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PRESIDENT'S CORNER

E.K. Miller

For the edification of those of you who weren’t able to attend, the second
ACES Meeting held recently in Monterey was by all accounts a great success.
Attendance was in the 125+ range with over 40 presentations plus other demonstrations
and discussion concerning software exchange, establishing validation and benchmarks for
computer models, and setting future directions for ACES itself.

In order to survey attendee/member interest, a brief questionnaire was handed
out at the Meeting with the results of the 70+ returned summarized below. If you would
like to provide your own input, please complete the version included in this Newsletter
and return it to me [E.K. Miller, Rockwell Science Center, P.O. Box 1085, 1049 Camino
dos Rios, Thousand Oaks, CA 91360, Telephone (805) 373-4297] so that we may develop
a representative measure of member interests. The raw numbers are included here for
ease of preparation and interpretation, and since multiple replies were possible the totals
may not always sum to the same number.

We divided the questionnaire into three main parts as follows:
(1) Applications Areas of Interest
(2) Comments concerning the annual Meeting
(3) Evaluation of the importance of possible ACES activities and
areas in which the respondent would be willing to help.

MODELING INTERESTS

Applications:
Antennas 66
Scattering 48
Propagation 31
Other 16

Other included near-field applications, EMP, EMC, Interaction/Coupling, etc.

Model Types Used:

Integral Equation 57
Differential Eq. 17
GTD 37
Other 17

Other included PO/PTD, Hybrid modeling, modal expansions, etc.

Modeling Domain:

Frequency 43
Time 16
MMEN ESTIONS FOR_A L MEETIN REVIEW
Length
Too Short 3
Too Long 1
About Right 74



Presentation Time

Too Short 26
Too Long 1

About Right 49
Other 2+

Other included comments that we need more breads, and perhaps 20 minutes
per presentation rather than the 15 allowed this year. We might conclude that
15-20 minutes is a preferred presentation time.

Possible Use of Multiple Sessions

Avoid at all costs 36

Two OK 41

More than two OK 2
Future Locations for Meetings

West Coast 65

Other 16

Other suggestions included East Coast (1), Hawaii (3), "Someplace Warm" (4)
Mid-West (3), etc.

L]

Time of Year Preferred

Jan/Feb/Mar 75
Summer 6
Fall 3

ACES Functions

Respondents were asked to rank order the relative importance they attach to
several functions that have been discussed for ACES. We included four possibilities for
ACES to undertake on the questionnaire:

(1) Promote Software Exchange

(2) Develop Procedures for Code Validation/Calibration

(3) Establish a Solved-Problems Library

(4) Collect Modeling Guidelines/Difficulties
as well as:

(5) Other (to be specified).
The results are as follows (number of responses in order of most important to least
important with four categories):

Software Exchange 25,14,17,19 (195)
Validation/Calibration 20,23,21,11 (202)
Solved-Problems Library 8,16,20,31 (135)
Modeling Guidelines 27,24,14,10 (218)
Other (Creative Codes) 1

with the numbers in parentheses being the weighted totals

We observe that three of the suggested functions exhibit similar support, with
a solved-problems library being of significantly less interest. I must admit that this
outcome is somewhat disappointing to me personally since one of the things that I have
been trying to get started for a long time is a growing library of solved problems
organized topically into a sort of handbook. I remain convinced of that value of doing
this, and conclude that perhaps the lower value placed on this activity reflects the
ineffectiveness of a presentation that I made at this year’s ACES Review on just this
topic.



In any case, we do have to target our attention and resources because there’s
only so much that a new organization can expect to accomplish. These initial results of
our questionnaire indicate members’ concerns to focus essentially on software use and
exchange, i.e., how do we use codes and how do we know their results are right? As we
collect further opinions from other ACES members, we should be able to select those
areas for attention that will most contribute to increasing the value of ACES to present
and future members,

Volunteer Activities

Respondents to the questionnaire were also asked to indicate at least one area
(committee) to which they would be willing to donate some time and effort. Our most
critical need was, and remains, that of obtaining help in producing the Newsletter. But
there are a number of other areas where help is sorely needed as well. Included here is
a list of the activities included in the questionnaire and the number of volunteers who
expressed a willingness to work. Please feel free to add your own name! Those
indicating such interest can expect to hear from a committee chairman in each of these
areas in the near future.

Publications 12
Membership 8
Software Exchange 25
Technical Activities 21
Nominating 1
Constitution/Bylaws 3
Finance 1
Publicity 7
Conferences/Meetings 13
Other (European Liaison) 1

The names of Newsletter volunteers have been passed on to the new
Newsletter Editor, David Stein, to whom we should give a Hip-Hip, Hooray!, and from
whom you who checked publications as a volunteer activity should already have heard.
We should also thank Bob Bevensee for his contributions to the Newsletter and past
Review as well as Dick Adler who has been a lynch-pin in holding our Monterey
meetings together,

There are a few other odds and ends left over from the '87 Meeting. One is
that our Administrative Committee (or ADCOM) is short handed because the term of
one of the original members (Janet MacDonald) was for one year. We discovered that
the process of getting prospective ADCOM members and officers is somewhat
inconvenient, requiring the exchange of paperwork, etc. prior to the annual meeting (it
helps to read the constitution and bylaws!). In any case, it would be more convenient if
we were to establish a procedure for mail nomination and elections, something which we
are working to establish. We are also still pushing paper to implement the final steps
required for having a bona-fide legal organization. By the time you read this we can
hope that this last step has finally been accomplished.

Well, that’s all for now. Incidentally, you might have noticed that I have a
new address (again). I joined the Rockwell Science Center April 15 after having spent
less than two years at the University of Kansas. We (my wife and I) found that we
missed California more than we had anticipated. Since the Science Center has a very
nice auditorium, we are considering the possibility of holding a future Review there.
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FROM THE EDITOR

I am most privileged to present Vol. 2, No. 1 of the ACES Newsletter, which
may be the final issue published under that title if we implement our proposed name
change to ACES Journal, ACES Review, or something similar. The papers featured in
this issue discuss viewpoints and electromagnetic modeling tools which have been under-
represented among papers previously submitted. These papers are not only of interest in
themselves but also indicate ways in which we can broaden our scope. My apologies for
the delay in publication, but if certain initiatives pay off this summer and early fall, the
delay will be our last one.

One of our major goals is to increase the diversity of papers with regard to
applications and to techniques., Many of my recent initiatives have been toward this
end. Applications of interest include antennas, networks, radar cross section, shielding,
radiation hazards, and other electromagnetic propagation (including effects of terrain and
atmosphere). The techniques include methods-of-moments, diffraction theories, physical
optics, modal expansion methods, perturbation theory, integral- and differential-
equation methods, and hybrid methods -- as well as other techniques in the time or
frequency domain. It is emphasized that these lists are not exhaustive and that increased
emphasis in certain areas does not imply a corresponding shift of emphasis away from
other areas. ("Emphasis,” however, is determined primarily by the types of papers
submitted, not by editorial policy.) The ultimate objective is broad appeal of the ACES
Newsletter among users and developers of computational tools for electromagnetics. A
possible spinoff is the promotion of interdisciplinary efforts in computational
electromagnetics.

On a related note, we seek to publish different types of material. Our
"mainstay" will continue to be full-length papers as well as short notes -- which may
address general computational methods, particular computer codes, or particular
applications. (Even unsuccessful applications are legitimate for publication, provided
that a reasonable expectation of success -- and a reasonable effort -- are reflected.)
However, we are also interested in featuring tutorials and in making the "Pandora’s Box"
column viable.

In addition, other types of material have been suggested by various
ACES members:

Listings of short codes, and sample runs (Donn Campbell)

Reprints, of ACES-relevant papers first printed in other journals, and of
classical analyses widely referenced but in books now out of print

(Bob Dehoney)

Corrections of errors in widely-used reference material (Bob Dehoney)

Measured data, for code validation purposes (Bob Dehoney)

Comparison of the resuits of two or more computer codes, as exercised on
standard benchmark geometries (Art Ludwig)




All of these suggestions represent opportunities to expand our service to the applied
computational electromagnetic community. Even government agencies, which to my
knowledge have no central "clearinghouse" for parallel efforts in electromagnetics
software development, might benefit from code validation against measured data or
against other codes. For these reasons, material in any of these categories will be
considered for publication in future issues, subject to certain caveats. First, the
reprinting of previously-published material requires written authorization by the rightful
owners. Finally, we shall seek alternate ways to accommodate lengthy codes and
voluminous data, should the need arise.

This diversity in content is best achieved by a corresponding diversity in
sources. Therefore, when the new ACES brochure is completed, I plan to send copies to
several universities (electrical engineering and physics departments), to prominent
individuals in computational electromagnetics, and to the developers of electromagnetics
computer software (for antennas, radar cross section, and related areas). Many of the
recipients of these brochures may want to publish in the ACES Newsletter. (Recently,
Bob Dehoney pointed out that graduate theses might provide an excellent source for
papers.) Furthermore, I plan to send brochures to certain other electromagnetics-related
publications. Inasmuch as we do not duplicate their efforts, they might make potential
authors aware of our existence. I anticipate that the ACES brochure will be available
long before press time for the November 1987 issue.

(If you live outside the United States, I would be most grateful if you help
identify the university electrical engineering and physics departments in your respective
nations.)

A word of caution is in order. Although we have identified several new
potential sources of papers, this does not mean that we may become complacent. ACES
still depends on contributions from the current membership. All of us know what
happens when everyone thinks, "Let George do it." Furthermore, the new brochure will
not necessarily be available tomorrow or next week. .

At the same time, and on behalf of the ACES membership, I thank those who
contributed material, suggestions, and/or effort to the current ACES Newsletter issue. I
am most indebted to Dick Adler, Trish Adler, Bob Bevensee, Ted Roach, and Ed Miller
for their administrative support.

