showed astonishing
effects which usually depended on the size and type of the considered problem. On
the other hand it may be expected that the comparison of different programs will
depend not only on the problem to be calculated but also on the machine and on
the compiler which is used.

In fact ’speed’ is not the only important feature of a program. Users usually
want to get a program on the machine they already have. New and faster machines
very often require time consuming adaptions of the codes. For these reasons it is

81




essential that a program is written in a way that it may be easily implemented on
other machines (which even might not exist when the program is created). From
this follows that common languages should be preferred and special features of a
compiler on a certain machine should be ignored.

At present, very often two different types of examples are proposed as bench-
marks for numerical field calculations:

1.) Examples which have a well known ’analytic’ solution. They allow a calculation
of the errors made by the considered program. Usually such examples can be treated
by new and not yet highly sophisticated techniques. Because they are not really
difficult to solve (otherwise an analytic solution would not be known) they give not
much information on the application range.

2.) Examples without an ’analytic’ solution which are well known from measure-
ments and from calculations with mature programs. It is clear that such examples
are much more important from a practical point of view. But they may be crucial
for newly born codes. For this reason, they are preferred by some established sci-
entists who try to defend their methods from being threatened by new promising
ones.

To avoid benchmarks which result in meaningless numbers, a serious compari-
son of numerical calculations must be based on very different examples and should
give much more information (’choices’ of the method, application range, used ma-
chines, compilers, memory requirements, error checks, input/output support etc.)
then just some numbers. Testing examples should include ’analytically’ solved prob-
lems as well as 'practically well known’ problems. They should include various con-
figurations, both 2D and 3D geometries, open and closed structures, harmonic and
impulsive time dependencies, scattering and eigenvalue problems, perfect and im-
perfect conductors, lossless and lossy dielectrics, etc. Of course, no program will be
able to solve all the testing examples effectively. But this will just give the desired
information for the users.
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IMPLEMENTATION OF GEMACS 3.3 ON PERSONAL COMPUTERS

Adel F Armanious and Peter S Excell
Department of Electrical Engineering
University of Bradford, UK

Abstract

GEMACS 3.3* is a powerful MM/GTD hybrid package which can model a wide
range of antenna and scattering problems. It is intended for use on large
mainframe computers but an implementation on a personal computer has advantages
in the possibilities of interactive use and graphical output. An approach to this
implementation is presented, together with benchmark test results from typical PCs,
a mainframe and a supercomputer.

1. Introduction

GEMACS is a very powerful and flexible code for electromagnetic modeling, not
only because it allows flexible hydridization of different approaches, but also
because it incorporates powerful geometry pre— and post-processors and other
features which aid execution of large problems [1]. The code is very large and is
normally intended to be run on a large mainframe computer or vector processor.
However, there are attractions in being able to use it on a personal copmputer
since the possibility of interactive dialogue and graphics compensates for the
reduced processing power in many applications. The latest version of the code
(Version 4.0) includes a finite—difference (FD) module which adds substantially to
its length [2]: the running of this on larger personal computers (based on the
Intel 80286 or 80386 microprocessor) has recently been reported [3]. For many
applications, however, FD is not needed and a more compact code can be realized
which will run on smaller PCs. In the work reported here, the earlier Version 3.3
of GEMACS was modified for implementation on a standard IBM-type PC,
originally based around the Intel 8086 microprocessor. This version of the code
contains only Moment-Method and GTD modeling modules. The personal
computer used was fitted with an Intel 8087 co-processor but, more significantly,
the 8086 processor was replaced by an NEC (i.e. Nippon Electrical Corporation)
V30 accelerated—architecture microprocessor that is pin—compatible with the 8086.
The use of this processor in standard IBM-type PCs bas been found to give a
great improvement in performance [4].

GEMACS 3.3 consists of five modules which are executed sequentially:

Input module (geometry processor and command language interpreter)
GTD module, which also supports a hybrid MM-plus-GTD solution
MM module, using wire grids and/or surface patches

Solution module, exploiting banded matrix iteration

Output module

F- 4 o4 e

*This version has now been superseded by version 40 and is no longer supported.  There is,
however, not a great deal of difference between these versions apart from the addition of the
finite-difference module to the latter.
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In operation, the code is strongly file-oriented. @ The starting point whenever
running any module is a check point file which is updated whenever there is an
exit from the module. The user is able to designate a certain run time and, if
the execution is unfinished at the end of this time, the check point file is updated
and the current values of the internal variables are saved, thus permitting execution
to be recommenced at a later time. The flexible hybridization of GTD and MM
techniques makes the code particularly powerful and useful for handling objects that
are too large to be analyzed by MM alone.

2. A PC Version of GEMACS 3.3

GEMACS 3.3 was written in Fortran 4 and hence, as a preliminary, statements
which contained obsolete features of Fortran 4 were modified so that they
conformed to the current Fortran-77 standard. The code was then transferred to
a PC where non-standard modifications had necessarily to be made in order to
make optimum use of the limited power available. To simplify this, all the
DIMENSION and COMMON statements of the routines were taken out of the
program and an INCLUDE statement used which makes the compiler read the
DIMENSION and COMMON statements from a specified file. In order to compile
each module with a limited DOS memory the modules were divided into groups of
routines which were compiled separately and subsequently linked.

2.1 rdware and P nfiguration

An IBM PC/XT or PC/AT or compatible computer is required, with the following
specifications and extensions:

640Kb of RAM memory

Mathematical co—processor (8087 or 80287)

10Mb (or larger) hard disk

Printer with either wide (132 characters/line) paper or normal paper if
compressed mode is available.

ol ol 4

A large and fast hard disk is recommended if very large structures are to be
analyzed. Table 1 shows the size of each module in Fortran lines, RAM bytes
and compressed disk bytes.

Table 1 Sizes of GEMACS 3.3 PC Modules

Module  Source Code Minimum memory required EXE file size on
Lines* bytes (in RAM) hard disk (bytes)

INPUT 14109 343879 254679

GTD 17356 577187 407843

MOM 12135 319539 234739

SOLN 9143 260683 179931

OUTPUT 7037 216773 136245

*excluding comment lines



2.2 Choice of Fortran Compiler

An attempt was made to compile the code using RM Professional Fortran 1.0 but
unfortunately this failed due to the size of the common block data segments.
Another attempt was made using Microsoft Fortran Version 3.31 but this gave
difficulties due to the restricted subset of Fortran—77 implemented. Finally, an
optimized Microsoft Fortran Version 4.0 was used. This was successful and it has
the additional advantage of options for optimization to achieve maximum speed or
minimum size: speed optimization was used for the present work.

Problems arose in implementing the GTD module with the maximum number of
plates (51) permitted in the mainframe version. For this, 720Kb would be
required which is clearly outside the ability of DOS on a PC/XT-type system.
The use of overlay was tried but this had a severe effect on run-time
performance. As a compromise, the maximum permitted number of plates was
reduced to 14 (as in GEMACS 3.1 [1]), which permits the program to run without
overlay. Some other problems were encountered due to the optimization option in
the compiler: these were tackled by disabling the optimization in a small number
of routines. The executable files were stored in compressed format in order to
reduce hard disk space requirements.

2.3 Code Operation

GEMACS uses unformatted indirect access files to store the check point data file
and all of the data sets produced, including the interaction matrix. The minimum
number of files needed for a MM/GTD problem is 16, however it is very likely
that additional files will be required, e.g. for structure loads, additional excitations
or additional field patterns. It is therefore advisable to specify that at least 20
files will be used when loading DOS: this is done in the CONFIG.SYS file.

2.4 Code Limitation

As mentioned above, the number of plates permitted in the GTD module was
limited to 14 (c.f. 51 in the mainframe version). The maximum number of
corners that each plate may have was also reduced to 6 in the PC version (as in
GEMACS 3.1, c.f. 16 in the standard version 3.3). All of the other limitations
are the same as those in the mainframe version [1].

2.5 Benchmark Testing

The test example cited in the GEMACS manual [1] was used for comparative tests.
This consists of a 0.25m monopole located over a square conducting plate of side
length 1.5m and driven at SOOMHz. A hybrid solution was used, the plate being
modeled as a single GTD plate and the monopole being modeled as a wire with
six segments using the Method of Moments. The published test solves for the
current distribution on the monopole and calculates the far field and input
parameters.

Test results and timings were available* for a Honeywell 6180 mainframe (this was
actually running GEMACS Version 3.1). Two personal computers were used to
test the present code and, for comparison, results from a Cray X-MP/48 were also
obtained. The personal computers used were as follows:

*Provided by K R Siarkiewicz, USAF Rome Air Development Center

85




1. A standard IBM PC/AT (6MHz clock) with the enhancements specified in
Section 2.1. :
2. An Amstrad PC1512 with the same enhancements.

The Amstrad PC1512 is compatible with the IBM PC/XT but it has an 8MHz clock
and, for the present tests, the 8086 microprocessor was replaced by a V30 as
discussed in Section 1. Comparative results are given in Table 2 and the
corresponding timings are given in Table 3.

Table 2 Comparative Results for Benchmark Test

Result IBM PC/XT Amstrad PC 1512 Honeywell Cray
with V30 6180% X-MP/48

Input

Impedance (ohms) 300.876 300.876 300.877 300.877

Input phase (deg) 17.676 17.676 17.676 17.676

Input power (W) 0.158E-02 0.158E-02 0.158E-02 0.158E-02

*running GEMACS 3.1

Table 3 mparative Timings (sec) for Benchmark Test
Module IBM PC/XT Amstrad PC 1512 Honeywell Cray
with V30 6180 X-MP/48

INPUT 4.8 7.9% 1.91 0.03
GTD 503 273 133.26 1.60
MOM 4.3 4 8% 8.44% 0.04
SOLN 3.2 3.7% (inc. in MOM) 0.03
OUTPUT 2.6 3.0% 1.02 0.09
Total time 518 292 145 1.79

*Dominated by slow hard disk
tTime for MOM and SOLN

It is seen that the GTD module dominates the processing time on all of the
computers: Fig. 1 shows comparative timings for the routines within this module,
excluding routines involving disk access (results for the Cray are not shown).

It is seen that the results produced by the personal computers are almost identical
to those from the mainframes (detailed results for the far fields are not shown, but
were also identical within the range of the printed output (four significant figures))
and the timings are of a similar order of magnitude to those achieved by the
Honeywell mainframe: the Cray is, of course, very much faster. The
performance of the V30 microprocessor is particularly remarkable since it achieves
almost twice the speed of an 80286-architecture machine when it is not hindered
by disk access times. Allowing for the faster clock rate in the Amstrad PC1512,
the speed improvement with the V30 is less (1.4 times faster) but still substantial.
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Fig. 1 Comparative timings for routines within the GTD module.

(The times for DIFPLT have been divided by 10)
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NUMERICAL ELECTROMAGNETICS COMPUTATION USING THE INMOS T800
TRANSPUTER ON AN OLIVETTI M24 PERSONAL CONPUTER
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STUDY LEADER : Prof. J.H. CLOETE

INTRODUCTION : As is known to most engineers and scientists
interested in computational electromagnetics analysis, G.J.
Burke and A.J. Poggio developed a code called NECZ2 at the
Lawrence Livermore Laboratory in California [1]. This code
was developed using a mainframe computer and was written in
FORTRAN. The code has subsequently been used on a VAX785
mainframe at this University.

Recent developments at INMOS in the field of fast 32-bit
parallel processors however opened up a new avenue of
arithmetic processing using their transputer concept. The
first transputer available from INMOS was the T414, and
later the T800, with floating point processing.

The natural language of the transputer architecture is
OCCAM. However, facilities to use alien languages, like C,
PASCAL and FORTRAN on the transputer have recently been made
available.

The computer group in the Department of Electrical and
Electronic Engineering at the University of Stellenbosch,
led by Professor Jan du Plessis, has been exploiting the
advantages of the transputer for a variety of high speed
computing applications, including real-time control . of
dynamic systems, and number crunching. In the process they
have developed a board which houses a number of T800-
processors as wWell as 2MB on-board static storage. This
board plugs directly into any IBM-compatible PC, like in
this case, the M24 Olivetti PC with a 20MB hard disk drive.
The cost of a transputer board with one T800 processor is
about $USZ2000.

At the suggestion of Professor du Plessis, a study was

initiated to investigate the feasibility of running NECZ on
the T800 transputer.




In order to test this idea, a transputer board, containing a
single T800, was plugged into an Olivetti M24 PC, with the
following additional hardware : 2 x 360kB floppy drives; 1 x
20MB hard drive; 1 x 8087 co-processor; and 640kB of RAM.

PROCEDURE TO TRANSFER NEC2 TO T800 TRANSPUTER : After less
than 1 month’s work, NEC2 was successfully run on the T800
transputer, using the following procedure

1. Firstly the necessary software for FORTRAN use on the
transputer, as supplied by INMOS, was loaded and installed
on the hard drive.

25 To load NEC2 onto the PC hard drive, it was found that
it would be easier to transport the PC to a mainframe serial
port, and transfer the program serially from the VAX785
magnetic storage to the PC hard drive, using a suitable
error-free transfer packet.

3. Having transferred the program onto the PC hard disk,
the use of NEC2 on the transputer was investigated. The
program was renamed NEC2.F77 to comply with INMOS

terminology. The logical first step seemed to be to try
compiling the program using the transputer’'s FORTRAN
compiler. Obviously there were a 1lot of errors and

warnings, but at least it proved that the compiler accepted
the NEC2 package.

4. The nature of the warnings and errors after compilation
were the following :

a. The compiler did not accept the REAL*8 statement. This
was replaced with the DOUBLE PRECISION statement.

b. Some of the declared constants were too large for single
precision format. All these were replaced with double
precision format, i.e.

DATA TA/1.745329252E-02 replaced with

DATA TA/1.745329252D-02

(The E replaced by a D)

c. The compiler has an alternative protocol for READ/WRITE
statements which involves the exclusion of a comma, i.e.

WRITE (6,%), 'WHAT TO BE WRITTEN ON SCREEN" becomes
WRITE (6,%) "WHAT TO BE WRITTEN ON SCREEN’

(Comma removed)




d. The OPEN statement does not allow the RECORDTYPE and
CARRIAGECONTROL options, as found on the VAX785.

e. The compiler does not accept the use of Hollerith
constants. All these were replaced with CHARACTER
declarations and the H-characters in the DATA-statements
were removed. Use was also made of type conversions, i.e.
conversion from CHARACTER to INTEGER and vice versa, to
bypass the Hollerith constraints.

£ Line 66 of subroutine COUPLE was changed to the
following form :

FORMAT (2(1X,I4,1X,I14,1X,15,2X),45H**ERROR** COUP.....
(inclusion of a comma after the first closing bracket)

£. The transputer clock procedure, ICLOCK, produces a time
value (seconds) in an integer format, as opposed to the
VAX785 real format. All the time printout FORMAT statements
were modified to accommodate the integer format.

5. After all the above errors and warnings were rectified,
it was possible to compile the program, but the compiler
failed to generate the binary code, NECZ.BIN. (It was not
necessary to debug the warnings, as they were, in fact, just
warnings. They would not have prevented the creation of an
executable file.) After checking the diagnostic printout
and consulting with Mr. Pieter Bakkes, one of the lecturers
involved with the transputer project, the conclusion was
drawn that the source code, NEC2.F77, was too large for
compilation (B680kB). It was thus decided to divide the
whole program into 17 separate segments and compile each
segment separately, after which all segments were linked
together to create the executable file NEC2.B4. This proved
to be successful, and a file NEC2.B4 of size 340kB was
created.

8. The file NEC2.B4 was subsequently executed, and at first
everything seemed to indicate that NEC2 was running.
However, about a quarter of the way through the run
execution terminated. After a lengthy investigation inside
the source code using several WRITE statements to follow the
progress of the program, it became clear from the INMOS
literature that only 2kB of on-chip (T800) storage is used
for the stack. To use external storage for the stack, a
NEC2.EXE file has to be created (by copying and renaming the
link file, LINKT.EXE to NEC2.EXE) and executed. This proved
to be successful, and NEC2 ran for the first time from
beginning to end, using the 12-element log-periodic antenna
example in the NECZ2-users manual [1].

L
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Note that because this particular example employs 78
segments, it would mean a matrix size of 6084 elements,
which is more than the maximum of 4000 possible elements
budgeted for in the original NEC2-version. The dimensions
of the variables CM and IRESRV were changed to 10000 to
avoid the use of external file storage. Provision still has
to be made for the opening of files for disk storage.

RESULTS : The.lz—element log-periodic antenna example in the
NEC2 users manual [1)] was used as a benchmark.

The results obtained from analysing the 12-element 1log-
periodic antenna,using NEC2, on the T800 transputer were
compared with those published in the NEC2-users manual [1],
as well as those obtained from microVAX and VAX785
executions. The results agreed excellently in all three
cases.

The runtime comparisons are as follows [2]:

Transputer T800 using static storage 32s
(In the original report, the T800 execution time was stated
as 42s. However, a memory clock jumper on the transputer

board was incorrectly set for the type of memory used, hence
the radical improvement from 42s to 3Zs.)

microVAX using core storage 47s
VAX785 using magnetic tape storage 40s
(with 11 other users on the VAX)

" " (with no other users) 34s
VAX785 using core storage 18s

(with 2 other users on the VAX)

RECENT DEVELOPMENTS : The Department recently acquired the
new INMOS Parallel FORTRAN compiler for use on the T800-
transputer. This compiler was originally developed for use
with several transputers in a parallel environment, with the
added advantage of being able to write software in FORTRAN
for parallel processes. The feasibility of compiling NEC2
with this compiler was investigated.

It was found that it was possible to compile the entire NEC2
source code, unsegmented, using this compiler. The
execution time with this compiler is, however, about 3
seconds slower than the above benchmark, using the same log-
periodic antenna (i.e. ¥ 35s). Other advantages for use
with NEC2 could not be detected.
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Additionally, the Group recently acquired the NEEDS package,
as distributed by the Applied Computational Electromagnetic
Society. This consists of an excellent pre-processor,
IGUANA, for creating, editing and plotting the required NEC2
data cards for a given structure, accessing NECZ or MININEC
for execution and a graphics package, GRAPS, for plotting of
the results. This package also includes SOMNEC, a FORTRAN
program which creates an interpolation table for wuse by
NEC2, for the cases where a non-ideal earth surface is used.
This program was immediately transferred to the hard disk,
debugged and successfully compiled on the transputer.

An obvious next step was to integrate the transputer-NEC2
and -SOMNEC into the NEEDS-facility. The status of this
exercise is as follows

a) It is now possible to access the transputer-NECZ as well
as the transputer-SOMNEC from the NEEDS menu; it involved a
simple modification of the path to the transputer directory
in the relevant menu-batch files.

b) Unfortunately the card deck output format of IGUANA is
not the same as that required by the transputer-NEC2
(possibly to be compatible with the MININEC input format).
An interface program was written to reconvert the IGUANA
output deck (containing commas between fields) to the format
required by the transputer-NEC2 (with spaces between fields,
as in the NEC2 users manual [1]). This seemed to be less
troublesome than to alter the READ and FORMAT statements in
NEC2 in order to accommodate the commas in the IGUANA deck
format. This interface program is automatically executed
immediately after using IGUANA, just before returning to the
main menu. :

c) NEEDS contains an updated version of NEC2, with the
added facilities of a helix generation card (GH) as well as
a plotting card (PL) to facilitate storage of current, near-
fields, far-fields or field strengths on disk for later
plotting. As it was too much trouble to recommence
debugging of this version for compilation on the transputer,
it was decided to copy the subroutine HELIX, as well as all
statements relating to this subroutine and the PL card to
the existing transputer version of NEC2, debugging these
additions where necessary.

Initially a problem was experienced in that only a maximum
of 7 files could be opened, regardless of the number of
OPEN-statements in the program. After initially blaming the
transputer compiler, it later transpired that the
CONFIG.SYS-file in the MS-DOS root directory did not make
provision for enough files to be created. This error was
promptly rectified by editing this file.
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After the abovementioned modifications and additions were
performed, a totally PC-based antenna analysis workstation
was obtained, with performance comparable to a mainframe
systemn. The program components which are primarily used,
are the following

IGUANA - this NEEDS-based program is used to to create,
edit, view and plot the structure to be analysed. The final
structure file is saved as NAME.DAT, where NAME is any user-
defined name, and is stored in the transputer directory.
This program is executed in the DOS-environment.

SOMNEC - this program is used to create non-ideal earth
interpolation tables, which is saved as SOMNEC.DAT, for use
by NECZ2 where necessary. This program is executed on the
transputer.

NECZ - using the transputer, this program calculates
currents, radiation patterns etc. This program makes
MININEC obsolete. The output listing is saved as
LISTING.DAT.

NECPP - this handy post-processor program in NEEDS searches
through the output listing, LISTING.DAT, for the relevant
data to be plotted. After finding the data, it is saved in
the GRAPS-directory for subsequent plotting. It operates in
the DOS-environment.

GRAPS - this is the graphical plotting sub-program in NEEDS,
with several options for plotting of the results obtained
from the execution of NEC2Z. It also operates in the DOS-
environment.

The only 1limitation is a maximum segment dimension of 300,
but this will be extended by the planned acguisition in the
near future of a transputer board containing about 4MB of
on-board memory.

CONCLUSIONS : The transputer compares very favourably with
the mainframe systems, and can be thought of as the poor
man’'s VAX. In effect microVAX performance can be obtained
by using a standard PC as host for the University of
Stellenbosch, Department of Electrical and Electronic
Engineering T800 transputer board. The total investment is
less than $US5000.
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Abstract. In this paper, we present an efficient method for computing the solution to scattering problems using
s perturbation scheme based on the solution of related original problems. Assuming the radar cross section has
been computed for a particalar scatterer jated with a moment method matrix B , we call the computation of
the radar cross section of a slightly perturbed scatterer a "perturbed problem of B”. If the original problem has
n unknowns, and the perturbed problem is formed by changing p cells of the original problem, then our method
requires an operation count of O(n?p + p°) while a direct moment metbod solution requires an operation count
of O(n*). Our method involves application of the Sherman-Morrison-Woodbury formula for inverses of perturbed
matrices. We show that the method can be easily implemented in any moment method code, and the user does
not have to learn a new input procedure.

Further, the modified code can provide a basis for a non-linear optimization procedure which minimizes the
radar cross section of an obstacle by varying the surface impedances. An appropriate objective function in this
problem depends on the radar cross section at the angles and frequencies of interest. Let n be the number of cells
in the obstacle and let p be the number of cells with variable impedance, with n >> p. Then application of the
Sherman-Morrison-Woodbury formula results in objective fanction evaluations requiring an O(np + p*) operation
count. In contrast, application of the classical moment method results in objective function evaluations requiring
an O(n®) operation count.

Numerical results from large practical problems demonstrate the efficiency and stability of the new method.

The work of the first author was funded by Rome Air Development Center/OCTM under contract number F30602-85-C-0225.
Both authors wish to thank Dr. Robert J. Chiavetta for suggesting an appropriate title and for reading and commenting on
earlier drafts of this paper. Parts of this material have been presented by the authors at the 3rd and 4th Annual Reviews of
Progress in Applied Computational Electromagnetics, Monterey, Ca..
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1. INTRODUCTION

Let MOM be a generic moment method code that solves its matrix equation by Gaussian
elimination. Suppose MOM has solved a certain scattering problem. A second scattering
problem is called a perturbed scattering problem of the first if the scatterer of the second
problem is a slight perturbation of the first, geometrically and/or electrically. In this
paper, we present an easy modification of MOM, which we call UMOM, for the solution of
perturbed scattering problems. The method employed is based on the Sherman- Morrison-

Woodbury updating formula (which we will abbreviate as SMW in the rest of this paper).

We show that appropriate application of the SMW yields a method that is efficient and
easy to use. If the original problem has n unknowns, and the perturbed problem is formed
by changing p unknowns of the orginal problem, then our method requires an operation
count of O(n?p + p®) while a direct moment method solution requires an operation count

of O(n?).

The SMW was the work of Sherman, Morrison [1],[2] and Woodbury [3], which is
not well-known outside the community of numerical linear algebra. The formula was
rediscovered and applied to different engineering disciplines. A partial list of references on

the applications of the SMW is:

(1) R. Hockney 1970 [4],
(2) B.Buzbee, F.Dorr, J.George and G.Golub, 1971 [5],
(3) W.Proskurowski, O. Widlund 1976 [6],

(4) E.L. Yip 1986 [7],

(5) E.L. Yip and B. Tomas, 1987 [9],

(6) B.Tomas and E.L.Yip 1988 [10],

(7) R. Kastner 1988 [11].



Kastner’s work on large planar structures uses a specialized form of the SMW, which is
simpler than the application of the SMW to general moment method codes discussed in

this section.

Section 2 contains a discussion of the classical theory of the SMW and one of its im-
plementations. Section 3 presents its application to scattering problems. In Sections 4
and 5, we present the solution of two scattering problems: the perturbed problem and the

optimal loading problem. Section 6 contains numerical results.

2 THEORY

This section presents the Sherman-Morrison-Woodbury updating formula, and an algo-
rithm for its general implementation. The efficiency of the method in terms of operation

count is also discussed.

If A and B are n X n matrices, and if A — B is a rank p matrix, there exist n X p matrices

U and V such that

A=B-UVT, (1)

(where the superscript T signifies the transpose of the corresponding matrix). The

Sherman-Morrison-Woodbury updating formula expresses A~! in terms of B~!, U and V:

A™' =B '+ B'UI-VTB'U)'vTB™! (2)

(For the sake of completeness, we derive the Sherman-Morrison-Woodbury formula in the

Appendix.)
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There are many different methods of implementing of the above equation for the solution
of Az = b. Algorithm 1 below is an implementation for the most general case, that is,

when B — A is an arbitrary rank p matrix.

Algorithm 1.
Step 1. Compute for BZ = U.
Step 2. Compute the matrix K = (I — VTZ), and its LU factors.
Step 3. Solve By = b for y.
Step 4. Compute w = V7Ty.
Step 5. Solve Ks = w for s.

Step 6. The solution for Az = b can be computed as z = y + Zs.

Postmultiply both sides of equation (2) by b,

A% =B %+ B 'U(I -VTB'U)'vTB . (3)

Substituting the matrices Z and K and the vectors y, w, and s which are defined in
Algorithm 1 into equation (3), we see that, in the absence of numerical round-off, the

vector z defined in Step 6 of Algorithm 1 satisfies Az = b.

If A and B are full matrices, and if B has already been factored, then the amount of
work in Algorithm 1 is of the order p(n? + p?/3); if p is small, this can be much less costly
than factoring A.

3 APPLICATION TO SCATTERING PROBLEMS

Let B and A be the coefficient matrices of the original and perturbed problems, respec-

tively. If both the material and geometric properties of the two problems are different,
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then the matrix B — A consists of a few non-zero rows and a few non-zero columns. If
only the material properties of the two problems are different, the the matrix B — A will
consists of only a few non-zero columns. In order to apply the SMW, the matrices U and

V in equation (1) need to be defined.

Before we proceed with our discussion, it is pertinent to indicate the following:
(1) If an n X n matrix C has only one non-zero column, say the j-th clolumn, then if
u is a vector of length n and equals the non-zero column of C , and v is a vector of
length n with the value 1 at its j-th entry and zero everywhere else, then C = uv7.
(2) If an n x n matrix R has only one non-zero row, say the i-th row, then if v is a
vector of length n and its transpose equals the non-zero row R, and u is a vector of
length n with the value 1 at its i-th entry and zero everywhere else, then R = uvT.
Consider first the case when only the material properties are different in the two prob-
lems. Suppose there are ¢ non-zero columns, j1,j52,...,7q, in B — A. Let U be a n x q
matrix whose columns are the g non- zero columns of B — A. Let V be an n x q matrix
whose k-th column, k = 1,2,..., ¢, has the value 1 at its Jk-th entry and zero everywhere
else. Then B- A=UVT,

The case when both the geometric and/or material properties are different is more
complicated. Suppose B — A has p non-zero TOWS, 11,12,...,%p, and ¢ non-zero columns,
J1,J25--+,Jq- Let R be a matrix whose rows are the non-zero rows of B — 4. Let C be
a matrix whose columns are the non-zero columns of B — 4 minus the intersection of the
non-zero rows and non-zero columns of B — A. (See Fig. 1) Then

B-A=R+C. (4)
Let U be an n X (p + ¢) matrix of the form:

U=[P,U], (8)




where P; is a n X p matrix whose k-th column, k = 1,2,...,q, has the value 1 at its 1
entry and zero everywhere else, and U, is an n X ¢ matrix whose columns are the non-zero
columns of C in equation (4). Similarly, let V be an n x (p + ¢) matrix whose transpose

is of the form:

YT [g] (6)

where V; is an p x n matrix whose rows are just the non-zero rows of R in equation (4),
and @, is an ¢ X n matrix whose k-th row, k = 1,2,-.- | g has the value 1 at its j,-th row

and zero everywhere else. Then from equations (4) to (6),

UvT = PVi + U1Qy
—R+C

=B-4A (7)

Once U and V are identified, Algorithm 1 may be applied.

4 SOLVING THE PERTURBED PROBLEM

This section shows that the basic properties of the matrices U and V defined in section
3 provide a user-friendly and portable computer implementation for practical problems.
In this implementation, the user describes the perturbed problem to UMOM in exactly
the same way he describes the original problem to MOM. UMOM will figure out the
differences between the two problems. This implementation is also portable in the sense
that, in order to apply the SMW updating formula to another moment method code, one

need only modify the subroutines of UMOM slightly.

For the convenience of discussion, we shall refer to the part of the scatterers which is
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different in the two problems as the ”"perturbed” part, and the other part as the "unper-

9 turbed” part.

The steps the user takes to solve his new problem are :

(1) Solve the original problem with MOM; specify that the problem and immediate
computation information are to be saved.

(2) Use UMOM to solve the perturbed problem. The input process for UMOM includes
defining the new problem and specifying the disk file on which the old problem is

stored.

Generation of the pertinent information for the SMW requires the user’s input to be
processed by the routines: SORT, COMPARE, and INDEX. Each of these is explained in
detail below.

The structural differences between the two problems are obtained first. UMOM SORTs
two problems, and then COMPAREs them. This is a very efficient procedure. Without

the sorting, a brute force comparison requires O(n?) operations, where n is the number of
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t (by the Shell sorting algorithm) the discrete points which describe the scatterers in the
t points which describe the scatterering problem. With sorting , the comparison takes an
F

average of O(nlogn) operations.

Any sorting algorithm requires an ordering for the objects to be sorted. UMOM assumes

the following ordering on the z — y plane:
We say (z1,¥1) > (z2,y2) if and only if z; > z; or (z; = T2 and y; > ¥2).
For example, in Fig. 2, point 1 is less than point 2 which is less than point 3.
The INDEX process establishes the link between the matrices of the original and the
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perturbed problems. Write

A=4+ 4 (8.1)

B =By + B, (8.2)

where Ay and By contain matrix elements which correspond to the unperturbed part of the
two scatterers, and A; and B; contain matrix elements which correspond to the perturbed

part of the two scatterers.

Mathematically, INDEX generates a set of indices from which a permutation matrix P
is defined with 4y and B related as:

PTAoP = B,. (9)
(Note that the inverse of P is its transpose.)
The matrix equation we are interested in solving is
Az =b (10)
which is equivalent to
PTAPPTz = PTh
(PTAGP + PTA, P)PTz = pTp

(Bo + PT4,P)PTz = PTh

(B+ PTA,P~ By)y = PTh, (11)

where y = PTz. PTA,P — B; in equation (11) has only non-zero rows and non-zero

columns corresponding to the perturbed part of the scatterers. And according to section
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3, matrices U and V can be found so that
B, - PT4,P =UVT,

The SMW can then be applied.

Note that only A; and B; in equation (8) need to be generated. This can easily be
accomplished by modifying the appropriate DO-loops in the code which generate the

matrix elements in MOM.

Before applying the SMW, premultiply the right-hand-side vector b by PT. Then in
place of the regular linear equation solver, use the SMW updating formula to solve for y

in equation (11). Then the true solution x is obtained as

z = Py (12)

In summary, Fig. 3 illustrates the flow of MOM and UMOM and the structure of
UMOM. The procedures in UMOM can be modified with minimal effort for adaptation to

other moment method codes.

In our previous discussion, we assume the two problems generate matrices of the same
dimensions. In the case in which they generate matrices of different dimensions, we show

that minor modifications to the smaller matrix afford the use of the SMW.

In the case in which the dimension of B is greater than that of A, append an identity

matrix to the right lower corner of A so that the two matrices have the same dimensions

[ 7] 2] s @)

and replace equation (10) with




Note that the solution of equation (13) is of the form

z
0
where x is the solution of equation (10).

In the case where the dimension of A is greater than that of B, append an identity
matrix to the lower right corner of B so that the two matrices have the same dimensions.
Note that the necessary criterion for the application of the SMW updating formula is that

B~1b can be computed efficiently. Note that

B o] _[B! o
0 I Sy 0 I
Thus the modified coefficient matrix for the original problem is as easy to "invert” as

its unmodified form.