During the coming months, I encourage all of you to share your suggestions
and comments. For your convenience, I again provide my address and telephone number
(Post Office Box 541, Holloman Air Force Base, New Mexico 88330; 505-434-3338).
However, in late July, I will be inaccessible by telephone inasmuch as I shall be moving
(and transitioning to civilian life). You may continue using my mailing address; mail
will be forwarded. When I am re-settled in early August, I shall send my new telephone
number and address to all ACES members. Meanwhile, let’s begin thinking about the
November 1987 issue!

David E. Stein
Editor-in-Chief
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ACES NEWS

1. At press time, the 4th Annual Review of Progress in Applied Computational
Electromagnetics is scheduled for 22-24 March 1988 at the Naval Postgraduate School,
Monterey, CA.

2. The ACES SOFTWARE LIBRARY is taking form. It includes, at present, three
types of available software:

a. A list of EM programs (on ACES SOFTWARE FORMS) which is generally
available for use by ACES members, and possibly others. Some restrictions
may apply on availability, such as DoD agencies and their contractors.

b. Software which is available from and being distributed by specified ACES
members to ACES members ONLY.

¢. Software and Documentation which is available from ACES for ACES
members ONLY. MININEC3 and GRAPS are the first offerings in this
category.

3. Over 80% of all non-U.S. checks we receive cost ACES bank charges of at least $25.
Effective immediately, we are only accepting International Money Orders, payable in
U.S. currency, for the appropriate U.S. amount for all foreign transactions. _




PANDORA'’S BOX

by Dawson Coblin

According to Greek mythology, Pandora opened her box only long enough for
evil to escape and roam the world. By closing it, she trapped hope in the box. So man
is doomed to live in an evil world without hope. In their less sanguine moments, code
users feel the same way; lost, abandoned and despairing. It is intended that in this
column Pandora’s box can be opened again and hope allowed to escape.

The purpose of this column is to concentrate on unsuccessful applications of
commonly used codes. The goal will be to determine areas where the application may
have forced the code to break down and make suggestions for improving the results.
The success of this approach depends on the responsiveness of the ACES members to
share their less successful attempts and quandaries.

The membership is therefore solicited to send their problem cases to me for
review. Please include the name of the code used (and version, if applicable), the
specifics of the test case, examples of the output, a list of the problems and
contradictions observed, and your name, address, and telephone number. Please respond
to the following address:

R.D. Coblin

0/6242;B/130

Lockheed Missiles & Space Co.
P.O. Box 3504

Sunnyvale, CA 94088-3504.

MODELING NOTES

The primary purpose of ACES and the Newsletter is to foster information
exchange among workers involved in developing and applying computer codes to model
electromagnetic problems.

This section features short articles about particular aspects of the more
popular codes and short notes which summarize user experience with specific codes. To
facilitate the submission of short notes in a standard form which can be easily
referenced later, we include the ACES MODELING SHORT-NOTES form for 1-3 page
submittals.

Readers are encouraged to report their code experiences in these ACES
MODELING SHORT-NOTE forms and send them to the ACES Secretary, whose address
is listed in the FRONTISPIECE. Camera-ready SHORT-NOTE forms are preferred.
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AVAILABLE SOFTWARE

We would like to recognize the hard work that the Chairman of this committee,
TED ROACH, has done. He has basically single-handedly made this committee a success.
We appreciate his ideas, efforts, and achievements.
KEEP UP THE GOOD WORK!!!

10




CURRENT INDEX

The following items

ACES LIBRARY - NEW ITEMS
OF ITEMS IN LIBRARY:

ITEM # DESCRIPTION COMPUTER
001 MININEC2 IBM PC
002 MININEC2F IBM PC
frequency sweep
003 ENHANCED MININEC2 IBM PC
double ARRAY size
to 20 wires, etc.
004 ENHANCED MININEC2 IBM PC
005 THIN WIRE MININEC2 IBM PC
006 NEC2 DEC VAX
007 NEC3 DEC VAX
008 MININEC3 IBM PC/XT or AT
009 GRAPS IBM PC/XT or AT
: Graphical plotting
system

have been added since the November 1986 NL:

010 IGUANA 4.1 IBM PC
011 NAC3 IBM PC
Dr. Anders MOM code for thin wire antennas,
compiled for fully expanded PC up to
800 segments
012 SIGDEMO IBM PC
Demo disk for Network Analysis, Nodal
Analyses/Filter design. A fast, easy
to use, moderately priced commercial program
013 Misc BASIC programs IBM PC
RF designers toolbox
SWR from Ric Thowless
QD-CPLR from Ted Roach
014 AT-ESP IBM PC/XT or AT

Ray Luebbers’ full PC implementation
of the mainframe ESP Code including graphics
using VDI drivers

11
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ACES SOFTWARE FORM

Software Number: #010 - IGUANA 4.1
Machine: IBM PC/XT or AT (or compatible)
Directory Listing:

140 FILES - Approx 1.5M Bytes
.EXE with auxiliary programs and sample data sets

Description: Interactive Graphics Utility for Automated NEC Analysis is a system to
partially automate data entry and display processes for NEC/MININECS3.

a) Features:
1) Creation of 3-D models 5) Capture & Display of
2) Generation of NEC wire cards for (1) NEC output
3) User entry & maintenance of other 6) MININEC3
required NEC input information 7) GRAPS

4) Translate & transmit data to a
NEC host computer

b) Configuration:

IBM PC-XT/256K RAM Parallel dot matrix printer
Color Graphic Adapter (CGA) HP 7470 plotter *
Two Serial ports GRAFBAR GP-7 Digitizer *
Microsoft Mouse (Bus Version) * A-B Switch Box (DB25) *

* optional

c) Software Language Required: none

d) Formatted:
5 1/4" floppy
DOS 2.1
e) Available from: f) Access:
o DoD agencies & their
James C. Logan contractors only. Foreign
NOSC, Code 822 (T) requests must go through
271 Catalina Blvd. diplomatic channels.
San Diego, CA 92152
g) Documentation: h) Cost:

Send 4 preformatted unlabled
(DOS2.1) floppies in

Provided with software. self-addressed, stamped
return mailer suitable for 8x1!
manuals (2.7 1bs) and
include a request in writing.

NOTE: At press-time, both IGUANA 4.0 and 4.1 require additional modifications to

correct coding deficiencies. Until this is able to be completed, distribution of IGUANA
is on hold.

12




ACES SOFTWARE FORM

Software Number: #011 - NAC-3 Vers. 1.10
Machine: IBM PC-AT
Directory Listing:

NAC3-MAIN.FOR
NAC3-INDF.FOR

NAC3-CODE.OBJ
NAC3-CODE.EXE

NAC3-INFO.FOR

Description: NAC-3 performs a frequency domain analysis of thin wire antennas and
scatterers of arbitrary geometry in isotropic but arbitrary lossy propagation media. The
MoM code utilizes the point matching technique and is based on 3-term hyperbolic basis
functions of complex arguments. NAC-3 is highly modular and consists of pre-
processor, core and post-processor permitting the core to be moved to mainframes for
extensive number crunching. NAC-3 has been optimized for efficiency, numerical
stability and accuracy as well as fast execution on mainframes, minis and PCs. VLF
limit for dipoles is L/W1=1.E-8 single precision and 1.E-16 double precision, limits for
loops are C/W1=1.E-4 and 1.E-8 respectively.

a) Features:
1) 800 segments std. (adjustable)

2) Max size of matrix (adjustable)
a) 200 Unknowns (in-core)

6) Frequency sweeping. Start, Stop,
increments not array limited.
7) Disk file store and recall of

b) 800 Unknowns (off-core) a) Geometry
c) Automatic off-core solution b) Currents and impedances
if insufficient in-core memory ¢) Far fields

3) 3-D Geometry creation modules

4) Multiple loads (3 modes) and
excitations (4 modes, mixable)

5) Perfect and reflective coefficient
finite ground, cliff modeling for
second degree horizontal curves.

8) Interactive mode and graphics
a) Menu driven screens
b) Full input data testing and error
analysis
c) 3-D Geometry view
d) Display of currents/charge
e) Linear and log, polar and rectangular
far field plots.
f) Smith chart, VSWR plot
b) Configuration:
512K RAM (matrix size 150x150 in-core)
640K RAM (matrix size 200x200 in-core)
Add on RAM as VDISK suggested to speed
up off-core solutions

8087 co-processor required

HERCULES card for graphics

Dot matrix IDS - or Epson
compatible printer

c) Software Language Required:
STAND ALONE versions NAC3-CODE.EXE for either 512K or 640K RAM
options, IBM PROFESSIONAL FORTRAN 77 compiler Version 1.00, if array
dimensions need to be adjusted to fit the available core memory.

d) Formatted: 5 1/4" floppy 1.2M 2HD DOS 3.0

e) Available from: f) Access:

public domain software
Dr. Roger Anders no restrictions
Applied Electromagnetics Engineering
Vorder Halden 11

D-7777 Salem 1, West Germany

g) Documentation:
Provided with purchase.

h) Cost:
Available on request.
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ACES SOFTWARE FORM

Software Number: #012 - SIGDEMO
Machine: IBM PC

Directory Listing:

SIGDEMO.EXE SIGNET.DOC
DSIGNODE.EXE STRIP.COM
FILTDEMO.EXE

Description: Demo disk of an excellent and reasonably priced S-Parameter ladder
network analyzer, Nodal analyses and filter design. Circuits on demo disk
may contain only resistors, capacitors & S-Parameter devices. Full system
includes inductors, stripline, transformers, etc. Excellent for antenna
tuners, couplers, matching networks, etc.

a) Features:

1) Fast, easy to edit & use 7) Filter Designs HP, LP,

2) Network analyses, s-parameter output BP, BS Filters, stores file on disk
3) Calculate & plot gain/loss, phase, for direct recall into SIGNET
group delay, Smith Chart, stability factor, etc. program. Demo doesn’t give

4) Enter device S-Parameter into disk file component values.