5 OPTIMAL LOADING

An immediate application of UMOM is to the optimal loading problem. We are in-
terested in minimizing the scattering cross section of an obstacle by varying its surface
impedance. The discrete approximation to this problem is a nonlinear optimization prob-
lem. This problem can be solved by applying UMOM. In the analysis below we consider
a single angle and a single frequency; practical applications usually consider a range of
angles and frequencies. For simplicity, only examples with real-valued impedances are
considered in the analysis. The general case is solved by treating the real and imaginary

parts as separate variables.

Let u be the vector of discrete impedances of the cells in the scattering obstacle. Let B

be the impedance matrix associated with the obstacle geometry and p. Then the objective
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function for the optimization problem is

o=0o(p)

where o = |L(z)|?, L is a linear functional independent of y, and z solves Az = b with
b the usual excitation vector. In practice the impedance varies over p cells with n >> p,

where n is the total number of cells in the problem.

At each iteration, the bulk of computation in the optimal loading problem involves the
computation of the objective function, which involves solutions to the matrix equation
Az = b, requiring O(n?®) operations. We present an efficient method of computing of the
objective function using the SMW which requires O(np + p*) operations: the first solution
of the linear system is computed by MOM; subsequent solutions for different values of u

are computed by SMW.

For simplicity, assume below that the cells in the model are ordered so that the only
the first p cells have variable impedance, and that these impedances vary independently.

The general case can be handled by the INDEX process discussed in Section 3.

Let B be the impedance matrix associated with an initial impedance po and let 4 be
the impedance matrix for an updated value of p. Then from the discussion in section 2,
B — A =UVT where U is an n X p matrix related to the basis and testing functions; in
the case when both are pulse functions, the j-th column, j = 1,2,...,p, has the value 1

at its j-th entry and zero everywhere else, and
vT = (D|0] (14)
where D is a p X p diagonal matrix whose diagonal entries are the components of .

Note that U and b are independent of u.
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The flow of the optimization calculations proceeds as follows.

Algorithm 2.
Step 1 Initialization: Compute U, b, U = B~'U, b = B~1b by MOM, with U and b
overwritten by U and b.

Step 2 Iteration: Compute the objective function, applying the SMW to compute
zc=A"=b+UI-VTO) VTS (15)

Step 3 Test for Optimality: If the solution is optimal, stop. Otherwise recompute new u
and V7T as defined in equation (14) and go to Step 2.

Note that B! is no longer needed in Step 2, so the memory used by B~! can be used

to store B~U if the appropriate I/O procedure is used.
The flow of the above calculations is summarized in Fig. 4.

From Step 2, it can be seen that using the SMW formula for the computation of A~1b
results in an O (np + p*) operation count compared with an O (n®) operation count using

MOM.

The use of objective function gradients in optimization algorithms is well known. We
now investigate the computation of the objective function gradient using the SMW formula.
A finite difference approximation to the gradient of o requires O (np?) operations. The
gradient can also be computed in O (np?) operations by applying the SMW formula and
observing that required intermediate quantities are already stored for objective function

evaluations.

Recall that
o =|L(z) = L(z)I(2)
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from which

o =31 ) T+ 202 (31,)

by the linearity of L. The derivatives of z are obtained by implicitly differentiating Az = b:

84 Oz
e+ A— =0
O Oun

Oz 0A
— =4 2=2).
Opr (3!% z)

From the decomposition B — A = UV7T, the form of V7 as defined in equation (14), and
the fact that U is independent of g, it can be seen that % has only one nonzero column,

and it is just the k-th column of U which we call u;. That is,

04

ﬂ—[ﬂ,...,uk,ﬂ,...]. (16)
. T .o 0A . .
If we write z = (z1,... ,25)" then Bp. T = Tk From this it follows that
Lk
Oz 1
— = - . 17
2 = o™ () a7)

Now the SMW formula can be applied to compute A~ (u;) in O (np) operations using the
fact that B~ (u;) is already stored for use in evaluating the objective function. Assuming

that (I - VTB-1U )_1 is also already stored, the gradient of o can be calculated as above

in O (np?) operations.

We have shown that the well known technique of impedance loading can be efficiently
applied using moment method techniques. The implementation can use subroutines from
existing moment method codes and existing optimization software. Unlike earlier tech-

niques [12], a separate analysis is not required for each new geometry.
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6 NUMERICAL EXAMPLES

We have incorporated the SMW into three moment method codes currently in use:

(1)

(2)

RAMZ - a modification of RAMVS [13] which is a 2D moment method code for
scatterers treated with absorbing materials that satisfy an impedance boundary

condition,

DMS2 - a 2D volumetric moment method code internal to the Boeing Company,

(3) NEC - written by Burke and Poggio [14] which we use as a 3D moment method

code for structures modeled as wire grid surfaces in free space or over a ground

plane.

The modification made to NEC is for the optimal loading problem.

The following is a discussion of three examples, one corresponding to each of the the

above codes and its corresponding modifications:

(1) The original problem is a perfectly conducting sheet of 10 wavelengths lying on

(2)

the x-axis. The perturbed problem is obtained by replacing the leftmost 10 cells (
1 wavelength) with a material whose electric and magnetic impedances are (.5, .6)
and (1.65,1.65). Both problems have 100 cells. The H-pol monostatic scattering
pattern is computed from 0 to 30 degrees at 10 degree intervals. See Fig. 5 for a
description of the geometry and angle orientation.

The original problem is a perfectly conducting ellipse whose major and minor axes
are respectively 4 wavelengths and 2 wavelengths. The major and minor axes lie
respectively on the y- and z- axes. The perturbed problem is obtained by removing

4 cells on the right of the ellipse above the z-axis. The original problem has 101 cells

and the perturbed problem has 97 cells. The E-pol monostatic RCS for incidence

angles from zero to 10 degrees are computed. See Fig. 6 for a description of the
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geometry and the angle orientation.

(3) This example is motivated by Schindler, Mack and Blacksmith [12]. A pair of
parallel dipoles is viewed in the plane of the dipoles, polarized also in the plane
of the dipoles. The dipoles are 1 meter long, spaced .2 meters apart, and are
divided into 6 segments. The center two segments of each dipole are loaded with
impedances of 200 + 7200 at initialization. The scattering is optimized over the
sector from 0 to 40 degrees using 5 angles at a single frequency, 300 mhz. See Fig.

7 for a description of the geometry and the angle orientation.

All three examples were run on the VAX 11-785. The table below summarizes the matrix
dimensions, perturbation order and CPU time. n and p are respectively the dimensions of
the original matrix and the perturbed part. MOM and UMOM respectively represent the

original moment methods code and their corresponding SMW modification.

TABLE 1. CPU SECOND PERFORMANCE COMPARISON

Example n p MOMsec. UMOM sec.

1 200 20 36.9 26.7
2 101 4 19.6 8.7
3 12 4 1.56 0.07

The timing for Example 3 is the timing per iteration. This example ran for 201 iterations.

The scattering patterns of the above examples verify the accuracy of the methods pre-
sented in this paper. Fig. 8 shows the scattering pattern of the perfectly conducting sheets
and the treated sheet (example 1). The treated case was run through the original mo-
ment method code and the answers coincides with those obtained by the SMW-modified
moment method code. Fig. 9 shows the scattering pattern of the closed elliptic conductor

and the elliptic conductor with an aperture. The optimal impedances for the center 2
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segments of each dipole in example 3 are 78 + 407; and 56 + 4875. Fig. 10 illustrates the
effect of this optimal loading.

7 CONCLUSION

The classical theory of the Sherman-Morrison-Woodbury updating formula and its appli-
cation to scattering problems have been presented. Two examples have been considered:
the perturbed problem and the optimal loading problem. It has been shown that an
easy modification to a basic moment method code yields an efficient solution method for
the perturbed problem and the optimal loading problem. Our numerical examples have
demonstrated that the new method is numerically stable and is between 1.5 to 22 times

faster than the classical approach.
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APPENDIX DERIVATION OF THE SMW

Note that for any matrix X such that I — X is nonsingular, we have
T=-X)'=I+X+X*+X°+..-. (A.1)
The right hand side of equation (A.1) is the Taylor series of (I — X)™.

Recall that
A=B-UvT

= B(I - B~'UuvT).

Thus the inverse of A can be written as

A™'=[B(I-B'uvT)?
(A.2)
=[I-B'UvT'B~,

Note that since A is nonsingular, the inverse of I — B~1UV7T exists and can be written
as an infinite series:
I-BuvT)'=14+B'UVT ¢ BUVTB-UVT +. 4 (BUVTE 4.
=I+BU[I+VIBWW+---+(VIBIWU)* ' +...]vT  (A3)
=I+ B 'U[I-vTB U] 'VvT

Substitute A.3 into A.2 we obtain:
A"l =B '+ By -vTB-U)'vTB?

which is the SMW.
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Fig. 5 Geometry and Angle Orientation of Example 1

Fig. 6 Geometry and Angle Orientation of Example 2

Fig. 7 Geometry and Angle Orientation of Exa.mpfe 3
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The Effects of Heavy Charged Particle Irradiation of
MOSFET Devices

William Eichinger, Patrick O'Reilly, and Chistopher Lehner
Department of Physics, United States Military Academy
Waest Point, New York 10996

lonizing cosmic particle radiation poses a serious threat to
electronic devices (such as metal-oxide semiconductor, field effect
transistors - MOSFETs) that are used in outer space. The physical process
in which a bombarding ion creates eiectron-hole pairs in the SiOg layer
of a MOSFET, the subsequent collection of charge at the SiO2-substrate
interface and its effect on the operating characteristics of the
transistor is modeled with two second order, coupled differential
equations. The coupled equations are solved using the finite difference
technique known as the Alternating Direction Implicit Method, ADI.
Preliminary verification of the computer code was performed using a low
energy proton accelerator. The measured change in MOSFET operating
characteristics compared favorably with the predicted results. The
results show that the damage due to ionizing particles is greatly
dependent on the energy of the bombarding particle, its angle of
incidence, and the magnitude of the bias applied to the MOSFET.
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Introduction.

As our technological exploitation of space progresses, so does our
dependence on the reliable operation of electronic devices in the harsh
environment of outer space. Cosmic particles (consisting of 85% protons and
14% alpha par'ticles}1 are a primary threat to the reliable functioning of
commonly used electronic devices such as metal-oxide semiconductor, field
effect transistors (MOSFETs). MOSFETs are often used because they are easy to
fabricate, are relatively impervious to radiation, and have a low noise
backround, enabling the amplification of extremely weak signals. Payload,
weight and speed constraints require that these electronics devices be
miniaturized. Unfortunately, as the device parameters decrease, their
vulnerability to the ionizing radiation of a single particle (termed a single
event upset, SEU) increases, as well as the long term effects of low levels of
ionizing radiation. If the effects of ionizing radiation could be understood,
then electronic devices could be designed to maximize their survivability in
space. The purpose of this paper is to present the results of a computer code
which models the effects of ionizing radiation due to heavy ions in MOSFET
devices and preliminary results which verify the code predictions.

Operation of MOSFET Devices.

GATE

SOURCE

\conductlng inversion channel

P-TYPE SILICON P-TYPE SILICON
SUBSTRATE SUBSTRATE
Figure 1a. No Gate Voltage Figure 1b. Positive Gate Voltage

N-Channel Enhancement MOSFET

The electronic device modeled is an enhancement MOSFET (Figure 1a). In the
case of an n—channel device, an SiO7 layer is used to insulate the gate from
the p-doped siiicon substrate. Although there is not an intrinsic conduction
path between the drain and the source, a conducting channel is formed when a
positive electric potential {Vgs) is placed between the gate and the
substrate. This is due to the attraction of electrons to the top of the
substrate layer (see figure 1b). These electrons act as the majority carriers
in a current (Ig) between the source and the drain which is related to the
minimum (or threshold) potential (Vy) required to form the n-channel by:

g = k(Vgs - Vp)? (1)
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where Vgg > V¢ and k is a device dependent constant. Figure 2 shows the
device characteristics for a typical n-channel enhancement MOSFET. P-channel
devices may also be constructed which operate in a similar manner?.
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Figure 2. Typical I-V Curve For An N-Channel Enhancement MOSFET.

Damage Mechanisms of lonizing Radiation In MOSFET Devices.

CATE Path of the
- incident
particle

SOURCE DRAIN

nt I ] nt

P TYPE SUBSTRATE

Figure 3. Electron-Hole Generation By lon Bombardment

When a heavy ion strikes a MOSFET, lattice atoms are ionized as the ion
travels through the materials leaving a column of electron-hole pairs as shown
in figure 3. In the SiO7 layer, the electrons are quickly swept away through
the gate when Vgs is positive. Many of these electrons recombine with the
holes as they move toward the gate. The holes which have not recombined will
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move to the bottom of the SiO) layer, forming a semipermanent concentration
of positive charge trapped along the substrate-SiO) interface. Consequently,
this positive charge will attract electrons in the substrate to the SiOp-
substrate interface decreasing the amount of potential that must be applied to
form the n-channel. Thus Vi is reduced by

AVy = - Qo f (2)
Cox

where Qg is the total amount of positive charge deposited in the SiO2 by
the incident particle, f is the fraction of the total charge which does not
recombine, and Cgyx is the SiO2 capacitance. Sufficient irradiation can

cause the required threshold voltage to go to zero, thus permanently forming
the n-channel (the transistor will remain on).

Mathematical Model of the Effects of lonizing Radiat.ion.

The result of a heavy ion’s traverse through a layer of SiO2 was modeled
as a concentrated column of electron-hole pairs (figure 4a). The initial
volume density of the electron-hole pairs decreases radially from the center of
the incident ion's path as represented by:
-r?/p?
n(r) = Ng e (3)
m?

where n(r) is the volume density of electron-hole pairs, Ny is the linear
density of electron-hole pairs, b is the radius of the column and r is the
radial distance from the center of the column.

The density of the holes in the SiO7 is dependent upon the rate of
recombination, the rate of diffusion, and the rate of drift of the holes and
electrons due to an applied electric field. This dependence is mathematically
expressed by the following coupled set of equations:

ang(rt) = D+V2n4(rt) + p4+Eyx ang(rt) - ang(rt) n-(rt) (4)
at ax
an_(rt) = D-V2n_(r.t) - u-Ex 3n_(r) - any(rt) n-(ry) (5)
at ax

where D, is the diffusion coefficient, u4 is the mobility of the

electrons or holes as appropriate, Ey is the component of the electric field
perpendicular to the column, a is the recombination coefficient and n, and
n- are the hole and electron volume densities respectively. These equations
were first proposed by George Jaffee in 1913 3 The solution to these
equations will yield the fraction of the original number of holes which escape
recombination and begin to migrate towards the SiO2 - substrate interface.
The first term represents the diffusion of holes in the oxide due to the radial
density gradient of the electron-hole pairs. The middle term represents the
drift of the holes due to the applied electric field. Since the mobility of

the holes is much less than the mobility of the electrons, the holes are
essentially stationary for times much lon?er than the time required for the
collection of electrons at the gate (107! ® seconds). The last term of the
equations represents the loss of electrons and holes due to recombination.
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Figure 4a. At Time Equal 0 Figure 4b. At Later Times
Figure 4. Charge Movement With Time

Unfortunately, equations 4 and 5 are coupled differential equations which
can not be solved analytically using traditional methods of analysis. Thus
Jaffee only solved for approximate solutions by ignoring the recombination term
and then later attempting to reintroduce its effects. However, with the advent
of numerical methods executed by computers, the accurate solution of these
equations and the prediction of the effects of ionizing radiation on the MOSFET
devices is now possible.

The Computer Model.

The model we have used assumes that two concentric cylinders are formed by
the passage of the ion through the SiO7 layer (see figure 4a). One of the
cylinders represents the electron distribution, the other the distribution of
holes. The axis of the two concentric cylinders is taken to be the z axis.