5) Auto-optimization of S21 max, S11 min, etc. 8) Not copy protected

6) 5 yrs free updates 9) Fast inline compiled for 8087

on purchased complete program

b) Configuration:

EXE files only IBM PC, XT, AT
8087 required on NODAL Analyses Med. Res, IBM graphics or CGA,
256K bytes min, Mouse opt.

¢) Software Language Required:

2.0 or later
d) Formatted: f) Access:
DOS 2.0 or later None
360K, 5 1/4" disk
e) Available from: h) Cost:
$10.00 to ACES members for
MicroCube Corp. DEMO disk. List price less than
P.O. Box 488 $1890. I can offer 10% discount
Leesburg, VA 22075 to ACES members and more off
(703) 777-7157 if we can get some quantity.

g) Documentation:

On disk

14



ACES SOFTWARE FORM

Software Number: #013 - MISCELLANEQUS
Machine: IBM PC
Directory Listing:

SWR.BAS
QD-CPLR.BAS

Description: Miscellaneous Short BASIC Programs for antenna & RF design. We will
add programs from time to time as they become available until the disk if
full,

a) Features:

1) SWR, Power, loss, Magnitude etc., conversions by Ric Thowless

2) QD-CPLR; lumped element Quadrature coupler design from
July/Aug - Sept/Oct 1979 RF Design Magazine; article by C.Y. Ho &
Bob Furlow, program by T. Roach

b) Configuration:
IBM PC or compatible; 128K
c¢) Software Language Required:
BASICA; GWBASIC

d) Formatted:
DOS 2.0
360K

e) Available from: f) Access:
None
T.H. Roach
MicroCube Corp.
P.O. Box 488
Leesburg, VA 22075
(703) 777-7157

g) Documentation: h) Cost:

Programs to be self $5.00; covers disk mailer & shipping
explanatory on disk.

15
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ACES SOFTWARE FORM

Software Number; #014 - AT-ESP
Machine: IBM PC/XT or AT

Directory Listing:

ESP Source 128K
ESPPLOT SOURCE 15K
ESP.EXE 341K

ESPPLOT.EXE 92K
Data Files for example
Inputs and Outputs

Descnptlon Full PC implementation of the mainframe Electromagnetic Surface Patch
(ESP) Code developed at Ohio State including graphics using VDI

drivers.
a) Features:
1) 60 wire modes

2) 65 plate modes, and
3) 2 attachment modes.

4) may be increased to ~200 modes total.

b) Configuration:
512 (640K suggested)

Math coprocessor required

¢) Software Language Required:

IBM Professional or
Ryan/McFarland FORTRAN

d) Formatted:
5 1/4" floppy 1.2 Meg
(360K DSDD on request)

e) Available from:
Raymond Luebbers
Penn State University
CSSL, EE Dept.
University Park, PA 16802
g) Documentation:

E.H. Newman, "A User’s
Manual for ESP," Ohio

State University ElectroScience
Lab Report 713402-1, July 1981.

16

5) 1/4 Aper wire mode
6) 24 plate modes / sq. A
7) CRT graphics

8) printer/plotter graphics

Drivers available for most
graphics devices.
Hard drive suggested

none required for .EXE files

f) Access:
Public Domain

h) Cost:
$500
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RADAR CROSS SECTION (RCS) PREDICTION SOFTWARE

A proposed supplemental information form for RCS prediction software is
featured in the next three pages. Reader comments, suggestions, and submissions

(wherever possible) are encouraged.

*NOQTE: The term "RCS prediction software" includes general-purpose

electromagnetic modeling codes with RCS prediction capability.

17
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INFORMATION ON OTHER SOFTWARE SOURCES

Ted Roach

Other software useful to the antenna and RF design engineer is available from
the following sources. Some of it is not RF related. Some of it is commercial software.
Some is very inexpensive, others very expensive. Most of this is for use on an IBM PC.

An important parameter of our antenna analyses is the antenna impedance
characteristics. We need to match impedance of these over some required bandwidth,
tune these, couple to them, diplex them, etc. To accomplish this, and for other work in
RF, we ought to have a good ladder network, nodal analyses and filter design software
tools. I have listed below some programs that are practically free. Some of the others
are commercial programs that are moderate to very expensive. Usually, the less
expensive the fewer features and more unhandy to use. These are usually frequency
domain analyses programs. I personally use the SIGNET series of analyses tools and
would be totally lost without them.

I currently need to do some work in pulsed RF audio signals and suspect the
SPICE programs will be most useful for transient analyses. I understand that these were
derived mainly from the U.C. Berkeley version 2G.6 of SPICE as public domain. If
someone has this version or a modified public domain version for the PC, it would be
nice to include it in the exchange library. Two commercial versions are included in my
list and I suspect many more programs are available. Please let me know what else is
available along these lines.

There is a propagation path loss program that doesn’t take terrain into
consideration. I remember using a program years ago on an HP-9825 that accepted
terrain details and predicted path loss. One of these would be nice in our library.

The remaining list has miscellaneous programs dealing with SWR, Smith
Charts, mixer intermod, couplers, etc. of general use. I note that some of our RF and
Microwave Magazines are again providing useful software programs and even making
them available on disk for a very small fee, much less than it would cost to enter the
code yourself. Finally, I list again the EE Public Domain library which is making many
of these programs available for $10.00 per disk.

USEFUL INFORMATION NOT RF RELATED:

1. PC-SIG - up to 700 public domain disks for IBM PC’s, currently is putting out an
occasional brochure for software purchasers that describes the newest listings. Costs are
typically $6.00 per disk. They have versions of PC-Write and PC-Type which may be
useful for members to generate articles for the newsletter. Their index disks include a
neat program for searching for key words in the index and printing our the number of
the diskette.

PC-SIG

1030D E. Duane Ave.
Sunnyvale, CA 94086
(408) 730-9291

18



2. Macintosh Users - one public domain software exchange is:

Public Domain Exchange
2074 S. Walsh

Santa Clara, CA 95050
(408) 496-0624

COMMERCIAL CIRCUIT SIMULATION:
1. SPICE - U.C. Berkeley v. 2G.6 - This public domain program seems to be the
grandaddy of all the SPICE programs. But I don’t have a copy nor and address to obtain

it from. Maybe one of the members can help.

2. PRE-SPICE: LIBR, Editors, Monte

Carlo drive : $125
IS-SPICE: AC,DC Transient _

analyses SPICE $95
INTU-SCOPE: Graphics, Fourier

Anal, etc. $175
for PC: from IntuSoft $395

San Pedro, CA combined

3. P-SPICE $950

Probe graphics post-processor $450
for PC $1400

(VAX prices are double)

from: Microsim Corp.
23175 La Codema Dr.
Laguna Hills, CA 92653
(714) 770-3022

PROPAGATION PATH ANALYSES:

1. 100 mHz - 3.5 gHz to 1000 miles
for typical earth, does not include path topological data entry.

for PC or C-64, TI-99/4

RF Design Aug 86

Available from EE Public Domain Library
Disk #8

LADDER/NODAL ANALYSES:

1. The first version that I used was from the Hewlett Packard Users group catalog, used
on an HP-9845. In HP BASIC, very reasonable.

2. Another early version listed in the 1975 Microwave Journal Engineers Handbook and
Buyers Guide, by R.G. Tipping of RCA - listing in FORTRAN IV. This same issue has
16 other short programs in FORTRAN and BASIC concerned with S-parameter,
impedance and math functions.
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3. RF Design - Nov. 1986 - Ladder program by Kenneth Wyatt of TRW in BASIC for
IBM PC (with code corrections in the FEB 87 issue) $10.00 from:

Ken Wyatt

56 Aspen Dr.

Woodland Park, CO 80863

4. RF Design - DEC. 1986. Nodal analyses by Bert Erickon of GE Corp. in BASIC.
The article provides a quick review of history of program and references along with
listing of code easily arranged for use on any computer. EE Public Domain Disk #8.

5. ALMOND - by Chris Trask, Microwave Analyses using S-parameters - from EE
Public Domain Library. $10.00 + $5.00 for book; Disk 1 or Disk 9 (compiled). See
address below.

COMMERCIAL PROGRAMS FOR PC’s - compiled with many features:
1. Touchstone - from EESof on HP - $11,800

2. Compact - from CCC Compact; $9,700 for PC, HP computers, plus $2,500 for Filter
design.

3. SIGNET, SIGNODE & Filter at less than $1890.00. Very complete, easy to learn and
use, See demo disk in ACES library #012.

MISCELLANEOUS PROGRAMS:

1. Microwaves - Dec. 1977. 9 FORTRAN Subroutines, Smith Chart calculations.
p. 172 Prof. W.J. Remillard at North Eastern Univ. Boston

2. The same issue - article by D.L. Cheadle of W/J, includes a program to study mixer
3rd order intermod distortion, listing in BASIC (this has been severely modified by
MicroCube for use on IBM PC)

3. CAD program design of Stripline coupled lines in Microwaves and RF. Dec. 1986 p.
91. by U. Bochtler, F. Endress and W. Stuttgart. Source code available for $2.00 from
Microwaves and RF Magazine. see article.

4. Lumped element Quadrature Couplers - program by MicroCube Corporation from
article in RF Design, Ho and Furlow; on ACES library disk #013.

5. EE Public Domain Library
36 Irene Lane East
Plainview, NY 11803 (516) 822-1697
Now up to 10 disks - many to do with RF design matching,
intermod frequencies, filters, Smith Chart. Disks are
$10.00 each.

6. MICRO - A series of programs for microstrip design and analyses. Including line
width, impedance, spacing, etc., low pass, bandpass, bandstop filter design, stepped
impedance transformer and hybrid ring design, coupled lines plus three new programs.
For IBM PC. I have not used it but this one looks very useful. Price: $195.00 from
Volunteer Regional Software Distribution Centers.

T.H. Stanford

454 West Blueridge Place

Escondido, CA 92026 (619) 741-7783
(Some discount for quantities of 4 or more.)
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VOLUNTEER REGIONAL SOFTWARE DISTRIBUTION CENTERS

Bob Noel

One of the problems facing the Software Exchange Committee is the way to
distribute the software that is in existence in the ACES Software Library. A possible
solution is to ask some of the members of ACES volunteer to be "Distribution Centers".
This would mean that these people would volunteer to electronically send, via modems,
software to members of ACES who request it.

This would require volunteers in each geographical area of the country (So.
California, No. California, Texas, Virginia, Florida, Massachusetts, etc.) who have access
to an IBM PC or PC-compatible equipped with a modem. It would be very helpful to
also have a hard disk. The contents of the ACES library would be read on to each of
these computers.

Members would be notified as to the contents of the library, the names of the
people around the country to call, and the phone numbers to reach them. Once the
requester reached the volunteer by telephone, the arrangement as to baud rate, parity,
number of bits, etc. could be agreed upon. The volunteer could then give the requester
the number to call to reach the modem, so that the requester pays for the phone line
while files are being transferred.

If a requester does not have access to a modem, then written requests with
formatted disks could still be made to the volunteers. This also should be a quick
process.

Because of the limited number of people who are members and who don’t
have the codes that are in the library, this shouldn’t be a very time-consuming activity
for the volunteers. Also, the number of codes in the library would be a limiting factor
for a short time.

Membership in ACES will grow as the availability of these codes becomes
more widespread. This will generate further income for the society and will enable the
consideration of purchasing time on a computer bulletin board service in the future.
Also with more society income, we may want to consider buying "site-licenses" for
software that is not free, to distribute to ACES members. This plan may serve to get
the software exchange activities of ACES off the ground.
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BASIC HELP FOR NEC USERS

Chuck Vandament

Chuck Vandament presented four IBM-PC programs at the conference in
LLNL in the spring of 1985. Written in BASIC(A), they form an elemental set of pre-
and post-processors to use with NEC. They are a big help if you don’t have IGUANA
or some other program. The source code is delivered on the disk so you can modify it
to suit your needs, but it should play on most machines. Chuck has shipped about fifty
copies to individuals. He is on the ACES Software committee and will ship you a copy
if you send him a blank disk and mailer.

WIREMODL is an easy way to construct wire models; you specify the
locations of the wire ends, then connect the dots. The output from this program is a set
of GW "cards".

SEGMENTR will look at any NEC input set and adjust the segments to fit the
maximum length guidelines as a function of frequency. If you need smaller segments
near a feedpoint or junction, you must adjust them manually. This program analyzes
the GW cards and tells you the number of the wire in which the longest segment occurs,
the length of the longest segment, the number of the wire with the thickest segment
along with the L/a ratio, and the total number of segments in the whole model.

PERSPLOT will draw a picture of the model on your screen if you have some
sort of graphics card in your PC. The model can be viewed from user specified viewing
points to help detect modeling errors. The program also writes and output file which
can be used by some plotters and printer-plot programs such as Golden Software’s
Plotcall (TM) program.

PTRNPLOT will plot a pattern on a plotter or printer (also using a printer-
plot program). It does a pretty fair job of interpolating between NEC calculated pattern
increments of up to 5 degrees to make a smooth plot on the paper or screen.
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QUICK NOTE ON QUICK-BASIC 3.0 FOR IBM-PC USERS
Ted Roach

We have finally obtained a copy of Microsoft Quick Basic 3.0 with its
improvements over QB 2. Version 3.0 uses direct IEEE format for the 8087 Math co-
processor without converting from and to Microsoft format. Recall Bill Seabreeze's
paper at the 1987 ACES Conference reporting on his modifications of MININEC3 which
he expanded using QB 2. to use 640K of RAM. His test antenna, a 31 element YAGI
with 217 segments required about 4 hours and 38 minutes run time on his Leading Edge
P.C. with 7.16 mHz clock and 8087 math co-processor. Note also he couldn’t get it to
run on an IBM PC AT at that time.

With the program re-compiled using QB version 3.0, the program now
requires 1 hour and 30 minutes on his Leading Edge. -- A speed improvement of 3:11!!
I think we may have a winner here.

Also, Bill retried his old enhanced MININEC3 compiled with QB version 2 for
no co-processor on a PC AT. This time, however, he used the AT without the
CONFIG.SYS installed. The AT running at 8mHz, zero wait state with no COo-processor
also required about 1 hour and 30 minutes run time for the 31 element test antenna,
Apparently the CONFIG.SYS took up some of the same memory that the MININEC
program arrays needed. Bill also just completed a run of the 31 element test antenna on
the PC AT with the 80287 co-processor installed and with QB 3.0 compiled for co-
processor. Computer time now was reduced to 49 minutes, or about half of the time
required for the run without the co-processor.

Other Notes:

1. Quick-Basic is a little hard to get used to. I have some
difficulty pointing at ICONS. I think you have to be a little
retarded to use these. Someone should put a contract out on
whoever invented WINDOWS.

2. Turbo-Basic by Borland is reported to be much more user
friendly than Quick-Basic but may have a problem. I do not have
first hand experience with this and am reporting hearsay. The
problem is that it inexplicably will begin dumping an infinite series
of numbers to screen or printer. Also, it apparently only has 15
digit output format for numbers. I expect Borland will fix these
problems and it might be worth waiting to see. Speed should be
about the same as QB 3.0 for MININEC type programs when used
with the co-processor since it also uses IEEE format for handling
the co-processor.

3. QB 3.0 includes a re-dimensioning instruction. Perhaps now we
can compile a program that requests how much memory your
machine has available, then automatically dimensions the arrays to
fit and tells you haw many wires and segments you can have. Neat
if it works! Note also - QB 3.0 comes in two versions, one with the
8087 libraries and one without. The executable run time compiler
is included. The list price is about $99.50 for the whole works. I
got mine at 20% off. What a bargain, and some mail order houses
are advertising for under $60.

4. A comparison of Quick Basic and Turbo Basic is given in the
June 1987 issue of BYTE Magazine, "Reviewer’s Notebook" page
227. The Savage benchmark was used and the programs were

compared in speed and accuracy, with and without co-processor.

5. During the next few months, we will try to get the time-hungry

executable files for MININEC in the ACES library updated with
the QB3.0 compiler.
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CODE ANALYSIS

Ted Roach

Request for Large Machine Analysis of 31 Element YAGI design presented in Bill
Seabreeze’s paper at the 1987 ACES Conference

Results of the antenna analysis on Bill’s expanded MININEC3 using corrected
element lengths came out very close to the published measurements for the antenna.
However, the uncorrected elements lengths gave and additional 1dB of gain that all
experimenters indicated was not possible. Results for a shorter 18 element YAGI using
the same program came out exactly. Questions to be answered are:

1. Should double precision math belused when you have such a large number
of pulses (217)?

2. Or should double precision math be used if antenna gain exceeds a certain
number of dB?

3. Or would the 31 element YAGI actually give the 20.7 dB of gain if
elements were longer or the feed point exactly matched, or if the whole thing were
elevated above ground some exact distance?

4. Or should we just say the results are good enough?

In any case the expanded MININEC3 program appears to provide excellent
results for a large number of elements just as is. However, in the interest of getting the
above questions resolved it would be interesting to run the antenna design on a larger
computer. If one of our members wishes to explore this further, note that the design
details of the antenna are provided in the December 1986 issue of HAM Radio
Magazine. Or I will provide a copy of the article upon request.
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NEC-3 ERROR ALERT!!! *

G. J. Burke
Lawrence Livermore National Laboratory
Livermore, CA 94550

An error has been found in NEC-3 in the calculation of the radiation pattern for an antenna
when using the radial wire ground screen approximation. The reflection coefficients for
this case were the reciprocal of the correct values. The present incorrect statements at
lines 165 and 166 of subroutine FFLD are

RRV=(R0OZ+ZSCRN*ZRSIN)/ (-ROZ+ZSCRN*ZRSIN) FF 165
RRH=(ZSCRN*ROZ+ZRSIN)/(ZSCRN»ROZ-ZRSIN) FF 166

The correct expressions are

RRV=-(R0OZ-ZSCRN*ZRSIN)/(ROZ+ZSCRN*ZRSIN) FF 165
RRH=(ZSCRN*ROZ~-ZRSIN)/ (ZSCRN*ROZ+ZRSIN) FF 166

The same expressions are used in NEC-2 but are correct there since the sign of ROZ is
changed before the image field is computed. The ground-screen reflection coefficients for
the near field in NEC-3 are correct. It should be remembered, however, that a vertical
monopole at the center of the radial wire ground screen will see an infinite wire density at
the reflection point and, hence, the current will be the same as over a perfectly conducting
ground.

The effect of this error on the antenna gain will be greater for sparse ground screens and
poor ground. For dense ground screens the reflection coefficient is near unity so using the
reciprocal makes little difference. In any case it should be remembered that the radial
wire ground screen approximation is only valid for relatively dense screens and neglects
diffraction from the screen edge.

The following NEC data set can be used to test the ground screen approximation:

CETEST OF RADIAL WIRE GROUND SCREEN APPROXIMATION
Gw1,5,0.,0.,0.,0.,0.,2.5,.001,

GE1,

FRO,0,0,0,30.,

GNO,100,0,0,10.,.01,3.,.0001,

EX0,0,1,0,1.,

RP4,10,1,1000,0.,0.,10.,0.,

EN

* Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.
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The input impedance for this monopole, using single precision NEC-3 on a VAX computer,
was 40.1092 + j23.5529 ohms. The antenna gains before and after correcting the error in
reflection coefficients are show below.