The angle between the z axis and the normal to the SiOz-substrate surface is
6. The electron/hole volume density function is assumed to be gaussian in
the x-y plane and symmetric about the z axis and given by equation 3 *. The
linear energy deposition (and thus the electron-hole linear density) of the ion
is assumed to be constant over the axial length of the cylinder. This
assumption enables the use of a two dimensional solution of the Jaffee Equation
since the electrons will not diffuse along the length of the cylinder. The

only motion in the axial direction is due to the electric field which will be
considered later. The x axis is orthogonal to the cylinder axis and chosen
such that the electric field can be expressed completely by its components in
the x and z directions

Each column is conceptually divided into planes which are perpendicular to
the column axis. Each plane is subdivided into elements of equal area based
upon the choice of Ax and Ay The electron and hole distribution is
evaluated for each element in each time step. These calculated distributions
are representitive of distributions at any similar point along the z axis. The
movement of the cylinders 1s due to diffusion and the applied electric field.
Recombination occurs only where the cylinder of electrons overlaps the cylinder
of holes. Movement in the x direction as a result of the x component of the
electric field moves the cylinders apart and limits the amount of recombination
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that may take place (see figure 4b). Movement in the z direction is due solely
to the z component of the electric field. The electrons remaining in those
portions of the cylinder which no longer overlap the cylinder of containing
holes escape recombination and will be collected at the gate. The number of
electrons collected at the gate is equivalent to the number of holes that
remain trapped in the SiO2 and is called the yield which is represented by:

Ts
Yield = n-(r.t) velocity ds dt (6)
0 Jsurface

In this equation, T¢ is the total amount of time that is required for the two
cylinders to pass each other due to the z component of the electric field.

Tg=__L (7)
u-Ecos?®

where L is the SiO3 thickness and E is the magnitude of the electric field.

For the purposes of this model, it is assumed that all of the holes that
remain in the SiO2 will eventually move to the SiO2-substrate interface and
become trapped there. By experimentally measuring the threshold voltage shift,
the actual number of holes that became trapped at the interface can be measured
with the use of equation 2.

Due to the method in which the code calculates the charge collected, the
model tends to underestimate the number of electrons collected at the gate (and
thus holes that survive) at early times. In most cases, the majority of the
recombinations that do occur happen very rapidly and at times on the order of
107! ® seconds or less. Fortunately, the majority of the charge which is
collected is that portion that survives recombination and remains in the
cylinders after the two columns have separated in the x direction. Thus the
amount of charge collected at early times is generally only a small fraction of
the total charge collected. The exceptions to this are those occasions when
large amounts of recombination occur throughout the time required for
collection of the electrons. Small electric fields and large linear energy
depositions are examples where large amounts of recombinations occur.

The Computer Code.

Previously, attempts to solve the Jaffee equation have utilized explicit
numerical analysis techniques"". The computer method we used to solve the
coupled differential equations for this physical system was the Alternating
Direction Implicit Method (ADI), also known as the Peachman-Rachford
Method®. This method is an improvement over the usual explicit method in
that it is nearly always stable and convergent. The ADI method involves the
solution of a tridiagonal matrix equation which is much simpler and
straightforward than the solution to an implicit method system in two
dimensions.

For the first half cycle, the calculations proceed along the x axis with
the finite elements being implicit in the x direction and explicit in the y
direction. This results in the following expression for the electron volume
density which is a discrete version of equation 5:
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k+1 : K+1 k+1
DAt - uEAt Inj-q; - | DAt + 1 |nj; +| DAt + PE At |njeqj
2(Ax)?  4Ax (Ax)? 2(Ax)? ~ 4Ax
k 1k k
= -|_DAt_[njj-1 +| DAt + alt -1 Inj; - | DAt [njj+q (8)
2(Ax)? (Ax)? 2 2(Ax)?

During the second half cycle, the calculations proceed along the y axis with
the finite elements being explicit in the x direction and implicit in the y
direction. This results in the following expression:

- k+1 k+1 k+1
DAt |n__ - | DAt +1{n_. + | DAt In_.
| 2(B%) -1 (Bx) 2 L 2(8x) 3| W+

- K k K
= -] DAt - PEAt In _  + | DAt + oAt - 1in,. - | DAt + uEAt|n. .. (9)
2802 “abx | T[22 L 2(Ax)2 " abx | "tV

it should be recognized that there is a similar set of equations for the hole
density with a reversed sign on the drift term which is solved similtaneously.

The advantage of the ADI method should become clear at this point. Each of
the matrix equations that require solution are tridiagonal and may be
efficiently solved by LU decomposition’. The program begins by calculating
the initial cell centered density of electrons and holes for each of the
cells. The lower and upper matrix elements are calculated for the initial time
element. The main cycling routine consists of the calculation of the known
values of equation 8 and the solution of the equation for one row in the x
direction. After solving for each of the rows in the x direction, the routine
will perform a similar set of calculations based upon equation 9 progressing
through each column in the y direction. There being no component of the
electric field in the y direction, the problem is symmetric across the x axis
and only a half cylinder need actually be calculated.

At the end of each time step the number of electrons that are collected at
the gate is calculated. The number collected is related to the portion of the
electron cylinder which no longer overlaps the hole cylinder. That portion of
the cylinder is indicated in figure 4b. The length of this cylinder element is
the product of the electric field along the z axis, the electron mobility in
silicon dioxide, and the time element dt. Thus the number of electrons
arriving at the gate (and thus the number of holes remaining trapped in the
SiO3) during any time period dt is the total number of electrons in the
portion of the cylinder representing the non-recombined electrons which is
found by:

Yield = Ii'Ii; n(i,j) (AxAy ) (element thickness) (10)
The process is considered complete when the recombination rate for any one step

is less than .05 percent of the total number of electrons remaining. At this
point, the solution assumes that no more recombination will occur and all of
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the electrons that currently remain in the column will be collected at the
gate. The ratio of the number of holes that survive to the total number of
electron—hole pairs created is called the fractional yield.

Tha.valuss used in this analysis for the various constants are given
below:

electron mobility u- = 40 cm?/\V-s

hole mobility g+ = 1075 cm2/V-s
recombination coefficient « = 1.88 x 10" % cm?/s
diffusion coefficient D- = 0.261 cm?/s
diffusion coefficient Dy =65x 10"% cm?/s

column width b=35nm

The thickness of the SiO2 layer, electric field strength, angle of incidence

and linear density of electron-hole pairs are considered to be variables in the
program and are required input. As the program cycles, the electron and hole
volume densities along the x axis are plotted for each cycle on the screen.
While this plotting does slow the program, it is a useful tool in understanding
the physics of what is happening inside the cylinders. The final output of the
program is a recapitulaton of the initial parameters, the fractional yield and
the change in threshold voltage per particle.

Results and Analysis.

3.5

Threshold Voltage Shift (Volts)

104 10° u;ﬂ 11;7 mjg 1;9 1;3“'

Imtial Linear~ Density of Electron-Hole Pairs (#/cm)

Figure 5. Threshold Voltage Shift vs Initial Linear Pair Density.

Figure 5 is a plot of the predicted threshold voltage shift vs the initial
electron-hole linear density (and thus the initial linear energy density). The
plot is made for particles impacting at an angle of incidence of 45 degrees on
a device with a 350 nm oxide layer under a 5 volt gate voltage (E = 1.4 MV/cm).
A dose of 1 krad is assumed for all cases. Note that while the energy
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deposited is constant, the damage done varies considerably with the initial
linear energy density. This implies that while the high energy, extremely
heavy ions in cosmic rays (for example iron) will deposit large amounts of
energy in the device, the damage due to ionization effects from these ions will
be small. This is because their high linear energy density leads to-large
amounts of recombination.

5 r 107 alactrons/cm

Fractional Yield

108 electrons/cm

109 alactrons/cm

n Il L . 'l L J
0 15 30 45 60 75 80

Angle of Incidenca

Figure 6. Fractional Yield vs The Angle of Incidence
For Various Initial Energy Densities.

Figure 6 is a plot of the fractional yield vs the angle of incidence for
various initial electron-hole linear densities. The plot is made for a device
with a 350 nm oxide layer under a 5 voit gate voitage (E = 1.4 MV/cm). This
graph helps to explain the observed dependence of the threshold voltage shift
with angle for protons which was observed by Tallon®. He also observed that
for low proton energies (which have a high linear energy density) the variation
in threshold voltage shift with angle between 45 degrees and 80 degrees became

variation was clear. The computer model also predicts such behavior as a
result of the high initial density of electron—-hole pairs. At high densities,

the initial recombination rate is so high that the rate of separation becomes
meaningless. This model demonstrates that the effect is not caused by a
buildup of charge on the SiO2-substrate interface which reduces the effective
electric field as Tallon believed but is a consequence of the high linear
energy deposition of the particles.

Preliminary Experimental Verification.

Several n-channel devices were irradiated with protons at the USMA Particle
Accelerator Laboratory. The gate size of each device was 3 um by 8 um with
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an oxide thickness of approximately 960 nm. The devices were bombarded with
either a diffuse 340 keV or 500 keV proton beam. The proton energies are known
with less than 1 percent uncertainty based upon the (p, y) resonances of
boron (163.1 keV) and fluorine (340.6 keV). Proton flux was measured before
each irradiation by passing the beam through collimators of known area and
collecting the charge deposited with a current integrator. Each device was
irradiated with a dose of 500 krads. This was done by rotating the device into
the beam for a calculated amount of time based upon the desired dose, proton
flux and device size, and then rotating it out of the beam. The threshold
voltage for each device was measured before and after irradiation by
graphically plotting the I-V curve for the device. The gate voltage (Vgs)
was maintained at 5 volts during irradiation and until the i-V curve could be
measured.

The linear energy density is found from the stopping power equation for
protons ' ®:

9E - 4978 Shigh Stow  kev/um (11)
ax Shigh * Siow

Siow = 4.7 E®*3
Shigh = (3329/€)Lnl 1 + (550/EY + (0.01321 E)]
Where E is then energy of the bombarding proton in keV. The energy

required to create one electron-hole pair is 18 eV''. Thus the stopping
power is directly related to the linear density of electron or holes.
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=
o
: .4 =
2
E 500 keV Protons
2y A3 3
—+ 340 keV Protons
A
u 3 3 I L i p—
1] 15 30 45 60 75 80

ANGLE OF INCIDENCE

Figure 7. Comparison of Computer Predictions and Test Samples
For Proton Energies of 340 keV and 500 keV
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The results of the test devices are shown in figure 7. Because of the
uncertainties associated with the magnitude of the dose, the uncertainty in the
fractional yield is quite high. However, the results do indicate that further
and more accurate testing is warranted to verify the predictions made above.

Conclusion.

One of the most interesting results of this work is that while radiation
damage is commonly measured in rads (energy deposited), our results show that
the amount of damage produced by one rad of radiation can vary greatly (as
measured by the threshold voltage shift). The damage done to a device is a
complex function of many of the physical parameters, most notably the angle of
incidence and the magnitude of the applied electric field, as well as the rate
of linear energy deposition {stopping power) of the incident particle.

A logical extension of this work is that the damage done by electrons (thus
x rays and gamma rays as well) should be considerably greater than the damage
done by an ion which deposits the same amount of energy. The high
recombination rate observed in this study is the result of the high electron-
hole density along the path of the ion. Since electrons lose their initial
direction and tend to have a much more diffuse energy deposition'?, the
recombination rate will be much less and the damage will be greater for the
same amount of energy deposited.

There are some improvements yet to be made on the computer code. Charge
would be better modeled as being stripped off in an elliptically shaped
cylinder with a thickness based upon the total electric field strength rather
than only the z component. More precise measurements on electronic devices
must be made to further confirm or disprove the details of the model. The
validity of the assumption that all of the holes left in the SiO2 layer will
travel to the SiOp-substrate interface is uncertain. Prompt measurements of
the threshold voltage shifts after irradiation and extending over time should

enable measurement of the amount of recombination that occurs as the holes move

to the interface.
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HF GROUND CONSTANT MEASUREMENTS AT THE LAWRENCE LIVERMORE
NATIONAL LABORATORY (LLNL) FIELD SITE

By

George H. Hagn
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1611 North Kent Street
Arlington, Virginia 22209

ABSTRACT

The SRI International open-wire-line (OWL) kit was used 3-5 July 1987
to measure the HF ground constants at the Lawrence Livermore National
Laboratory (LLNL) field site in Livermore, CA. Data were acquired at 11
locations about 250 ft west of the LLNL facility fence in the vicinity
where a longwire and broadband dipole were erected in August 1987 for
making impedance measurements for the purpose of validating the Numerical
Electromagnetics Code (NEC). An additional location was measured to the
north of the antenna site where field strength data were to be taken.
Several samples were taken at most locations. Best estimates of the con-
ductivity, relative permittivity (relative dielectric constant), dissipa-
tion factor and skin depth were computed as the median values versus
frequency for 2 through 30 MHz. Data were acquired at 1-MHz intervals from
2 MHz through 8 MHz, and the interval was increased to 2 MHz from 8 MHz to
30 MHz. The maximum and minimum values were also determined as bounds on
the conductivity and relative permittivity values for use in parameter
sensitivity analyses. The conductivity values for the relatively dry,
densely packed 1ight brown clay fell betwqfn those typical of pastoral land
and rich agricultural land at about 4x10™° S/m. The relative permittivity
values exhibited more variation with frequency. At the low end of the HF
band, the relative permittivity values exceeded those of a non-flooded rice
paddy (e.g., about 150 at 2 MHz); whereas, at the high end of the band, the
relative permittivity approximated values typical of rich agricultural land
(about 17 at 30 MHz). The skin depth varied from about 2 m at 2 MHz to 0.7
m at 30 MHz. The dissipation factor was about 1.5, so the soil acted
almost as a semiconductor rather than as a lossy conductor or a lossy
dielectric. Both the relative dielectric constant and conductivity are
important in modeling antennas and propagation over the ground at the LLNL
site. Data from nearby wells indicated that the water table was at least
20 m below the surface. Therefore, a one-layer slab model adequately
described the ground at this site for HF down to the skin depth.
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1.  INTRODUCTION

The Lawrence Livermore National Laboratory (LLNL) has developed a

[1-3]

for modeling antenna characteristics over real ground. The model requires

method-of-moments model, the Numerical Electromagnetics Code (NEC),

the specification of the wire geometry and the electrical characteristics
of the ground over wﬁich the antenna is installed. The most recent
version, NEC-3,[3] which handles wires that penetrate the earth's surface,
has had only limited validation with field measurements. The antenna
measurement possibilities include:

Input impedance;

Directivity pattern shape;

Absolute gain; and,

Ground-wave field strength versus distance from the
antenna.

During a previous group of studies, the first three quantities were
modeled with NEC-3 and measured in the HF band by SRI International (SRI)
for a 7.5-ft vertical monopole with sixteen 40-ft radials buried 7 inches
at several sites with different soi1s.[4'6] The NEC model predictions
compared favorably with the measurements when measured ground conductivity

[7]

These values of "ground constants" were Ebtaiged using the SRI open-wire-
8-10

and permittivity (i.e., relative dielectric constant) values were used.
line (OWL) kit designed for this purpose.

The LLNL has planned additional NEC validation work at their field
site near Livermore, CA, using a broadband dipole and a sloping long-
(1] Input impedance and ground-wave field strength values will be
measured in the HF band (2-30 MHz). SRI was asked to measure the ground
constants in the HF band at the LLNL site for use by LLNL in this valida-
tion effort.[lz] This paper describes the SRI measurements and presents

wire,

the ground constants results. The NEC validation results are presented in
Ref. 11.
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2. DESCRIPTION OF EQUIPMENT

The SRI open-wire line (OWL) ground constants kit consists of a set of
0.5-inch diameter aluminum probes of various lengths from 3 inches to 36
inches, a probe adapter, an HP 4193A Vector Impedance Meter, an HP85B
computer, and appropriate software. The kit is powered from generators,
and a metered variac is used to maintain the correct voltage at the instru-
mentation when a long power cord is used. A power-line filter with spike
suppression is sometimes used. The kit is shown schematically in Figure
2.1, and it is shown in use at Livermore in Figure 2.2.

The SRI OWL kit semiautomatically measures the soil conductivity and
relative permittivity vs frequency in the band 0.5 to 110 MHz. The
frequency spacing for measurements between 0.5 and 2 MHz is 0.5 MHz, from 2
MHz to 8 MHz the spacing is 1 MHz, and from 8 to 30 MHz the spacing is 2
MHz. A 4-MHz spacing is used from 30 MHz to 110 MHz.

3. SAMPLING STRATEGY AND MEASUREMENT SITE AND LOCATION DESCRIPTIONS

3.1 Sampling Strategy

The general sampling strategy evolved from consideration of the
following:

(] Sampling Locations:

Proposed antenna locations;

Proposed field strength measurement location;

Land accessability;

Possibility of smalli-scale lateral inhomogeneities;
Availability of water well data; and,

Surface vegetation differences.

] Sample Depths:

- The need for observing variations (if any) in soil
electrical properties with depth; and,

- The depth to which it was possible to penetrate the
soil and retrieve the probes.
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b) Data Acquisition

Figure 2.2 SRI OWL KIT IN USE AT LIVERMORE
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& Selection of Test Frequencies:

- Band in which the test antennas operate; and,

- Added frequencies to mitigate possible interference
and facilitate interpolation.