Antenna gain computed by NEC-3 single precision with error in reflection coefficients for
radial wire ground screen:

- — ANGLES - -
THETA PHI
DEGREES DEGREES
0.00 0.00
10.00 0.00
20.00 0.00
30.00 0.00
40.00 0.00
50.00 0.00
80.00 0.00
70.00 0.00
80.00 0.00
90.00 0.00

- POWER GAINS -
VERT. HOR. TOTAL

DB DB DB
-999.99 -999.99 -999.99
-12.14 -999.99 -12.14
-6.02 -999.99 -6.02
-2.37 -999.99 -2.37
0.24 -999.99 0.24
2.28 -999.99 2.28
2.98 -999.99 2.98
2.68 -999.99 2.68
-0.05 -999.99 -0.05
-999.99 -999.99 -999.99

Antenna gain computed by NEC-3 single precision after correction of error in reflection

coefficients:

~ — ANGLES - -

THETA PHI

DEGREES DEGREES
0.00 0.00
10.00 0.00
20.00 0.00
30.00 0.00
40.00 0.00
50.00 0.00
60.00 0.00
70.00 0.00
80.00 0.00
90.00 0.00

VERT.
DB

-999.
-12.

g&mm:—-é:‘o&
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20

.15
.61
.14
.83
.45
.19
.42

- POWER GAINS -
HOR. TOTAL

DB DB
-999.99 -999.99
-999.99 -12.20
-999.99 -6.15
-999.99 -2.61
-999.99 -0.14
-999.99 1.63
-999.99 2.45
-999.99 2.19
-999.99 -0.42
-999.99 -135.40
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MININEC3 UPDATED

This continues the update mechanism for MININEC3 (see ACES NEWSLETTER
Vol. 1 No. 2, p.27). The following update will bring the distributed code up to version 10.
To add lines of code, it is necessary to use the renumber option in BASIC to step the lines by mc
than one, add the appropriate lines, and then renumber by ones. Remember that the code as
received will not run under the regular BASIC interpreter. You must compile it or reduce the lai
arrays which cause it to exceed BASIC’s 64K memory limit.

1 REM *whkdk MININEC(3) **w#xwiwwk NOSC CODE 822 (JCL CHANGE 10) 5-1-87

342 REM wewwwwswus ADDITION OF LOADS *h*wmwiws
343 IF NL=0 THEN 377

344 F5=2*"P*F*1000000! Ceveas ADD *1000000 FACTOR
345 FOR I=1 TO NL

346 IF LS(I)<1 THEN 366 K mmin CHANGE LINE

347 REM ----- S-PARAMETER LOADS

348 U1=0

349 u2=0

350 p1=0

351 p2=0

352 s=-1 Crasan CHANGE LINE

353 FOR J=0 TO LS(I) STEP 2

354 $=-5 Ko mbim MOVE OLD LINE 359 TO HERE

355 UT=UT+LAC1,1,0)*S*F5~J
356 D1=D1+LA(2,1,J)*S*F5")
357 L=J+1

358 U2=U2+LA(1,1,L)*S*F5°L
359 D2=D2+LA(2,1,L)*S*F5 L
360 NEXT J

361 J=LP(1)

362 D=D1*D1+D2*D2

363 LI=(U2*D1-D2*U1)/D

364 LR=(U1*D1+U2*D2)/D

365 GOTO 389

366 LR=LA(1,1,1)

367 LI=LA(2,I,1)

368 J=LP(I1)

369 F2=1/M

370 IF C%(J,1)<>-C%(J,2) THEN 372
371 IF K<O THEN F2=2/M

372 ZR(J,JI=ZR(J, J)+F2*L1
373 Z1€J,d)=21(J,J)-F2*LR
374 NEXT I
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LIGHTNING CURRENT REDISTRIBUTION

BY
W. P. GEREN
B. G. MELANDER
D. L. HALL

SCIENCE AND ENGINEERING ASSOCIATES, INC
701 DEXTER AVENUE NORTH
SEATTLE, WA 98109
206-285-8686

ABSTRACT

This paper presents a multilevel transfer function approach
to determining lightning coupling to aircraft circuitry. The
first level transfer function relates the airframe current
discribution to che lightning channel current. The second level,
which is the principal topic of this paper, relates the current
in individual wires and shields in various locations within the
aircraft to the total current flowing through the surrounding
airframe. The third and innermost level relates voltages and
currents at the pin level to wire and shield currents using a
transmigsion line model. The source for each successive level is
obtained from the currents computed in the preceding level.

The major part of this paper describes a technique for
calculating the current distribution on a structure made up of
strips having arbitrary conductivities and thicknesses. It can be
used to determine currents on wires or shields located within an
aircraft, for example in a cockpit or landing gear bay. The
fund tal ptions limiting the approach are that the
structure caa be locally approximated as two dimensional, the
structure is electrically small in the transverse dimension, and,
for fields within a closed surface, the structural thickness is
small compared to a skin depth.

The REDIST code developed for the two—dimemsional current
calculations is described along with verification established by
comparigson with analytical and measured results.
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INTRODUCTION

Maximum current and voltage levels on aircraft
components or LRU’s (line replaceable units) must be
predicted for an airecraft struck by lightning to
adequately protect the LRU’s and thus the aireraft.
multilevel transfer function approach to lightning
coupling analysis has been proposed in the past (e.z.
Auckland and Wallenberg). This approach is shown
schematically in Figure 1. The approach consists of
three levels of analysis. The first is to determine the
exterior airframe current using mechod-of-moments codes,
either wire grid (e.g. WIRANT) or surface patch (e.g.
NEC or SRC), The next level is to calculate interior
tields and induced currents on wiring and shields within
regions of the aircraft such as the cockpit or fuselage
interior, Transfer functions modelling this coupling
have been determined in the past by using simple models
or direct measurements of aperture, joint, or diffusion
coupling., Use of more detailed models specific to the
geometry under consideration i3 a more accurate way to
determine the shield transfer functions. The third
level in the lightning coupling analysis is to determine
the transfer function onto LRU pins by using
transmission line models of the wiring with specified
LRU load impedances.

A

This multilevel analysis approach assumes that the
coupling among the various levels is negligible, i.e.
that the shields and wire bundles inside the aircraft do
not have an appreciable effect on the exterior airframe
currents and that the wiring inside the shields does not
perturb the shield currents. In cases for which the
levels are coupled, the model can be modified to include
the interlevel coupling. For example, internal metal
structure or wire bundle shields in a mostly graphite
aircraft will carry considerable current at low
frequency. The internal fields will be dependent on the
current carried by this structure at low frequencies
rather than diffusion through the graphite skin panels.
By including some detail of the internal structure in
the aircraft WIRANT model, for example, cables in a
graphite wing, the inter-level coupling is simulated in
the model. Thus, the multilevel approach has the
flexibility to accurately model lightning current flow
through a mixed material aircrafc.

The majority of this paper concerns itself with
calculations of shield current transfer functions for
shields located in regions of mixed materials. A
similar problem was analyzed by Fisher (2) and Burrows
{3) for metallic structures of constant cross-section,
Their approach was to segment the structure into
longitudinal strips, compute the corresponding self aand
mutual inductances, and obtain the current division
wwong the scrips by solving the resulting impedance
aatrix equation relating the currents to the volrage
drop along the structure. This is a two-dimensional
quasistatic approximation which yields good results for
magnetic fields external to a conducting surface.

With the advent of graphite-epoxy materials in
aircraft structures, it has become necessary to predict
the distribution of currents among electrically
connected conductors having dissimilar conductivities.
In addition, since the conductivity of graphite-epoxy is
much lower than aluminum, it is ry to pute
internal magnetic fields. This was done in the Burrows-
Fisher approach by adding resistive terms to the
impedance matrix, corresponding to the sheet resistance
of the material. The method of dividing the structure
into strips and computing the impedance matrix may be
described as the circuit analysis approach to current
redistribution. An alternative approach is to pose the
problem as an electromagnetic boundary-value problem and
use the method-of ts to pute current
Jdistributions. This technique is the fields analysis
approach.

An existing method-of-moments approach which could
be used for the two-dimensional analysis is the code,
WIRANT, since it is able to incorporate arbitrary
materials within a model, WIRANT represents an object
under analysis such as an aircraft by a wire grid model.
However, results obtained with this code for circuit
wiring near other structure are not reliable due to
field leakage through the grid. This is because the
fields exhibit an artificial spatial variation near flat
surfaces represented by wire grids due to field
concentration at the grid elements. An example of this
irregularity is seen in Figure 2a. The example shows an
aluminum wire over an aluminum ground plane. This
effect can be minimized by including more wires in a
model, Wires need to be spaced about as close as the
spacing of the shield and the plane. This method scon
becomes prohibitive due to the large number of elements
needed., Because of this, we have opted to develop and
use a two—-dimensional magnetostatic code, which
represents surfaces as flat strips. Such a code has
demonstrably superior performance for accurately
computing interior fields and near-surface fields, in
cases where the two-dimensional magnetostatic
approximation is justified., Figure 2b shows the same
case as in 2a using REDIST to calculate the fields.
Note that the fields are very uniform around the plane,
not localized as in WIRANT.

For metallic and graphite-epoxy materials, there
are three frequency regimes of interest within the
lightning spectrum. They are, in order of increasing
frequency, resistive current division, inductive curreat
division, and diffusion. In the first two, the current
density Ls constant across the sheet thickness, and the
current distribution around the structure perimeter is
determined by either resistive division, at low
frequency, or by inductive division, at frequencies for
which the structure inductance dominates its impedance.
The diffusion regime is defined as those frequencies for
which the sheet thich is parable to, or greater
than, the skin depth of the material. In this case, the
current density across the sheet s concentrated on the
outer surfaces. For closed structure, the fields are
excluded from the interior regions at high frequency.

The fields internal to a closed metallic structure
are insignificant throughout the lightning frequency
range because of the long diffusion time through the
surface. However, in realistic aircraft structures
there are always joints and other discoantinuities to
produce internal fields through aperture coupling. On
the other hand, structure coasisting in part or whole of
graphite epoxy will have appreciable internal fields
which are produced by diffusion through the graphite or
direct internal current conduction. Provided that the
sheet thickness is less than the skin depth of graphite-
epoxy, the internal fields can be computed by current
division among the structural members using REDLST.

APPROACH

The basic approach to calculating the currents and
fields surrounding a complex multiconductor two
dimensional structure is to describe the structure as a
series of electrically-connected two dimensional thin
strips. The problem is then set up to solve using
method of moments techniques. The assumptions
fundamental to this approach include:

(1) The structure can be locally approximated as
two~dimensional;

(2) Current flow is along the axis of the
structure;
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(3) The cross-section of the structure is
electrically small in the frequency range of
interest;

(4) The structure can be approximated by thin

strips of appropriate conductivity. The

thickness is assumed much less than the skin
depth of the material at the frequeancies
analyzed.,

Using these basic assumptions, the
elestromagnetic equations to be svlved are as follows:

92 Az = - Mo Jx (€3]

with the boundary conditions on the conductor surface
given by

Ez + j-w-Az = comstant (2)

Ez = Zg * Jz

3)
where Az = axial component of vector potential

Jz = axial component of current density

Ez = axial coamponent of electric field

Zs = gurface impedance of conductor

For thin gheets, sheets thinner than the skin depth at
the frequency of interest, the surface impedance is
given by

Zs = N/(2*TANH(T * T/2)) ()

where
T=vV, waao
T = gheet thickness in meters

u, = permeability of free space (4 w x E=7)

N -Jjﬂ n I|.ll'||

Equation (1) is the usual magnetostatic
approximation for fields in the presence of a current
source for electrically small sources. Equation (2) is
a consequence of assuming equipotential surfaces. This
i3 the same assumption Burrows made in his analysis (3)
and implies this analysis is only valid for good
cunductors. Equation (4) gives the expression for the
surface impedance, This equation was derived for thin
sheets with thicknesses smaller than the skin depth and
assumes constant Ez across the sheet.

The solution to equation (1) can be written in
terms of a 2-D Green’s function as shown in equation
(5).

J:(;') DX*

Az = no TNCQU/(|X = XD (s)

[he integral is performed over the width of the current
sheet assuming no variacion over the thickness, T.

Using cthe method of moments approach, the
conducting surface is subdivided into small strips
assumed Co carry constant current density. The
integration in equation (5) then becomes a sum of

integrations over constant current carrying strips. This

integration can be done exactly using the above
assumptions. Therefore, Az can be expressed as a sum
over the unknown currents times an analytic function
dependent on relative location of the current strips,
th:ir orientation, and their width.

The method of moments approach for calculating Az
coupled with equations (2)-(4) give a matrix equatiom to
be solved for the current density in each strip as shown
in equation (6).

Jz * Nf(2Z*TANH(Y * T/2) + jw FJJF‘; = CONSTANT (6)
where Fij is a function of the strip width, orientation,
and location, It 1is derived from the exact integration
of equation (5) over a strip of comstant curreat.

The REDIST code was developed to implement the
solution of this equation. The boundary conditions of
equation (3) and (4) are imposed at the centers of the
strips. To use the code, the geometry is input with the
various conductors broken into thin strips. The
currents on each strip are calculated for each frequency
chosen., To check that the strip division is an adequate
representation of the geometry, strips are further
subdivided until the current distribution no longer
changes. For many geometries this process only involves
a couple of trials. The code can also calculate the
electric and magnetic fields throughout the geometry.
Examples are given in the succeeding sections.

VERIFICATION OF REDIST

In order to verify the accuracy of REDIST, it was
compared against test cases which were relevant to the
geometries of interest, as well as calculable by siaple
analytic expressions. Two classes of tests were
defined, i.e., a wire over a ground plane and the fields
in a rectangular trough. The REDIST and analytic
calculation comparison was excellent for all cases
considered.

Wire over ound plane: Three cases were
considered for this geometry, namely, inductive division
between a wire and ground plane, resistive division

between wire and a ground plane, and a resistive wire
over a perfect ductor. The ry and parameters

chosen for each case are shown in Figure 3. The first
two cases yield almost fr y=independent transfer
functions for the wire., The transfer functions for
these cases are shown in Figures 4a and 4b. The

transfer function for the third case 1s shown in Figure
4c. 1t varies proportional to frequency at low
frequency where the wire is resistive and levels off
when the wire inductance becomes important. The
comparison of the REDIST and analytic results are liscted
below:

Table 1

Comparison of REDIST and Analytic Calculations
Wire Over Ground Plane

Inductive division:

=35.0 dB
=35.3 dB

analytic result =
REDIST result =

Resistive division:

=-54.9 dB
-54.9 dB

analytic result =
REDIST result =
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Resistive wire over perfect conductor:

Frequency(Hz) Amplitude(dB) Phase(degrees)

analytic REDIST analytic REDIST

lE1 ~130.63 ~-130,48 90.00 89,90
LE2 =110.63 =110.49 89,99 89,96
1E3 =-90.63 -90,50 89.91 89,89
1E4 ~70.63 -70,50 89.04 89,01
1ES =30.75 =50.63 80,44 80.19
lE6 =36.47 -36.50 30.71 30.00
1E7 =35.17 -35,29 3,40 3.24

Fields in rectangular trough: The magnetic field at
the bottom center of a rectangular trough was calculated
tor a range of depth=-to-width ratios and compared with
an analytic result obtained by a conformal
transformation. All REDIST calculations were performed
with the same segmentation of the geometry.

Table 2
Comparison of REDIST and Analytic Field Calculations
Rectangular Trough

Depch/Width analycic REDIST Error
L« 6. I6E-2 64 45E=2 L. 4Z
1.67 7.83E-3 B.UBE-3 3.22
2.5 5.71E~4 5.50E-4 =3,7%
3,33 44 17E-5 3.93E-5 5,82

SCALE MODEL TEST

A scale model test of REDIST was made with a
rectangular box. The box was coated with copper paint
to make the box slightly resistive (the total box
resistance was measured to be 0.25 ohms)., The box
geometry and test setup is shown in Figure 5. The box
measured 6 inches square in cross—section and 15 iaches
long. A wire was laid along one face, 1.5 inches from
the face and terminated in a variety of resistances to
the ground plane, The box was enclosed in an outer
chicken wire box mounted on an aluminum sheet ground
plane. The box was taped to the ground plane with
copper tape and furcther painted with silver paint to
maintain good joints to the ground plane.

This setup is similar to one which might be used
for lightning simulation testing of an object. More
uniform fields and curreat distribution are provided by
the coaxial transmission line setup of the test object
and’ the return path. The electric and magnecic fields
distribution approximate that for an object such as an
alrcraft {n free space.

The transfer function of the current on the wire
relative to the input current was measured for three
terminacing resistances on the wire, no load, 0.l ohms,
and 0.2 ohms. The measured waveforms are shown in
Filgures 6a-c, The waveforms were measured from 1 KHz to
100 MHz. These were limits imposed at the lower
frequency by nolse and at the high frequency by
limitations of the current probes (they were rated to
140 MHz). The resonances seen in the data result from
transmission line resonances due to the length of the
box and the coax cables used for measurement.

Two REDLIST models of the test setup were run. The
first included the box, the wire, and an added lumped
inductance due to the coax used to measure the wire
current, This geometry is shown in Figure 7a. The
second model included the return cage as shown in Figure
7b. The return cage made no difference on the transfer
functions calculated for the wire. This is due to the
symmetry of the geometcy, The resistance of the box was
measured to be 0.25 ohms. The resistance of the wire
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and short length of coax was measured to the ground
plane and was 0.062 chams. These resistances were uicd
to determine the lnput parameters for thickness for the
REDIST models. The wire was modelled as a hexagon with
a radius, thickness, and conductivity corresponding . a
22 AWG wire, Extra lumped resistance was added to ti.-
model to include the short length of coax and’ the added
resistors used for the three tests. An added lumped
irnductance was added to the REDIST model equal to the
measured inductance of the short coax length. Thus all
input parameters to REDIST were measured resistances,
inductances, and lengths. No other parameters were
included.

Comparisons of the three termination resistances
are shown In Figures 6a—c with the triangles in the
figures representing calculated values. A more detailed
comparison is shown in Table 3. The results are very
good at all frequencies. The largest error is at 100
KHz where the agreement is off by at most 1,8 dB., This
imounts to an error of 23%., Other frequency results
siiow agreement ranging from 0,1 dB to 0.8 dB. This is
excellent agreement showing that REDIST can predict
currents in siample geometrles. More extensive testing
of REDIST with more complex test setups and including
more use of different materials is needed to benchmark
the code for reliability in use as an aircraft coupling
code,

Table 3
) Comparison REDIST and Measured Data

R load = 0, no extra load

Frequency Calculated Measured
(Hz) (dB) (dB)
1E3 =1.9 -1.8
LE4 =2.0 =2.3
1E5 =5.7 -7.5
LE6 -23.2 -22,7
1E7 =44,0 -43.2

R load = 0.1 ohms

Frequency Calculaced Measured
(Hz) (dB) (dB)
1E3 -4,3 -4,3
1E4 4.4 =4, 6
1IES =6.9 -8.7
1E6 =23.2 =230
1E7 -44.0 =43.2

R load = 0,2 ohms

Frequency Calculated Measured
(Hz) (dB) (dB)
1E3 =6.2 =6.3
1E4 =6.3 6.6
LES -8.0 -9.7
1E6 =-23.3 =23.2
1E7 =44.0 =43, 4

MODELLING EXAMPLE

An example of the use of REDIST is given in this
section. This example is meant to be simple and
lnstructive in the use of this code, The model is shown
in Figure 8, The model is a box with three metal sides
and one graphite epoxy side. The model geometry is read
from a data file. The data input includes the box
geometry, the number of segments the box is to be divided




into (variable depending on frequency and geometry), the
tuickness of the box walls, and the conductivity.