] Choice of Measurement Day:

Antenna setup schedule;
Personnel availability; and,
- Suitable weather conditions.

Mr. Al Christman of Ohio University selected the proposed antenna
locations and the radial for the field strength measurements. Some land
was not available for field strength measurements due to use by livestock.
Several water wells had been drilled for test purposes,[l3]
tion was selected to be near a well. At a given general location, several

and one loca-

sample points usually were identified within about 1 m of each other to
check for small-scale variations. Differences (if any) that might relate
to changes in surface vegetation were also a consideration.

Probe lengths up to 36 inches were used; however, it was not possible
to get the longest probes into the ground (or back out of the ground) at
every location.

The basic test frequencies were in the HF band (defined for the OWL
measurements as 2-30 MHz). As previously noted, these data were taken at a
1-MHz interval from 2-8 MHz and at 2-MHz intervals from 8 MHz to 30 MHz.
This provided enough samples on different frequencies so that data taken on
interference- contaminated frequencies (if any) could be discarded without
impacting the ability to estimate the ground constant values versus
frequency.

The measurement day was a possible variable. Data were taken on three
consecutive days (3-5 July 1987) in order to sample all the locations
selected. No locations were repeated on different days at this site due to
the extreme difficulty in getting the probes into and out of the ground.
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There was no rain during the test period, and it had not rained for some
weeks before. Therefore, no significant change in ground constant values
with measurement day was expected.

At a given location (an area within a radius of several meters of the
stake marking the location), samples were taken at several sample points
within about 1 m of each other in order to check the small-scale varia-
tions. The 3-inch probe spacing was used, and this approximates a 300-ohm
line. An alphanumeric coding system was used to identify the Tlocation
number, probe configuration, and sample number at that Tlocation. For
example, L1P3S2 indicates Location 1, a probe spacing of 3 inches and
Sample 2. Two identical OWL kits were used at most of the locations, and
the data from Kit 1 was assigned odd sample numbers and Kit 2 was assigned
even sample numbers.

3.2 General Site Description

The LLNL Livermore, CA test site was located to the west of the
scientific compound about 250 feet from the outer security fence. The land
is quite flat, and it is covered with dry grass about 1-2 feet high (see
Figure 3.1). Occasional green thistles are present and a few small leaf-
less bushes about 3-4 feet high were the tallest vegetation on the site.
The soil was a light brown clay containing occasional small rocks.

3.3 Specific Measurement Locations

Twelve measurement locations were selected (see Figure 3.2). Loca-
tions 1, 2 and 3 represent the feedpoint, center and termination point
where the longwire antenna was erected. Locations 4, 5, 6 and 7 are 25 ft
away from the longwire, 75 ft from its center, and Locations 8, 9, 10 and
11 are 75 ft from the longwire at 25 ft from its center. Locations 4
through 11 are symmetrically located around Location 2 to document the area
where the broadband dipole was erected. Location 12 was along the line of
the longwire beyond Location 3 at the end of the lab fence. It was
selected to be along a radial where the field strength data would be taken.
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A1l of the locations appeared very similar to the eye. The 0.5-inch
steel rod used to create the hole for the aluminum OWL probe was very dif-
ficult to drive into the dry ground using a sledge hammer (see Figure 3.3).
Frequently the pointed steel rod would only penetrate less than 1 inch per
hit, although it was somewhat easier to drive at Locations 1 (beside a road
near the well), 4 and 8.

There was a band about 10 yards wide with no vegetation at Location 5.
The ground at this site was very hard, and 3 driving rods were broken try-
ing to drive into it. At the other locations, it was necessary to clear
the vegetation prior to making the holes for the probes (see Figure 3.4
taken at Location 12). The vegetation at Location 8 consisted of dried
grasses 1-2 ft high, and several 3- to 4-ft bushes (the tallest at the
site) were nearby. Several green thistles about 3 ft high were near Loca-
tion 12, and they were the only green vegetation at the entire site (exclu-
sive of trees along the security fence).

4, SOIL DESCRIPTION

The soil was highly compacted light brown clay with some occasional
small (1-2 inch) smooth rocks. The surface moisture content, temperature
and pH were measured at each location. These results are summarized in
Table 4.1. Surface soil samples were taken at Locations 1, 2 and 3 for use
in estimating soil moisture content by measuring the percent of change in
weight before and after heating, but the ground was so hard that it was not
practical with only a pick and shovel to take samples at different depths
except at Location 1 (where additional samples were taken at 1 ft and 2
ft). Regretably, these soil samples were lost when the sample pans melted
in the microwave oven. It was observed that the samples were successively
more moist as the sample depth increased. The sealed pan for the sample
taken at 2 ft had condensation on the inside several days later. There-
fore, it is assumed that there was a gradient of moisture content which
increased with depth.
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Figure 3.3 DRIVING STEEL AT LIVERMORE
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Figure 3.4 CLEARING THE VEGETATION AT LOCATION 12
(With Supervision from Advisors)
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TABLE 4.1

Summary of Soil Measurements at LLNL Site

Location + Temp.
Number M.C. (7C) pH Comments
1 1 24.5 7.0 Soil less compacted
2 1 23.0 6.9 Soil very compacted
3 1 22.0 6.9
4 1 28.5 7.0  Soil less compacted
5 1 27.0 7.0 Soil very compacted
6 1 28.0 7.0
7 1 28.5 7.0
8 1 28.0 7.0 Soil less compacted
9 1 28.0 7.0
10 1 30.0 7.0
11 1 27.5 7.0
12 1 24,0 7.0 Soil very compacted

*
M.C. = Moisture Content (on a scale from 1 = dry to 8 = wet)

The water table can cause a very significant change in effective
ground constants if it occurs closer to the surface than a skin depth at
the radio frequency of interest. Fortunately, the LLNL site has been
recently surveyed using the test wells shown in Figure 3.2.[13] The water
table was between 71 and 81 feet below the surface at the test site. The
water depth, measured on 14-16 April 1987, is given in parentheses beside
each test well shown on the map of ground constant measurement locations

(Figure 3.2).
5. DATA REDUCTION AND ANALYSIS

5.1 Data Reduction

Data were taken at 12 locations. The number of samples per location
ranged from one to four. Thirty-one samples were taken in all, but two
were discarded due to excessive separation of the soil from the probes near
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the surface or the inability to get the probes completely into the ground
(see Table 5.1). OWL probe lengths up to 36 inches were used at 8
locations, and lengths up to 24 inches were used at 4 locations due to the
difficulty in probe insertion and extraction. The data were recorded on
thermal printer paper and on magnetic cassettes using the HP 85B. Figure
5.1 is an example of the raw data for the 3- and 6-inch probe lengths, and
Figure 5.2 shows the reduced data for these samples.

TABLE 5.1

Summary of Data Samples

Location Number of Longest Probe
Number Samples (Inches)
1 4 36
2 4 36
3 2 36
4 1 24
5 2 36
6 4 36
7 3 36
8 1 24
9 1 24
10 2 36
11 2 24
12 3 36

There was a considerable spread in the measured results for a given
frequency, so a statistical data reduction was required.

5.2 Data Analysis

Three types of estimates of the ground constants versus frequency are
required for subsequent use by LLNL in the NEC validation:

Estimate for sloping longwire;
Estimate for broadband dipole; and,
Estimate for field strength.

144




SITE NAME LIV
LOCATION NUMBER ]
SAMPLE NUMBER 1
DATE e7-85-87
TIME (HOURS) 16.36
OPERARTOR'S ID GHH
PROBE CONFIG NG. 3
FROBE K17 NUMEER 1
3 INCH PROBES IN GROUND
FRE@. ~Z2- 8 Er SD
2.8 1856 =-42.7 45 7.32
3.9 1431 -58.8 37 5.59
4.6 1197 -49 .9 34 4.15
S.e 1673 =-52.3 28 3.83
.6 934 -51.7 2¢& 3.11
7.0 8671 -51.0 25 2.63
8 81 -=-52.4 24 2.45
19 799 -39.@ 33 .97
12 731 =-62.2 14 2.?6
14 6280 -5B.0 15 2.09
16 $z25 -€2.7 14 2.19
18 47S -€6.2 14 1.72
2a 440 =61 .6 12 1.62
22 460 -59 .6 14 1.39
24 375 =55.7 14 1.9
26 364 =532 .3 15 .83
28 35z <-5;.9 16 .73
30 363 =49 4 1€ .55
€ INCH PROBES IN GROUND
FREQ 727 8 Er sD
2.0 7&EF =485 .1 85 7.2%
3.0 S5 -47 .4 48 5.080
4.0 493 -42 2 48 3.1
S.@ 467 =-42.2 40 2.73
6.0 48B4 -4@.¢6 41 2.15
7.0 4198 -38.7 36 1.88
& 355 -36.6 39 1.432
19 471 -46.6 18 2. 8s
12 3ée -51.4 18 2.69
14 388 -53.6 17 1.99
16 2% =-57.8 i1é 2.84
i8 23z -59.8 18 1.42
206 212 -=51.3 17 1.34
22 208 -4€.7 17 1.083
24 159 <=43.5 1& .84
2¢ 283 =-42.6 16 .76
2t 216 -41. & 15 .69
30 218 -46.8 12 .83
Figure 5.1 EXAMPLE OF RAW DATA
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LIV

LOCATION & S
SAMPLE # 1
PROBE CONFIGURATION 3 in.
PRUBE LENGTH 3 in.

FREG Er COND. D.F s.0.
2 45 5.39E-8063 1.68 v.32
3 37 6.26E-003 1.04 S.99
4 34 8.26E-002 1.11 4.15
S 28 8.11E-883 1.04 3.83
6 28 9.95E-603 1.88 3.11
7 26 1.15E-002 1.15 2.63
6 24 1.19E-0€2 1.16 2.45

10 33 4.17E-9002 2.26 .97
12 14 7 .64E-003 .84 2.76
14 1S 1 . 06E-802 .92 2.89
16 14 9.53E-803 .79 2.19
18 14 1.24E-082 .83 1.72
20 13 1.27E-802 .87 1.63
22 14 1 .5S3E-802 .92 1.39
24 14 2.65c-602 1.67 1.89
26 15 2.88E-862 1.29 .83
28 16 3.43E-0862 1.41 .71
39 16 4 .73E-802 1.80 .99
LIV
LOCATION & S
SAMPLE % |

PROBE CONFIGURATION 3 in.
PROBE LENGTH € in,

FREQ. Er COND. D.F. $.D.
2 55 5.90E-0063 .97 7.26
3 48 38.11E-003 1,01 .00
4 4¢ { ,31E-082 1.23 3.18
S 40 1.40E-902 1.26 2.73
g 41 1.82E-962 1.34 2.15
8

3€ 2.10E-082 1,49 1.80
3¢ 2,78E-802 1.61 1.43

10 18 1,.25E-8082 1,23 2.06
12 1& 1.18E-002 .99 2.89
14 17 1,159E-082 .90 1,99
1é 16 1.12E-002 7?77 2.04
18 18 1,72E-002 .97 1.42
20 17 1,78E-8082 .95 1.34
22 17 2.41E-9082 1,13 1.03
24 18 3.65E-0082 .30 .84
26 16 3.29E-802 1,39 .76
28 15 3.54E-062 1,51 .69
30 12 2.50E-002 1,29 .83

Figure 52 EXAMPLE OF REDUCED DATA
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The estimate for the sloping longwire was made by computing the median
values for each frequency from Locations 1 through 7. The estimate for the
broadband dipole was obtained by computing the comparable median values
from Locations 2 and 4 through 11. The estimate for the field strength was
obtained by computing the site median values using data from all 12 loca-
tions. For each of these types of estimates, the appropriate data (taken
as a set) were used to perform the following steps:

e Compute the median values of conductivity and relative
dielectric constant for each measurement frequency used;

e Compute median dissipation factor and skin depth using
the median relative dielectric constant and conduc-
tivity; and,

e Tabulate and plot the results vs frequency.
6. DISCUSSION OF RESULTS
6.1 Results

The results for Locations 1-7, pertinent to the longwire, are given in
Table 6.1. The upper and lower bounds (i.e., the maximum and minimum
observed values) are given for the conductivity and relative dielectric

2 S/m across

constant. The median conductivity was approximately 4 X 10~
the band; whereas, the median relative dielectric constant decreased from
182 at 2 MHz to 17 at 30 MHz. The upper and lower bounds were separated by
about one order of magnitude for the conductivity and about half that
separation was typical for the relative dielectric constant. The dissipa-
tion factor was about 1.5 and the skin depth varied from about 1.5 m at 2

MHz down to about 0.7 m at 30 MHz.

Comparable data were obtained for the area where the broadband dipole
is to be erected (Locations 2, 4-11). These data are summarized in Table
6.2 for the conductivity and relative dielectric constant. The overall
site median values (Locations 1-12) for these same parameters are tabulated
in Table 6.3.
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TABLE 6.1

Summary of Data for Longwire Antenna
(Locations 1 through 7)

Frequency Best Estimate Lower Bound Upper Bound
(MHz) € o (S/m) € o (S/m) € o (S/m)
2 182 4.72X 10-2 82  1.16 X 10-2 455  1.56 X 10-
3 141 7.10X10-2 71  2.15 X 10-2 371  2.04 X 10-1
4 92  6.09 X 10-2 73  2.55X 10-2 328  2.73 X 10-!
5 71 3.93 X 10-2 52  2.10 X 10-2 301  3.36 X 10-)
6 71 4.98 X 10-2 49  2.51 X 10-2 293  4.35 X 10-!
7 62  5.45 X 10-2 38  2.62 X 10-2 217  3.06 X 10-'
8 51 5.00 X 10-2 22  2.67 X 10-2 213  3.68 X 10-!
10 46 5.18 X 10-2 28  2.01 X 10-2 78  1.12 X 10-'
12 39  4.32X10-2 19 1.56 X 10-2 58  8.38 X 10-2
14 31 3.67X10-2 19 1.59X10-2 54  9.59 X 10-2
16 30 3.54X10-2 19 1.87 X 10-2 52  1.04 X 10-!
18 24  3.09X10-2 17 1.91 X 10-2 46  8.83 X 10-2
20 23 3.11X10-2 16 2.08 X 102 44  9.32 X 10-2
22 22 3.80X10-2 14 1.03X10-2 28  5.55 X 10-2
24 20 3.91X10-2 12 1.53X10-2 31  6.80 X 10-2
26 20 4.48X10-2 10 1.32X10-2 27 6.43 X 10-2
28 18  4.45X10-2 10 1.22X10-2 26  6.98 X 10-2
30 17 4.33X102 9 1.26 X 10-2 24 7.23 X 10-2
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Summary of Data Broadband Dipole

TABLE 6.2

(Locations 2, 4 through 11)

Frequency Best Estimate Lower Bound Upper Bound
(MHz) €. o (S/m) € o (S/m) € g (S/m)
2 137  2.72X10-2 54  1.16 X 10-2 314  9.22 X 10-2
3 112 3.52X10-2 49 1.00 X 10-2 230 1.10 X 10
4 87 3.73X10-2 45 1.17 X 10-2 266  2.14 X 107!
5 71 3.93X10-2 42 1.78 X 10-2 189  1.63 X 10}
6 63 3.49 X 10-2 33  1.01 X 10-2 205  2.73 X 107}
7 57  4.46 X 10-2 28  1.27 X 10-2 163  2.36 X 10"}
8 48 3.70 X 10-2 22 1.47 X 10-2 150  2.48 X 107}
10 45  4.66 X 10-2 22 118X 10-2 78 1.12 X 107}
12 39 4.37 X10-2 19  1.46 X 10-2 58  8.38 X 10-2
14 32 4.26 X10-2 19 1.81 X 10-2 54  9.59 X 10-2
16 32 4.55X10-2 19 1.87 X 10-2 52  1.04 X 107}
18 23 2.99X10-2 17 1.91 X 10-2 46  8.83 X 10-2
20 22 3.11X10-2 16 2.08 X 10-2 44  9.32 X 10-2
22 20 3.41X10-2 10 1.01 X 10-2 28  5.55 X 10-2
24 22  4.80 X 10-2 11  1.40 X 10-2 31  7.09 X 10-2
26 20 5.05X10-2 10 1.28 X 10-2 27  6.53 X 10-2
28 18 4.26 X102 9 1.22X10-2 26  6.98 X 10-2
30 17 3.80X10-2 9 1.26 X 10-2 24  6.67 X 10-2
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TABLE 6.3

Summary of Data for Field Strength Tests
(Locations 1 through 12)

Frequency Best Estimate Lower Bound Upper Bound
(MHz) € o (S/m) € o (s/m) € o (S/m)
2 153 3.55 X 10-2 54  6.37 X 10-> 455  1.56 X 107}
3 129  4.18 X 10-2 49  1.00 X 10-2 371  2.04 X 10}
4 109  4.74 X 10-2 45  1.17 X 10-2 328  2.73 X 107}
5 77 3.82X10-2 42 1.78 X 10-2 301  3.36 X 10!
6 60 3.41 X10-2 33  1.01 X 10-2 293  4.35 X 107!
7 56 4.43 X 10-2 28 1.27 X 10-2 217  3.06 X 10}
8 48  3.91 X 10-2 22  1.47 X 10-2 213  3.68 X 107!
10 45 4.3, X 10-2 22 1.18X10-2 78  1.12 X 107}
12 39  4.35X10-2 19 1.46 X 10-2 58  8.38 X 10-2
14 32 4.10X10-2 19 1.59 X 10-2 54  9.59 X 10-2
16 29 3.3 X10-2 19 1.87 X 10-2 52  1.04 X 107}
18 23 3.03X10-2 17 1.91 X 10-2 46  8.83 X 10-2
20 23  3.07X10-2 16 2.08 X 10-2 44  9.32 X 10-2
22 21 3.59X10-2 10 1.01 X 10-2 28  5.55 X 10-2
24 22 4.14X10-2 11  1.40 X 10-2 31  7.09 X 10-2
26 20 4.61 X 10-2 10 1.28 X 10-2 27  6.53 X 10-2
28 18 4.36 X 10-2 9 1.22X10-2 26  6.98 X 10-2
30 17 3.96 X 10-2 9 1.26 X 10-2 24  7.23 X 10-2
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6.2 Horizontal Homogeneity

There are two scales of horizontal homogeneity to consider: varia-
tions among samples taken on a given frequency with the probes inserted
within about 1 m of each other at a given location, and variations with
location across the entire antenna field. The small-scale variations
seemed rather large (see the bounds given in Appendix A of Ref. 12 for the
data on a given frequency at each location), but the small-scale variation
seemed to decrease with increasing measurement frequency. The median
values for each location showed relatively 1ittle variation (for this type
of data) across the entire antenna field (with a few minor exceptions), as
discussed below.