Inside the box is a test wire in various locations as
shown by the numbers in the figure. REDIST calculates the
current on the test wire relative to the input curreat for
the total structure and writes the result to a data file.
This transfer function is shown in Figure 9.

These transfer functions can be multiplied by the
transfer function from a WIRANT model, for example, and
then multiplied by the lightning threat spectrum, for a
complete analysis of shield currents. The WIRANT model
current transfer functions can be made more accurate by
including wire wodels of the metal walls of this
geometry as part of an aircraft model. The total
current flowing through these walls and the graphite is
then added in WIRANT and used as input to the REDIST
model, This gives a two level transfer functiom
approach to calculating shield currents using WIRANT and
REDIST.

A simpler and more severe estimate of shield
curreats is to simply multiply the shield transfer
function obtained from REDIST by the source current,
e.g. a double exponential lightning spectrum. The
rasulting current pulse waveforms calculated on the test
wire in the various locations are shown ia Figure 10.
[he peak current levels vary over an order of magnitude.
The {nduced current is small for locations well away
from the graphite lid and near the metal bottoa plate
and increases steadily as the wire is moved toward the
graphite away from the metal. These results show that
the REDIST code could be useful in evaluating potential
<iring locations.

The currents un the othec sections of the box can
be output as well. Both electric and magnetic fields
components can be calculated at specified points. The
magnetic field inside the box is shown in Figure lla and
11b. The contours shown are the same levels for the two
cases shown. The fields plots shows the field leakage
through the graphite top at low frequency (l1la) and the
exclusion of these fields at higher frequency {1lb).

LIMITATIONS OF REDIST

There are several limitations to the use of the
REDIST code. The first is that the geometry under study
be approximately two dimensional, Often the current
flow is in one predominant direction so this coandition
is satisified. The second limitation is high frequency
validity. The upper frequency limit is determined when
the thickness of the conductors is about equal to the
skin depth of the conductor. For many instances this
upper limit is above the lightning frequency spectrum
for thin metallic skins and webbing and most graphite
structure. Only thicker busbars and larger structural
members may not fit this requirement. Another frequency
limitation is that the entire structure is to be
considered electrically small. The last limitacion
applies to the geometrical complexity to be modelled.
The number of segments used in the model is limited by
the capacity of the computer and time restrictions.
Models have been runm to date on IBM-PC compatible
computers. The largest model run has been 82 segments.
This model took about 3 1/2 hours to run 51 frequencies.
Fairly large models (100 or so segments) can be easily
run using REDIST on microcomputers making this code
inexpensive to use for lightning coupling ancalysis.
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SUMMARY

This paper has described an approach to calculating
currents on a multiconductor structure in the event of a
lightning strike using multiple transfer functions. The
approach is based on a code developed to calculate
transfer functions on shields or structure within an
ailrcraft structure such as in a cockpit or landing gear
area, The approach can calculate the current on any
plece of the structure, wire or shield as a function of
frequency. These curreats can then be multiplied by
transfer function results from an aircraft model using
for example, WIRANT, and then multiplied by the source
curtent, The resulting frequency domain waveform can
then be Fourier transformed to give the curreat pulse
expected on that shield or wire. This code is expected
to improve the estimates of lightning currents induced
on internal or external wires or shields for aircraft
lightning protection with special applicacion to mixed
graphite/metal aircraft.
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ALUMINUM WIRE OVER ALUMINUM PLANE
CONTOURS OF CONSTANT VECTOR POTENTIAL

CALCULATIONS DONE WITH WIRANT CODE

Figure 2a - Magnetic Field Contour Plot for Wire over
Groundplane Using WIRANT Code

CALCULATIONS DONE WITH REDIST CODE

Figure 2b - Magnetic Field Contour Plot for Wire over

Groundplane Using REDIST Code
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WIRE OVER GROUNDPLANE
REDIST CODE VERIFICATION
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h= .05 ¢t=.0013nm H=10m d=.012nm

INDUCTIVE DIVISION: Ow = Op = 3.5€7

T.F.(wire) = .9 h
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RESISTIVE DIVISION: Ow = 1E2 Op = 1E3

T.F.(wire) = E—?ﬁ

RESISTIVE WIRE OVER PERFECT CONDUCTOR: G = 1E4 Op = 1E12
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lgure 3 - Wire Over Groundplane Geometry and Parameters for REDIST Code Verification
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TRANSFER FUNCTION (08) -

TEST WIRE TRANSFER FUNCTION
ALUMINUM WIRE QVER ALUMINUM PLANE

e i 164 15 s e
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Figure 4a - Wire Over Groundplane -- Inductive Division

TRAMSFER FUNCTION (DB)

RESISTIVE WIRE OVER RESISTIVE PLANE
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IR T | sl ot aaaal gl toaaaand

Figure 4b -

TRUSFER FUCTION (08)
8

-110

1131 e > ] 1E4 15 185
FREQUENCY (4Z)

Wire Over Groundplane -- Resistive Division

RESISTIVE WIRE OVER PERFECT CONDUCTOR

Figure 4c - Resistive Wire Over Perfect Conductor
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SCALE MODEL TEST GEOMETRY

Current Probe - Input Current - [~ Current Input

To Network Analyzer
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Aluminum Groundplane

Current Probe - Wire Current - To Network Analyzer

Chicken Wire Cage

Figure 5 = Scale Model Test Geometry
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SCALE MODEL TEST
WIRE TRANSFER FUNCTION
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Figure 6c - Wire Transfer Function Measurement Compared

to REDIST Calculations -- Load Resistance = 0.2 ohms
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SCALE MODEL TEST
REDIST MODEL

o 0b = 5667 t = 4.47E-8

1.5°

€ — g }

Figure 7a - REDIST Geometry Used for Scale Model Test Calculations

Oc = 3.567 t = 1E-3

« 248 —

Figure 7b - REDIST Geometry Used with Return Cage Used for Scale Model Test Calculatioms
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METAL BOX WITH GRAPHITE LID

REDIST MODEL

1.0m

g A

5

4 B
D 3

i ¢

1.0m

Wire Locations Denoted by #s 1-6

WALL STRUCTURAL PRRAMETERS
THICKNESS [ CONDUCTIVITY
(m) (mho/m)
A . 8023 1.5 E4
B .8013 3.5 E?
C .0813 3.5 E?
D .0013 3.5 E?

Figure 8 - Geometry of Metal Box with Graphite Lid
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_ TEST WIRE TRANSFER FUNCTION
-2 EXAMPLE - METAL/GRAPHITE BOX

TRANSFER FUNCTION (dB)

L
- =100 NEPUPTTT BEEPETTTTY EPENPTY EEPEPTTIRY BEPEPPPIY EEPEPTTrr B

LED 1E1 12 18 1E4 165 18 1€7
FREQUENCY (Hz)

Figure 9 - Wire Transfer Function for Metal/GE Box for Several Wire Locations

TEST WIRE CURRENT
EXAMPLE - METAL/GRAPHITE BOX

CURRENT (KILOAMPS)

TIE (MICROSECONDS)

Figure 10 - Wire Current for Metal/GE Box for Several Wire Locations
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METAL BOX WITH GRAPHITE LID

CONTOURS OF CONSTANT VECTOR POTENTIAL
F = 1E3 HZ

F = 1E6 HZ

Figure l11b - Magnetic Field Contours for Metal/GE Box at 1 MHz
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ITERATIVE METHODS: WHEN TO USE THEM FOR
COMPUTATIONAL ELECTROMAGNETICS

Andrew F. Peterson
Electromagnetic Communication Laboratory
University of Illinois
1406 W. Green St.

Urbana, IL 61801

ABSTRACT: The question of when to use an iterative method is
addressed from the perspective of the electromagnetics (EM)
computer code user. Recent research suggests that, at least in
some situations, iterative methods offer significant advantages
over direct methods of solution. The circumstances surrounding
these situations are investigated, and the features favorable to
iterative methods are identified. The paper also includes
suggestions for incorporating iterative algorithms into existing
computer codes.

1. INTRODUCTION

There has been considerable research activity directed toward
the development of iterative techniques for electromagnetic (EM)
radiation and scattering problems [1]-[24]. However, from the
perspective of the EM computer code user, the fundamental
guestion of when to use an iterative solution method is seldom
addressed. There are generally three situations for which
iteration may be recommended over direct methods of solution.
This paper will investigate these situations and attempt to
clarify the degree to which iterative methods may actually be
useful. In circumstances where iteration is believed to offer
advantages over direct methods, suggestions are given for

implementing an iterative algorithm within an existing code. Many

iterative algorithms are in widespread use, and no comprehensive
survey is made here. However, the observed performance of one
iterative algorithm, the conjugate gradient (CG) method, is
reported for electromagnetics applications.

Recent research suggests that iterative methods offer
advantages over direct methods in three situations. The first
involves ill-conditioned equations. Since direct methods of
solution fail for badly conditioned systems, it is often argued
that iteration may be the only stable way to solve these
equations. The second situation arises if the convergence of an
iterative method is very rapid, either as a result of a good
initial estimate of the solution, minimal accuracy requirements,
or other unigue properties of that particular problem. If the
convergence rate of an iterative algorithm is fast, the
computational cost (i.e., CPU time) may favor the use of
iteration over a direct method. Finally, some equations
discretize to produce sparse matrices or matrices with special
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structure. Iterative algorithms can easily exploit any redundancy
in the matrix elements to reduce computer memory requirements,
yielding benefits for large-order systems (reduced CPU time due
to fewer out-of-core storage transfers).