The median data were quite similar for the three groupings. This is
to be expected because the data sets were not mutually exclusive. The
horizontal (lateral) homogeneity across the entire site can be considered
by focussing on a few selected frequencies. Table 6.4 summarizes the con-
ductivity and relative dielectric constants data for 7, 14 and 30 MHz.

TABLE 6.4
Summary of Median Data for 7, 14 and 30 MHz

Location 7 MHz 14 MHz 30 MHz

M. e (S/m) e, S(S/m) = 3S/m)
1 55  4.35 X 1072 23 1.86 X 1072 16 4,12 x 1072
- -2 - -2 - . -2
2 62 5.77 X 1075 32 4.31 X 1075 17 4.33 X 1075
3 63  5.56 X 1075 41 5.45 X 1075 21 5.56 X 1075
4 54 4.00 X 1075 31 3.61 X 1075 12 2.42 X 1075
5 67  5.45 X 107 39 4.84 X 1075 22 5.48 X 1075
6 50  3.38 X 107 29 2.77 X 1075 16 3.18 X 1075
7 66  5.91 X 1075 31 3.67 X 1075 21 5.54 X 1075
8 54 4.46 X 1075 31 3.96 X 1005 14 3.59 X 1075
9 a1 2.10 X 1075 33 4.2 X 1075 11 2.07 X 1075
10 59 5.02 X 1075 37 4.91 X 1075 16 3.80 X 1075
11 57 4.40 X 1075 ¥ 424 X 1075 21 5.57 X 1075

12 37 1.99 X 10 22 1.80 X 10 17 3.62 X 10
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These frequencies are approximately octavely related across the HF band.
At 7 MHz, the location median values are very similar except at Locations 9
and 12. At each of these locations there was some difficulty with the soil
breaking away from the top of the probe holes as the holes were being made.
This added air may have caused the OWL kit readings to be biased to the low
side. The data reduction equétions assume that the soil is touching the
rods for their full length. The suspicion that the air holes caused
reduced readings was verified by using the same set of probe holes twice.
The second readings, taken in the enlarged holes (with more air), gave
lower values. The problem caused by the dry brittle soil was not unique to
these two locations, but it was more pronounced there. Excluding these two
locations, the conductivity values varied between 3.38 X 10'2 S/m and 5.91
X 10'2 S/m, and the relative dielectric constant values varied between 50
and 67. At 14 MHz, the data from Locations 1 and 12 were low relative to
the other locations. Excluding these two locations, the conductivity
values varied from 2.77 X 1072 S/m to 5.45 X 1072 S/m, and the relative
dielectric constant values varied from 29 to 41. At 30 MHz, the data at
Locations 4 and 9 were lower for both the conductivity and relative
dielectric constant. At Location 9, the problem of air around the probes
was probably responsible for the values being lower. At Location 4, the
surface soil (pertinent to the 9-inch probes used to obtain the data at 30
MHz) was much less compacted, and this resulted in the lower values. As
noted in Table 4.1, the soil was less compacted at Locations 1, 4 and 8.
The Location 8 data for all three frequencies seems to be very similar to
the data from the other locations even though the steel rods were somewhat
easier to drive at this location.

The conclusion is that the site is relatively horizontally homogeneous
from a statistical standpoint--with the possible exception of Locations 9

and 12,

6.3 Vertical Homogeneity

As mentioned in Section 3, there was a vertical gradient of moisture
content with the soil getting more moist with increasing depth down to 2 or
3 ft. The water table was at 71 to 81 feet below the surface. Therefore,
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é it was not a factor since the skin depth was only about 3 to 6 feet. Next,
t the variation of the relative dielectric constant (most closely correlated
with volumetric moisture content)[14] with depth at the same- location is
considered by comparing the results obtained for several probe lengths on

]

i

i the same frequency at Location 2.

; The relative dielectric constant data for Location 2 are given in
‘ Table 6.5 for the seven probe lengths for the following frequencies: 2, 4,
i 7, 14 and 30 MHz. These data show that there is a variation of relative

TABLE 6.5

Examples of Variation of Relative Dielectric Constant
with Depth for Selected Samples and Frequencies at Location 2

Loc. Sample Freq. Probe Length (inches)

No. No. (MHz) 3 6 5 12 18 24 36

2 1 2 32 59 59 84 138 95 141
2 1 4 24 45 45 74 99 85 i.d.*
2 1 7 23 63 47 65 53 55 i.d.
2 1 14 12 15 17 22 30 39 i.d.
2 1 30 167 17 12 17 i.d. i.d. i.d.
2 2 2 20 37 45 128 212 266 197
2 2 4 16 28 35 73 114 176 169
2 2 7 14 25 24 40 71 94 1:d.
2 2 14 11 13 16 27 54 i.d. i.d.
2 2 30 10 9 11 20 i.d. i.d. i.d.
2 3 2 22 97 72 100 63 76 89
2 3 4 17 64 74 1267 68 81 i.d.
2 3 7 16 80 76 101 36 38 i.d.
2 3 14 10 18 18 22 18 19 i.d.
2 3 30 16? 16 12 15 18 i.d. i.d.
2 4 2 25 29 65 51 104 92 250
2 4 4 18 22 4] 41 54 79 i.d.
2 4 7 15 20 32 35 34 62 i.d.
2 4 14 11 12 16 17 26 45 i.d.
2 4 30 13? 10 10 11 i.d. i.d. i.d.

* j.d. = invalid data; ? = questionable data.
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dielectric constant with probe depth for a given frequency that generally
increases with increasing probe depth up to 18 or 24 inches, except at 30
MHz where little real variation is apparent. All four samples were
obtained within 2 meters of each other; Samples 1 and 3 (Kit 1) and Samples
2 and 4 (Kit 2) were within 1 meter of each other for a given kit. The
conclusion is that the moisture content and the resulting ground constants
varied considerably over relatively short distances, and that it would be
necessary to sample several times at a given location and use some measure
of central tendency (e.g., the median) to describe the soil as it would be
seen by a passing radio wave with a wavelength in the medium which is
larger than the scale of variation being observed.

6.4 Comparison of Livermore Data with Generic Curves and Data from Other

Sites

In 1980, the author developed some "generic curves" for the ground
constants vs frequency, and they were first published in 1982.[15] These
curves provide estimates of the ground constants for different terrain
categories of the types described in handbooks.[15’17] These curves for
the HF band for conductivity, relative dielectric constant, dissipation
factor and skin depth, are reproduced here (from Ref. 5) as Figures 6.1
through 6.4, respectively. Also shown on these curves are data taken at
other sites as presented and discussed in Ref. 18. The Livermore median
values for all 12 locations are shown on Figures 6.1 through 6.4 to
facilitate the comparison. The closest fit for the Livermore data to the
generic curves is with rich agricultural land. The Livermore data are
almost identical to the results obtained earlier by SRI on a farm near
Delta, UT, where again rich agricultural land seemed an apt descrip-

tion.[4’5]

A useful parameter for NEC modeling is the wavelength in the soil at
the radio frequency of interest. This parameter is needed in order to
determine the number of segments needed for NEC-3 for the wire which has
penetrated the air-ground interface. A set of generic curves for this
parameter were developed recently by Hagn.tlg] using the equations in Table
6 of Ref. 18 or Table 1 of Ref. 19. The curves of wavelength in the soil

154




CONDUCTIVITY - S/m

10 k"'"'T"']—ITT"""IT""'
T b=
o "\\_
S - \\
&4 -
L . Jp—
\“'—L‘LB:-‘:O‘—'C—A-‘-———-—-_—-—
t 4

n ®snev
LB\

L1 IILl_lLll 1 Llllllll 41 )

LS
10" | O N N B D N NN B T N T T U B N N BN TR DA N G BN B N |
2 4 6 8 10 12 14 18 18 20 22 24 28 28 N0
FREQUENCY - MMz
Figure 8.1 EFFECTIVE GROUND CONDUCTIVITY FOR SIX ANTENNA TEST FIELD SITES

VS SRI GENERIC CURVES FOR SELECTED TERRAIN CATAGORIES
166




10
=T T 7T T fJfTrq5rTrrrrrrvy¥7y7yvyryyivmvy7vvr v v 1%
7 & -
. p— —
5 - -
& P -
? - -
- -
1.9 -
104 —
- -
7 - e
. o —
’ p— —
'} p— o
u -
2 - -
t 1.8 -
: ? \
} 2 10 N —
= 7 :
s \ -
] \ -
4 \ -
e s \ -
E NN
: :s-; RS T -
o
S
-
-
g

10 NI TN I T I DN D DA O U DO B VAN BN AN SN I |
2 4 6 @ 10 12 14 18 18 20

i1 111
22 24 26

Figure 8.2 EFFECTIVE RELATIVE DIELECTRIC CONSTANT FOR SIX ANTENNA TEST FIELD
SITES VS SRI GENERIC CURVES FOR SELECTED TERRAIN CATAGORIES

156




F 10

UL LA

LS
1

DISSIPATION FACTOR-numeric

=
=1 F
10 lat Deserr, Citieg

o - A0

LS

10 [l L 4 2 3 1 1

I 1
2 4 6 68 10 12 14

167

FREQUENCY - MHz

Figure 8.3 EFFECTIVE GROUND DISSIPATION FACTOR FOR SIX ANTENNA TEST FIELD
SITES VS SRI GENERIC CURVES FOR SELECTED TERRAIN CATAGORIES




il

%1 T 7 |
|
— — o
----_- 1
—
“

e - e -
—
=

|

-

! f— g
L’- —
lo‘ N T DU U I N N N N D N T B D N T NN S R N R N e R e . |

2 4 6 @ 10 12 14 18 18 20 22 24 26 30

FREQUENCY - MHx

Figure 6.4 EFFECTIVE SKIN DEPTH FOR SIX ANTENNA TEST FIELD SITES
VS SRI GENERIC CURVES FOR SELECTED TERRAIN CATAGORIES

168



T T T TR TR TR R e AR

S T T T T TR T TR e

Pa QR NS T Was

et Jaii . i Ll L S b

e i

WAVELENGTH IN SOIL - m

10

LR

-
L]
|

10

LR BRI

I

r
7
LI

- = = Livermore

10

L‘ Illl| Lt 1 iitil llllllLll]ll |

[
o

10 I TN T N N N N N T N U T T T N T N N N T N . |

2 4 B8 68 10 12 14 18 18 20 22 24 26 @28
FREQUENCY - MHz

Figure 6.5 LIVERMORE DATA AND SRI GENERIC CURVES OF
WAVELENGTH IN SOIL VS FREQUENCY FOR
SELECTED TERRAIN CATEGORIES

159




(or sea water) vs frequency are plotted in Figure 6.5. The data from the
Livermore site are plotted for comparison.

6.5 Accuracy Considerations

Accuracy checks with the HP 4193A on a 52.0-ohm dummy load, as
measured at DC with a Micronta Model 2-211 two-jewel meter, provided values
less than 0.6 ohm different across the HF band on the measurement frequen-
cies. The phase angle difference was never more than 1.9 degrees, and it
was 1 degree or less for frequencies below 16 MHz. The frequency accuracy
is + 0.01 percent. The HP 4193A features built-in test equipment (BITE),
and the front-panel display flashes "PASS" or a "NOT READY" 1ight comes on.
This ensures that the instrument is operating properly prior to data
acquisition.

The resulting accuracy of measurement of the ground constants is
better than 25 percent.

7.  CONCLUSIONS AND RECOMMENDATIONS
7.1 Conclusions
The following conclusions were reached:

" The ground constants data were particularly difficult
to obtain at Livermore due to the hardness (and brittle
nature) of the soil at this site.

[ There was a significant variation of the data for a
given frequency at a given location and between loca-
tions, and this necessitated a statistical analysis to
obtain best estimates of the ground constants at the
Livermore site suitable for use in NEC validation.

() These small-scale variations could have been caused by
localized variations in moisture content or by differ-
ing amounts of air around the probes (biasing the read-
ing to be too low), or by both effects.

) The data from selected locations required grouping
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7.2

together to obtain the sample set for the two antennas
(longwire and broadband dipole) and for the field
strength test.

@ The location median values of the conductivity and
relative dielectric constant were reasonably consistent
across the antenna field.

. The spreads between the bounds about the median formed
by the maximum and minimum observed values were about
an order of magnitude for the conductivity and about
half that for the relative dielectric constant. These
are typical of the spreads observed at other locations
where there was less of a problem with air around the
probes.

® The effective skin depth is less than about 2 meters in
the HF band at Livermore, and it decreases to about
0.7 m at 30 MHz. Therefore, the water table (which is
over 20 m down) has no significant effect on HF
antennas or propagation at this site.

® The ground at the Livermore site behaves as a lossy
conductor in the HF band with an effective dissipation
factor that is relatively constant with frequency at
about 1.5,

® The conductivity also E% relatively constant in the HF
band at about 4 X 10 = S/m; whereas, the relative
dielectric constant decreases with increasing frequency

from about 150 at 2 MHz to about 17 at 30 MHz.

(] The SRI OWL kit, adapted from the approach of
Kirkscether,[20] is an effective tool for estimating
effective ground constant values for the HF band when
appropriate sampling techniques are used and when
appropriate statistical processing of the valid data is
performed.

Recommendations

The following recommendations are offered:

° The median values of conductivity and relative dielec-
tric constant given in Tables 6.1 through 6.3 should be
used to estimate (by interpolation) the values for the
NEC validation computations for the longwire and
broadband dipole input impedance and the field strength
vs distance.
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° A parameter sensitivity analysis should be performed
using the bounds given in Tables 6.1 through 6.3 of
Ref. 11 as input values for NEC. Priority should be
given to the upper bounds due to the problem with air
around the top of the probes at some locations which
probably biased those values low.

@ The vertical electric field strength data vs distance
from the longwire should be fit using an SRI program or
the NEC while varying the ground constants. Any ground
constant estimates obtained through such curve fitting
should be compared with the data from the OWL kit.

® The moisture content vs depth should be measured and
correlated with the relative dielectric constant data
vs probe length of the type given in Table 6.5. The
soil samples for this comparison should be taken from
the same volume sampled by the OWL kit (a cylinder
approximately twice the probe spacing and as deep as
the probes) to check the small-scale variations in
relative dielectric constant and to determine if they
are caused by highly 1localized moisture content
variations or by different amounts of air around the
probes near the top of the holes. It may be necessary
to carefully drill the holes for the probes and to use
a core drill for the soil samples.
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Introduction: D. Marcuse [1] has derived a power loss formula to
calculate the power losses from an electromagnetic wave traveling down
a tapered dielectric rod. He first considers the losses at a step and
then approximates the red rod by a series of steps. He assumes
that, when the radius of rod is a, the constants describing the bound
mode will be the same as for an infinite rod. When the radius changes,
so do the coefficients. Further, there is an additional change due to
power taken from the bound mode and converted into the radiation
modes. For a full discussion of the model, the interested reader is
referred to [1]). Here, we are concerned only with the numerical
integration of his formula.

In order to understand his formula, it Is necessary to Include lengthy
abstracts from Marcuse’s original paper. To begin with, the bound mode
fields inside the rod are:

E, =A I, kn) coslw)
H, =B I (x) sin(u)
E.=-1/c” (¥BgA T, &) + @ pBy/r I () } cosbe) (1)

166




E¢=i/1¢2[ﬁoAv/r I ) +x @ pB I, () } sinbu)
H_ = -1/k( 0’0 €y A v/r 1,0} +x By B I, xr) } sinlv)
Hy = 1/ (oPxewegA I! ) + BgB v/r I, ba) } coslug)

While the fields outside the rod may be written:
E,=CH ' (iyr) coslvg)
H, =D H ' (yr) sin(w)
]
E.= 1/72[ lyﬂol}lvl “(iyr) +wpv/r Dl-l,,i[lvr') } cos(ve) 2)

E b= -i/'yz [ Bgu/r CHpiti'yr) + ic.ry"uDHM1 (1yr)] sin(ve)
H.= i/'yz[ wev/T C[-lyi[iyr) +iyB,DH yl (1yr) ] sin(vg)

2 1
H &= /Y [l'ymeOCHvl (tyr) + Bpu/r DHyltl'yr)] cos(ve)
It Is necessary that these fields satlsfy the usual continuity conditions
where they meet, namely that the tangential components of H and E are
continuous and the normal component of D. This gives rise to the
“eigenvalue" equation (We speclalize to the lowest order mode, v=1)

{nzcryz/x [ Joka) /3, xa) -1/xa] +ya 1 Hy! (tya)zH,  (tya) - 1}*
{ 2 ) 1 1
ay“/«( JO[xa)/J 1 (xa) -1/xa] +yai Ho (tya) /Hj (iya) - 1}

= [ (Z-nggksl 172 (3)
2 _ 42
where k= = 4nw fzpoeo
Bp= the solution of the eigenvalue problem
2_ 22

2
= n"k"-Bq B =H ¥ Hg
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n2= the dielectric constant

= ,802 +2 r = relative magnetic permeability

H = Hy tya) /H,  (iya)

When this equation is satisfied we can compute the values of A and B and
therefore the fields inside the rod from:

B/A = Veg/hg ka (ka)? [ n? fxa (Jolka) /1y (ka) -1/ka} +
i/ya(Hi/yal ]/ Bpatt+é/y) ] )
and
p=m/4 *
[kﬁo/x4*{[xa)2[ Io2tka) + 1,2 (ka)] -21,% (xq) } *
(nP4ug/ey B2/A
+ kB v (ya?* (10} 42} * 7,2 (ka) *

( 1 +pp/ey BE/A%)

+2 Yig7eg B/A { 852 +n210 /it - 87w Yy 1,2 1 (8)

*A%Veo i

The equations thus far describe the "so called" bound mode. In
addition to this, radiation modes will be created by the taper and, if we

write:
azmzkz-ﬂz
p2=k?-g%
Then:
E,=F 1] (or) cos vp

H “GJ[ar')slnmp
E —i/a' [a,BFJ lor) + wpv/r G [or) } cos v
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E, = 1/% {8/ F I (or) + o> G I' (o) } sin v (6)
Hr = -qu:r"Z { nzmeou/r FI lI’lk:rr) + 08 G J:" (or)} sin v
Hy = /0% { n%owey F I' (or) + Bu/r G I,(or) } cos vp

give the radiation modes inside the rod while:
E,=MHIpr) +1 Y, (pr) ] cos v
H=[K I, (pr) + MY (pr) ] sin v (7)
E, = -1/p? {pp[ HI, (pr) +1Y! (pr) ]
+wuv/r [K 'Tu(Pr) + M Yy(pr)] } cos v¢

Eg = 1/p {ﬂv/r' [HIpr) +1Y,(pr) ]
+pap [K I, (pr) + MY, (pr)] } sin vg

H.= -i/PZ {meov/l‘ [H I,ler) +17 (pr) ]

+p8 [KI) (or) + M Y! (pr) ]} aln v
Hd? = -1/p2 {pmeo HI (pr) +1 Y;'(pr) ]

+ Bv/r [K Jy(pr) +M Yp(pr)] } cos v

give the flelds outside the rod.

Let: .
b = p/o ]y (0a) Y 4 (pa)

¢ = (P-DkB/ apa®  1,(0a) Y (pa)
d = p/o 1 (oa) J,(pa) (8)
e = I,(oq) J; (pa)
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F = (n°-1kB/ apo® 1,(oa) 1, (pa)

g = Jyloa) Y (pa)

Then:

F/G = +/-Vhgeg / (g0 2+(e-d)? +c2+£2 (9)
\/ [ghnzb)2+(e-n2d)2+c2+E2

and

P=n/2)%a?B/p weyl [gn?b +oVTig7es no/e G/F1% +
[e-nzd -l-fV_po/eo G/F]Z

[c +(g-b)Vig/e, G/F)° (10)

[f +le-d\Vig/e, G/F 12} F2

here F and G are the analogs of A and B in the bound modes. The
square root in the first formula introduces an ambiguity of sign which
we shall comment on later.

Far the present, we compute the four partial derivatives:

€

gt 222
d3a =TP/2 [ {a(ar npT)/e Jgloa) [Yylpa)- Y (pa)/pa]

+ [ 2/pa-pa +n°(pa-2pa/a’o?)] 1, (0a) Y (pa)
% /o711 o Yoot} F
+(n2-—1}k28/m500'2p * (11)
{ aJo[aa) YI (pa) + pJ 1 (oa) Yo[pa)
-2/a1,(0d) Y (pa) } G ]
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g-l = -mp/2 [ {a(az-nzpzi/a' Joloa) {Jo(pa)-.} 1(pa)/pa }
a

+2/pa-patn® (pa-2pasa®e?) | 1, (oa)]  (pa)
+(%p2/0% -1) 1,(0a) Jylpa) } F

+Hrl-1k2B /wepo?p * (12)

{a‘.?o(aa) 3,(pa) +p 1, (oa) Jylpa)-2/a 1 (oa) 1, (pa) } * 0]

g%( = mwp/20 (nz-f)kz [

B / wupo { olgloa) Y 4(pa) + pJ;loa)Yqlpa) -2/a],(a) Y (pa) } F

+{aTploa) (Y (pe)-Y, (pe)/pa) +2 / poa I, (o), (pa) (13)
-1/o0 Ii(oa)YD(pa) } *G]

%g_o‘l = -.5np/o (n%-1)k? [B/wppa
{cr.]'o (oa) I, (pa) +pJ, (oB)]n(pa) -2/2 APNCLAN (pa) } F

+ alplon) [ Jylea)-T, (pe)/pa | (14)

* G}

And now we are In a position to compute the first integrand:
™

Ip,8) = —w—w— J, (xn) ¥
4p’y’p 1
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{ (Bg+B)Yew (€ pA %;‘ +HpB %}) *

Yiplpa)+ p1 (pa) 1y tiya) / H, L liya) 1, (pa)
- -
Yot P
+ (.80"'3)7.0“’ (EoAa:l "‘PoBa_a::A 3} % (15)
YYglpa)+pY, (pa) 1y (i) / Hy L iya) Y, (pa)
at 0 -
[ vo4p” Yo

w0248y [ WSS+ 5L ) 1y + AGM4BED Y () ] |

Co ng to each cholce of sign for the square root in equation 9,
there will be a function, I{p,a). By I, (p,a) we mean the function
corresponding to the positive cholce of the sfon and by 1_(p,a) we mean the
function corresponding to the negative choice. s corresponds completely to
3 ulalven and odd symmetry present in the slab dielectrics. Now

ate:

pl) = Jg= 1, (o) a' @) epl-1 [ By ds] dz (16)
= o~ Lipa) a'@ epl-1 [o7 By ds] dz (17)

And then the fractiomal power loss is given by:
AP/P = { (lpl2 + 1g1% 18I/p 8 (18)

The Eigenvalue Equation: The first step in Integrating this expression
is the evaluation of the integrand and this begins with a solution of the
eigenvalue equation. In practice it was fi easler to solve for y ( =

\_!Boz -kz than for Bobecamethere is one root at y =0 and we are
looking for the smallest positive root. The function on the right was
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expanded In a power series in the two variables ya and In(ya), as shown
in appendix 1. P?Sae also [2] and [3].) Only the lowest order terms were
retalned and the resulting formula led to approximation

2+ 1 Jo[xoa)

- n
ya=1.123 e [4 kg2 Jylkqga)

This formula was extremely accurate for ka { 1 and provided a useful
starting point for an iteration scheme whenever xya was less than 2.4

(le: the first zero of the Bessel function), that is: as long as all higher
order modes are choked off.

When the eigenvalue is determined, the bound mode Is completely
described by equations (4) and (5). In the calculation, fifty values of vy,
A and B were calculated at polnts spaced at intervals down the
rod. These values were then stored in a table to be used as needed.

The Singularities: With the bound mode avallable, the inner integrand
may be calculated from equations (7)-(14). A value of 1(p,a) is needed
for each value of 8 from -k to +k inclusive. At each of these (end)
points, p = 0, the denominator of (18) vanishes and = si arity (which
must be dealt with) is created. It Is to be hoped that p(p) and q(p) will
be proportional to Vp or better. Unfortunately equation (14) ‘Elues not

have Vp but 1/p2. Now a factor of ps",2 must be sought from the rest
of the terms and the search leads us a merry chase. The detalls are
included in appendix 1. When |p| and Iql were plotted for values of 8
close to k, the graph rose steeply. (Indeed, it was this that led to the
calculations described in appendix 11.) After the results of appendix II
were avallable, the Integrand was calculated for values of 8 each of
which was only half as far from k as its predecessor. The graph rose
sharply revea]lng B burst of power very close to 8 = k. The
preliminary calculations had missed this entirely and underestimated
the power lost. With the aid of appendix 1I, the revised calculations

much smaller steps near 8 =k and wers much more accurate as we
shall show.

Ancther, albeit simpler, singularity was found at 8 = 0. It was
easlly mended. Now a straightforward Simpson’s law Integration
scheme could be (and was) written. It worked moderately well for
short rods but falled utterly when applied to long rods. This led to an
investigation which showed that the problem lay in the perlodic nature
of the integrand.

The Inverse Square Law and the Valldation of the Program: Starting
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with the power loss formula:

AP/P = { (pl2 + 1912 181/p d8 (18)

where:
plp) = Jo= 1, (p.a) a' B expl- 1 JoF (Byh) ds ] dz (16)
q= o~ Lipa) o' epl-1 [" ByA ds] dz (17)

If z Is large, so is the ent of the imaginary exponential function

and that creates the problem. The period of the integrand is small
compared to the spacing, Ax. So we wind up taking a quasi-random
sample of the integrand.

Let us suppose that the antenna is self-similar In that the radius
depends only on the ratio x=z/L. Substituting this in the integral:

plp) = fo' 1ol G2 L expl -4fg* [ Bylalx)) - 8] L ds} dx
Now set u= j'ox [ﬁola[x]) -8]lds.

8]

1
) = -1Lu} du (19
ple) = Jp * @) exp{-1Lu} )

o) =1,(p, alx) 2 / [Bplalh - 8] (20)
and the quantities to be evaluated are understood to be functions of u.
Integrating by parts and multiplying by L.:

Q u
Lp(p) = 1 expl-ilu) ol) Ig * -1 fp * olo) exp{-iLlu} du
Lp(p) = 1 exp{-iLu,} ¢lu,) - 16(0) -IT,.
and Lalp) = 1 exp(-iLu, } wla,) -1y(0) - 1T_

2
L“AP/P=
Sy + 62 +vP) + PO 181/p 48

2, J¥lolay) SO +yluy) WIO) ] coslloy) 11 /p dB
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e T TR e -

‘_;Jk [ ¢luy) ( T explibo) + T+*exp(-iLu1) }
+oloy) (Texplilog) + T explilu) |}
¢ (T, + T,”}
B (T + T}

T,*T, +TT 18175 a8

Now the limits of T, and T_ as L goes to Infinity are both zero as
noted above and the thifld in ws smaller as L grows larger. We
claim that the same is true for second Integral as well. Observe

that the Integrand :
(oluy) &0 + Wwlug) WO } 181/ p
is continuous except bly at 8=0 and . By appendix 11, even in
thess three axceptlomﬁ;!;esyﬂn i p;.Dmnt{m . Accordingly
the integral goes to zero (Riemann- gue Lemma )
Hence, as L goes to infinity, L.ZAP/P approaches:
S0P y) + 6% + ¥ ty) +¥PO) } 18I /p dB
and by using this formula we can compute the value of the constant
appearing In the Inverse square law. The agreement initlally was not
very good, and a more sophisticated integration — the one of van der

Vooren and van Linde [4] (which owes some filial respect to the scheme
of Fillon ) was introduced.. This scheme Is designed for integrating:

2N
DI f(x) (wx) dx

2N
and 0 J f(x) sin(wx) dx
by spproximating f(x) by an appropriate polynomlal.

The first hurdle that we must clear in order to use this scheme
stems from the fact that our integral is not exactly in this form since
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u, is not, in general, a multiple of 2r. So we choose N to be the

test integer that does not exceed u,/ 2w . The Integral from 2nm
to u, is then found by a Simpson Law scheme. Before evaluating the
remdinder by the van der Vooren - van Linde scheme, we have one more
hurdle to cross. This scheme requires that the Integrand be evaluated
at integral submultiples of 2Nw. But u must be constructed from =a
numerical integration scheme and the values of u that are avallable are
not always at the required points. To overcome this difficulty, the
most stralghtforward imaginable solution was used: linear
interpolation. We did not have time to carry out a thorough analysis of
the errors Involved in such a scheme, but we did test it by generating a
value of u from the quadratic function:

u=2mx -'rrxz/iO

By setting x = n/5 for n=1 to 50, we generated a table of values of u
The following four integrals were then evaluated:

10w 5 i0r 5
11= 0 § u” co={u) du 12=0§ u* sin(u) du

10r , 10r ,
13 = § u cos(u) du 14 = § u sin(u) du
0 0

in three different ways. The first was a stralghtforward application of

i calculus and repeated integrations by parts (exact). The second

the vdVvL scheme just as it stands and the third chose a value of u

as the scheme demands, but then interpolated linearly in the table to

find the value of z and then got back to u from the interpolated value of
z by using the formula. The results are in the table below:
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exact vdVvilL mod. vdVviL
.4B112360x10’ .48218x10’ .48183x10’
-.29985613x108 -.29986x10® -.29983x108

2
Iy 1232712x10°  .12340x10%  .12332x10°
1 -.96224739x10° -.96225x10° -.96214x10°

The modified scheme does not seem markedly lnaccurate - the
errors are all less than a quarter of a percent. To obtaln exact error
bounds 8 complete analysis would have to be undertaken and the results
might well be too complicated to apply to our problem in any simple
way This table seems sufficlent to us to warrant our confidence in the
results cbtained by the use of this scheme.

It was hoped that the introduction of this scheme would remedy all
the problems and bring the 1 antenna results and the inverse square
law results ther. This did not occur and a further search revealed
the power spike just below 8 = k alluded to earlier. When both
programs were corrected to use much smaller steps near 8 = k, the
desired agreement was forthcoming, as the following figures show.
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FRACTIONAL POWER LOSS [AP/P]—-

1076

10°1_

1072

1073,

10~4

1075

EXPONENTIALLY TAPERED
RODS. DATA OF D. MARCUSE
2

n“ = 2.05
Elmax / amln =2.0
ka =2.5

max
O-—POINTS CALCULATED FROM
MARCUSE’S FORMULA

o

«~ INVERSE SQUARE
LAW PREDICTION

20 100 500
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MARCUSE’S DIELECTRIC ROD
CALCULATED POWER LOSSES
AND
INVERSE SQUARE LAW PREDICTIONS LINEAR TAPER

2

ot n? = 2.05
o Bmax / 8min = 2.0
ka max = 2.5
T - INVERSE SQUARE
1 O LAW PREDICTION
>
2
7]
o
-
-2
. 1073
s
5
o
-
<
=
o
o
<
o
(18
103

160 500

L/a —

© Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P]—~

n?=1.2
Linear Taper

amax= .0642m f=4x10%:
amin= .0315m
0-1
- o
. INVERSE SQUARE
LAW PREDICTION
1073
10-3|
1074 . _ '
10 100 1000

L/a —

®© Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P)—>

n2=1.2
Exponential Taper
amax= .0642m

amin= .0315m
f=4x10° Kz
-3
10 -
10“‘J
INVERSE SQUARE -
LAW PREDICTION
1079
O
107¢| . ' .
10 100 1000

O Calculated directly from Marcuse’s Equations

L/a ==
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FRACTIONAL POWER LOSS [AP/P)——

n2=1.5

Linear Taper
dmax= .04057m
dmin = .024748m

f=4x10%Hz
1072
0]

INVERSE SQUARE
10-3| # LAW PREDICTION
1074
1073 : , ,

10 100 1000

L/a —

© Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P]—-

107

1073

10"2t

n2=1.5
Exponential Taper
Amax = .04057“1
amin = .024748m

f=4x10%H:z

INVERSE SQUARE
/LAW PREDICTION

1077

10 100 1000
L/a ——>

O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P)—»

n2=2.56
Linear Taper
amax = .02297m
amin= .013047m

f= 4 x10° uz
1071
0 0
O]
1072
0]

INVERSE SQUARE .~

LAW PREDICTION
1073

©
1074 , , .
10 100 1000

L/a —
O Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS (AP/P)—

n2=2.56
Exponential Taper
amax= -02297m
amin = .013047m

f=4x10%Hz

1073
O]
10~4
©)
INVERSE SQUARE .~
LAW PREDICTION
1078}
©)
10-8 T T LA)
10 100 1000

L/a —

® Calculated directly from Marcuse’s Equations
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FRACTIONAL POWER LOSS [AP/P)—>-

1071

1072

n2=10

Linear Taper
8max=.009563 m
@min =.0069332m

f=4x10%H:

INVERSE SQUARE

“ LAW PREDICTION

1073

100 1000
L/a —

O Calculated directly from Marcuse’s Equations
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1073
N
PN
)
w 107¢
w
=
1o
=
o
Q.
ol
Z
o 1078
’_
O
L9
o
('8
1078

n2=10
Exponential Taper
dmax= .009563!‘“
dmin = .006932 m

f=4x10%Hz

/INVERSE SQUARE
LAW PREDICTION

O Calculated directly from Marcuse’s Equations
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{ 7232 .T;; (xa) - Hyu, (1ya)
xa I (ka) vauya)
1
xa I (ca) Lis o ya [

This is the equatlon that determines whether the W mode can

te down the rod. A careful study of this equation will reveal that

it is not possible to satisfy it for arbitrary v and a. Indeed unless a has

a certain minimum value, there will, in general, be no solutlon. The

only exceptlon to this rule is the case v=1, where the above equation has

a solution for all values of a. Accordingly, v=1 is the lowest order

mode that can propogate down the rod (lower than v =0 1). If we
speciallze to this case, the resulting equation becomes:

n?a’y? { Jg (ke) 1 } . iHy ' 1ym)
- a
Ka

[ xa J 1[#3) H { (1ya) ) ] *
a?y? o 1, (ke) g iHy ' (ye)
[ Ka { 14 (xa) i xa } T Hlui(lya) - ]

where the derivatives of the Bessel functions have been eliminated by

using well known ldentities (cf. Abramowitz and Stegun(S))
e can expand the Hankel functions as follows:

Ya
tyaHy M ya) 7 H, M ym) = - y%2 (y, + In(——) + O(y%a?)
where v, Is Euler’s constant. This expanslon s not, strictly speaking,
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a valid Maclaurin series for the Hankel functions, since the natural
1 ithm term Is extremely large near ya = 0. But we will make the
titution anyway, leading to:

2.2 2
{t-v%a2tnF + v + e o3 )
R UG e R UL 'S YT
(0
(n%-1) 4P P +y?)
unz_i)kz_,y?.]z

¢ = { JO[KOa) i i }
J 1 (xoa) knB
the left hand side in a power series in ya and subtract the
right hand side to obtain:
142/(n2-1)
K4

(where K = ka) and in view of the behavior of the logarithm near y=0,
this equation cannct be satisfied unless

2
a n~+1 — 2
+ 2')'1 +2 lh-xz—‘ Lﬁl ti == O['Y )

Wl = - [y, +-§%§-t1 +2—:§i1—k*2]
And,if this equation is solved for ya, we get:
nZ+1 Tglkpa)
ya = ZEXP["Yi) exp(-
Zxoa J { [xoa)

This is a very useful roximate formula for computing the
solution to the eigenvalue problem. As the table below shows, the
results are quite good for small values of ka and even for large values
they form a good starting polnt for an iteration scheme.
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=

ya (computer calculation)
-5
-5
-3
-2
-2
-1
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APPENDIX 11

We now return to the expression for 1(p,s) given by formula 135.
Co to each choice of sign for the square root in equation 9,
there will be a function, 1(p,a). By I+ ,a) we mean the function obtalned from
the positive cholce for the sign and by 1 (p,a), we mean the function
corresponding to the negative choice.” Now calculate:

plo) = [ 1, (p) 2'(2) expl- 1 [ (B ds] dz
4= fg= 1L(pa) ' () expl-1 [ ByH ds ] dz

And then the fractional power loss will be given by:
ap/p= [ (1qZ +pi2} 181 /p 4B

Now since p = \_I[kz-ﬂz) » it Is clear that this last named integrand
has a singularity at each end polnt of the interval of Integration. This
singularity is rendered doubly difficult because each 1imit as 8 approaches
k or -k must be handled separately for each choice of sign for F/G.

Lim 1 VA
=l +pB) / Vp

Li 1 /v
ﬁ____)m_k +pB) 7/ Vp

Lim 1 (p,a) /Y,
A=k *®

Lim 1_{p,a) /¥,
ﬂ=>_kfp Vp

vanish. To see this we shall outline the derivation for the first of

these four limits, since that is the most difficult of the four. First
we show:

lim F/G =Ven/p
8=k o
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and, then:
ﬁlim [F/G -V e07p| / p = L1 =0
=>k
With the ald of these, we can show
lim [ In(p) *F/p /2] =F =0
8=k

Arﬂmwweampraparedtolookattfaintagmﬂ To save writing,
we will use H” in place of  iHy' [173)/1{1 L{iya). Then

lim 1(p,8)/¥p = lim I, (xa) / 4 P y2 p°/ %%
=k B=>k

Yigleal+H ply(pa) I pa)

(Bn+8)yp (wenA SH + wuBdK) *| a
{ Po+fhvp (weg da g da 72 +p2 YP
*
YYqlpa)+H pY,(pa) Y, (pa)
+ (BA+8)yplwe Al + wuBaM )¥* |a -
SHationtcl ~Sinay -~ ; ¥° +° YP ]

2 *
+HRE+BA* [ Aéa_;_g +Bg?m Jypa) + (A a%M +B ag] )Y (pa)

This limit gives rise to the following four limits:

- 24l (paJ * P-T (.oa)H I, (pa)
L, =limp 5/2{ [80+,8)"{me [ 9 2 1
Yo+ p° P

2
+k“+8nB8)0K T )
Bo 5 1[P3 }

*
_ -5/2 YYqlpa) + pH Y, (pa) Y, (pa)
Lo= limp { (Bo+B)ypwen 31 -
2 gy=k 0 32 h Yo+ Yp ]

2
+(k“+ 3M Y, (pa)
ﬁoﬁ)a; 1 'P8 }
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*

y Yln(pa) + pH I, (pa) J, (pa)

Ly=limp o/ 2{ (Bo+B)ypwp K [a L > B 1 -
8=k da Yo +p YP

2
+(k“+88,)1, (pa) oH
Pohy o) 32}

%

) YYn(pr)+ pH Y, (pr) Y, (pa)

Lg= limp 5/2{ (By+Blypwp M I:a g . 1 - ]
a

B=k da Yo PY

2
+(k“+88,)31 Y, (pa)
05 1 }
Then the 1imit of 1(p,a)/Vp will be

Iy = 71, (ka)/ (4Y2P) {A[L1+L.2} + BlLgtly) }

Ly =L+,
-5/2
L= lim (By+B)ypwey 3H T*
*
{a Yglpa) +pH Tylpa)  Tylpa) = }
yo4p? PY 2y
=0

" ‘5
Ly= Ly"= limp

/2 + /2 3H +(K2+88) 1. (pa) 3K
Bk { [ﬁo mweoap Ya__a_ )90 1(93 S }
= .25 maF, vy vy
LV=0

4 Y
Ly = tim{ o)) ™% —o— ( oalyfos) - 21 (on) }*
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[-BgtBrwey + (By+B) (0%-1)K?BG/F/o? +
2 +808 { 21 oa)/p3} {p 0} {102-11% 0%}

- 024808 { 21, (pad/pa } G/F
L= - 2/ ma? [ ogalploga) - 21 oga) 1 * (L, + L W

Li"iz lim( [k2+,803) (21, (pa)/pa) [n%-1)k2/0?] [B/wp)-(By+8)wep}
B=Dk 0% In(p)

Liw =0
LY = um( (8 +8) (n*- 132 /0? B G/F -P+88) G/F (21, (pa) /pal)
B=>k p‘?‘ In{p)

Livii=o
Y

)
L,=.25 ma F,* lim olee
B=>k Inip)

{ By tBlwey[ oalyloa) - 1, (o) ]

+HB+Blweg*n>-1)*k%/0? B/ wey G/F I, (oa)
+0+8,8) (21 (pa) /pal [ (02-10k2/0?] (/0] I, (o)

+WZ+8B) [21, (pa)/ pa] [(n2-1)k2/02] G/F *
[ oaly(oa) - I, (oa) ] }
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L1= Fia a‘oa.l'otcm) (ﬂo-l-k)k v eo/p
Ly=-1y4
L3 = Fi k (Bo+k)aoﬂ0[aoa) a

Lg=-L3
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1988 INSTITUTIONAL MEMBERS

ANTENNA TECHNOLOGIES
6 Shields Dr Box 618
Bennington, VT 05201

NOKIA-MOBIRA
P O Box 86 24101 Salo
Finland

LOCKHEED MISSILES & SPACE CO
Adv Systems Tech Laboratory

3251 Hanover St.

Palo Alto, CA 94304

W RICHARD GREEN & ASSOC.
3200 Wilkinson Rd
Cameron Park, CA 95682

HUNTING ENGINEERING LTD
Redding Wood. Ampthill
Bedford England MK45 2HD

ROSEMONT AEROSPACE
14300 Judicial Rd
Burnsville, MN 55337

TEXAS INSTRUMENTS
2501 W University

P O Box 801/MS 8019
McKinney, TX 75069

KERSHNER, WRIGHT & HAGAMAN
5730 General Washington Dr.
Alexandria, VA 22312

DELFIN SYSTEMS
1349 Moffett Park Dr
Sunnyvale, CA 94089

SCALA ELECTRONIC CORP
P O Box 4580
Medford, OR 97501

HELSINKI UNIV OF TECHNOLOGY
Otakaari 5A Espoo 15
Finland

AWA DEFENCE & AEROSPACE
P O Box 96

North Ryde NSW,

Australia 2113

}_‘ I -

NEW MEXICO STATE UNIVERSITY
Box 3548/Physics/Science Lab
Las Cruces, NM 88003

TRW
One Space Park
Redondo Beach, CA 90278

CULHAM LABORATORY
UK Atomic Energy Authority
Abingdon Oxfordshire
England OX14 3DB

U.S. AIR FORCE
Base Library Bldg 437
485 EIG/EIEUS
Griffiss, AFB, NY 13441

KATHREIN-WERKE KG
Postfach 260

D-8200 Rosenheim 2

West Germany

OAR CORPORATION
10447 Roselle St.
San Diego, CA 82121

SCIENCE APPLICATIONS INTERNATIONAL CORP

5151 East Broadway, Suite 900
Tucson, AZ 85711

U.S. COAST GUARD
2100 2nd St. SW
Washington, DC 20593-0001

STG NATIONAL LIGHT-EN
Ruimtevvart Laboratorium

1059 CM Amsterdam
Netherlands

TELECOM RESEARCH LABS
770 Blackburn Rd
CLayton, Victoria, Australia 3168

HONEYWELL INC
401 DEFENSE HIGHWAY
Annapolis, MD 21401

IIT RESEARCH INSTITUTE

185 Admiral Cochrane Dr
Annapolis, MD 21401
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FORD AEROSPACE
3939 Fabian Way MS T96
Palo Alto, CA 94303

ITT AEROSPACE/OPT DIVISION
P O Box 3700
Ft Wayne, IN 46801

NYNEX CORPORATION
500 Westchester Ave
White Plains, NY 10604

BUSINESS MANAGEMENT SYSTEMS
Sproughton House

Sproughton, Ipswich

Suffolk, England Ip8 3AW

FFV ELEKTRONIK AB
$-351 80 VAXJO
Ljungadalsgatan 2
Sweden 0470-420-0

VISTA RESEARCH
100 View St Box 998
Mountain View, CA 94042

TASC
55 Walkers Brook Dr.
Reading, MA 01867

PILKINGTON

Pilkington Tech Center, L
Lathom, Ormskirk
Lancashire, England L40-SUF

TCl
1625 Stierlin Rd
Mountain View, CA 94043

TELEX COMMUNICATIONS INC.
8601 Northeast Hwy 6
Lincoln, NE 68505

ROCKWELL INTERNATIONAL
1745 Joff Davis Hwy, Suite 1
Arlington, VA 22202

KATHREIN INCORPORATED
26100 Brush Ave, Suite 319
Euclid, OH 44132

1.D.S. INGEGNERIA SISTEMI
Via Roma 50
Pisa, ltaly 56100

CELWAVE RF
Frejasvey 30
Hillerod, Denmark 3400

MIT, LINCOLN LAB
P.O.Box 73
Lexington, MA 02173-0073

FGAN/FHP
Neuenahrer Str. 20
Wachtberg-Werthoven
W Germany, D5307

GEORGIA INSTITUTE OF TECHNOLOGY
GTRI/ECSL/ERB Bldg, Rm 242
Atlanta, GA 30332

RADIO FREQUENCY SYSTEM
AUSTRALIA PTY LTD.

Box 191 Croydon

Victoria, Croydon, Australia 3136
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SKRI Internationa

SRI INTERNATIONAL is one of the largest research,
development and consulting organizations with a human
resource base composed of over 110 disciplines. Our ac-
tivities focus around contracted projects with our client
base which includes domestic and international busi-
nesses and governments. Our unique environment en-
courages substantial individual contribution as well as
team activities based on our matrix organization.

The Engineering Research Group at SRI is looking for
experienced individuals at the Bachelors, Masters and
PhD levels for technical and technical management
positions in any one of the following areas:

® Radar Cross Section

» Image Processing

e Systems Analysis

e Over-the-Horizon Radar

e Electromagnetic Modeling

Research
and
Development

at SRI
International

A technician adjusts a calibration sphere in
our Anechoic chamber prior to tests for RCS
measurements. The chamber is utilized for a
variety of research projects.

For immediate consideration, please send resume to Michael Patrick, Professional Staffing, Engineering
Research Group, Dept. ACE-1288, SRI INTERNATIONAL, 333 Ravenswood Avenue, Menlo Park,

CA 94025. An equal opportunity employer. U.S. Citizenship required.
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Aircraft Division

ELECTROMAGNETIC
SPECIALIST

Northrop Aircraft Division in Southern California
is developing the Advanced Tactical Fighter prototype.
Our Electromagnetic Engineering Department is inves-
tigating special designs of RF antenna and sensor,
as well as communications components for Advanced
Tactical Aircraft applications.

Develop prediction tools for low observable antenna
and radome design, integrating scattering prediction
techniques and antenna analysis methods. Advanced
degree and 5+ years electromagnetic design experience
preferred.

For immediate consideration, please forward your
resume including daytime phone number (discretion
assured) to: Gloria Daniels, NORTHROP AIRCRAFT
DIVISION, Technical Staffing, P.O. Box 2282, Dept.
1222/AJ, ACE/1931, Hawthorne, CA 90251-2282.

U.S. CITIZENSHIP REQUIRED. Northrop is an Equal Oppor-
tunity Employer M/F/H/V.

NORTHROP

Electronics Division
Electronics Systems Group