Although these situations may favor the use of iteration, the
tradeoff between iterative and direct methods of solution is also
dependent on the machine in use (the word length, the amount of
available fast memory, and the presence or absence of specialized
architectures such as pipeline processors). Thus, it is
impossible to make definitive recommendations on the general use
of iterative solution methods. Instead, the information presented
here is intended to aid the user in making this decision for
himself.

To understand the role of iteration in computational EM, it is
helpful to note that the numerical solution process essentially
consists of two different parts. The first is the discretization
process, where the original equation to be solved (differential
equation, integral equation, etc.) is converted to a discrete
system of finite order (a matrix equation). The second is the
solution process, where the resulting matrix equation may be
treated using either direct or iterative methods. The position
adopted here is that, in general, any combination of
discretization procedure and solution algorithm may be used. For
clarity, we make a distinction between the terms iterative
algorithm (a "black box" useful for solving any discrete system)
and iterative technique (i.e., procedures such as the
Spectral-iterative technique (SIT) [3], (4], [23] that combine
specific discretizations with specific iterative algorithms).
Note also that the term direct method usually refers to general
Gaussian elimination, although specialized direct methods are
also available for the treatment of banded, Toeplitz, and other
special systems.

2. ITERATION AND ILL-CONDITIONED SYSTEMS

Gaussian elimination fails because of an accumulation of
round-off error when applied to a system whose condition number
exceeds a certain limit depending on the machine word length and
the matrix order [2], [4], [26]. If implemented in a robust
manner, iterative methods do not generally suffer from a buildup
of round-off error, although they do suffer from round-off error
within each iteration step. Because of the inherent limitation
of Gaussian elimination, iterative methods are sometimes
recommended for the treatment of ill-conditioned systems [2],
(17]. However, it is only in special cases that iteration will
likely be successful for the treatment of badly conditioned
equations.

Generally, the convergence rate of iterative algorithms

depends on the condition number of the system matrix, and in
practice is slow for systems that are ill-conditioned [27]. If
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the equation is very badly conditioned, convergence may slow to
the point of stagnation [12], [21]. However, if the excitation
(i.e., right-hand side of the system) is orthogonal to the
eigenvectors that correspond to the near-zero eigenvalues, the
convergence rate may be acceptable. For such an excitation, the
near-zero eigenvalues will be invisible to the iterative process,
so that the system appears to be better conditioned than it
actually is. (We will refer to such eigenvectors and eigenvalues
as extraneous). Contrived examples illustrating the successful
iterative solution to badly conditioned systems usually involve
extraneous eigenvalues [2].

Extraneous eigenvalues may arise in electromagnetics
applications, especially in circumstances where a high-order
discretization is used within the numerical modeling procedure.
For instance, consider the numerical treatment of the electric-
field integral equation (EFIE), whose spectrum consists of an
infinite set of discrete eigenvalues. The discretization process
requires the systematic projection of the eigenvalues onto the
matrix operator, so that a relatively low-order matrix model of
the original equation captures the dominant eigenvalues [24]. As
the order of the matrix equation is successively increased, more
and more eigenvalues are projected from the continuous operator
to the matrix operator. Depending on the problem excitation,
eventually the additional eigenvalues will be extraneous. The
EFIE has the property that the eigenvalues appearing in the
matrix model tend to spread in the complex plane as more and more
are projected from the integral operator {24]. If the equation is
over-discretized, so that a very large matrix is used in a
problem with relatively few important eigenvalues, the condition
of the system may degrade because of the extraneous eigenvalues.
But since the extraneous eigenvalues are invisible, iterative
algorithms can provide a stable solution process, even if the
condition number is such that Gaussian elimination fails.

Thus, it is possible that iteration can be used to solve
certain systems that are too ill-conditioned for treatment by
direct methods. However, in the absence of theoretical support
indicating that near-zero eigenvalues (or very large eigenvalues)
are extraneous, there is little reason to expect iteration to
suceed in the solution of a very ill-conditioned system. In
addition, round-off errors may prevent the successful solution of
a system even though the near-zero eigenvalues are extraneous.

3. SPEED OF ITERATION VS. GAUSSIAN ELIMINATION

There are a variety of factors that affect the efficiency of
iteration compared to Gaussian elimination. Iteration can be
terminated after a few digits of accuracy are obtained in the
solution, which may be all that is desired or needed for the
application at hand. If a good initial estimate of the solution
is available, an iterative algorithm may be able to refine the
result to necessary accuracy in far less time than required for
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the Gaussian elimination solution of the same system (which does
not make use of the initial estimate). Sometimes, the iterative
algorithm may converge at a very fast rate, reducing the need for
a good initial estimate (for instance, fast convergence may
result if only a few eigenvectors are excited by the right-hand
side). In other words, there are circumstances where iterative
algorithms require less computation than Gaussian elimination. It
is difficult, however, to identify these situations except by
trial and error. In practice, it is much more likely that the
iterative algorithm requires more computation than elimination,
which helps explain why iteration is not often recommended for
the treatment of general matrix equations (as opposed to systems

. With sparsity or special structure, as discussed in Section 4)

[26]. A second difficulty lies with the fact that many of the
iterative algorithms in widespread use will diverge for the
indefinite complex-valued equations usually arising from EM
problems (1]-(4], [6], [9]-(11], [19].

The conjugate gradient (CG) method (25]-[28] is one iterative
algorithm that has generated widespread interest for EM
applications. For general complex-valued systems, the CG method
can be guaranteed to converge if applied to the normal equations
(the system obtained by premultiplying the original matrix
equation by the transpose-conjugate of the system matrix). 1In a
recent article discussing the convergence of the CG method when
used with EM integral equations, it was observed that the
algorithm typically required N/3 iterations to produce a
reasonably accurate solution, where N is the order of the matrix
equation [21]. (The details of this study are summarized in
Section 6.) These findings indicate that, for EM problems likely
to be encountered in practice, the CG method will typically
require twice as much computation per solution as Gaussian
elimination (unless a very accurate initial estimate of the
solution is available). Thus, it appears that the use of the CG
method will not be cost-effective unless some storage reduction
feature is present in the problem (see Section 4).

There is a significant drawback when using iterative metheods
to treat a system for multiple excitations. EM scattering
problems frequently require the treatment of numerous independent
excitations (i.e., waves incident on a scatterer from many
different directions). If Gaussian elimination is used to

factorize the system matrix into a lower triangular and upper

triangular part, an implicit inverse matrix is available that can
be used to treat any number of right-hand sides efficiently.
Iterative methods do not generate an implicit inverse, and thus
suffer in comparison when used for problems requiring the
treatment of multiple right-hand sides. As a result, when
comparing the speed of an iterative algorithm to that of Gaussian
elimination, the number of right-hand sides likely to need
treatment must be taken into account. '

An example of an iterative technique whose utility seems to

lie primarily with relative speed is the hybrid-iterative method
(HIM) recently proposed for the solution of certain EM scattering
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problems [15], [20]. Specifically, the approach involves the
iterative solution of the magnetic-field integral equation
(suitably discretized) for perfectly conducting scatterers. An
asymptotic approximation is used to construct an accurate initial
estimate of the solution, after which a simple iterative
algorithm is used to refine the result. In a variety of examples
the procedure appears to be more efficient than a comparable
approach using Gaussian elimination, at least for single
excitations [20]. The efficiency of the iterative procedure is
apparently due to the good initial estimate of the solution. A
potential drawback to the procedure is that the simple iterative
algorithm involved will sometimes diverge.

4. ITERATION TO EXPLOIT STORAGE REDUCTION FEATURES

In contrast to the HIM discussed above, most of the iterative
methods proposed for computational EM problems exploit some type
of structure or sparsity in the discrete system (11, [3]-([7],
[9]1-[13], [22]. General purpcse Gaussian elimination algorithms
require the full NxN matrix to be stored in computer memory,
which places a bottleneck on the solution process. Even if the
system matrix posesses significant structure, general direct
methods require the storage of the redundant elements. Although
specialized direct methods are sometimes appropriate for the
problem of interest (such as those for treating Toeplitz systems
[29]), iterative methods offer the possibility of treating more
general systems. For example, slightly perturbed Toeplitz
systems (frequently arising in certain EM scattering problems
[16]) can not usually be treated with conventional Toeplitz
routines,

Differential equations discretize to produce sparse matrix
equations, and this sparsity can be exploited with specialized
direct solvers or with iteration. (Direct solvers are used in
conjunction with schemes for optimum row and column ordering to
compress the bandwidth and minimize the fill-in during
elimination [30].) Although direct methods have grown in
peopularity for the treatment of sparse systems, iterative
algorithms preserve more of the original sparsity and remain the
method of choice for many problems [27]. Differential equation
methods are directly applicable to closed-region EM problems
(31], and progress has been made toward applying them to
open-region EM problems [32].

Often, open-region EM scattering problems are posed in terms
of integral equations. Unfortunately, seldom in practice do the
associated matrices posess significant structure. The primary
exception involves integral equations with convolutional kernels,
which when applied to certain geometries discretize to yield
matrices with discrete-convolutional symmetries. An example is
the Toeplitz structure seen in linear antenna problems [29].
Procedures such as the K-space method (1], the Spectral-iterative
technique [2], (4], (6], [92], [23] and the Discrete-convolution
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method [5], [18] all exploit discrete-convolutional structure via
an iterative solution algorithm. The types of scattering
geometries treated in this manner include flat plates and
surfaces of constant curvature [9], [13], dielectric bodies [4],
(61, [7], (16], and frequency selective surfaces [3], [19].
Details on this type of discretization procedure are available in
the literature [1], [31-(71, [9]1-[13]1, ([22], [23]. Unfortunately,
arbitrarily shaped structures that are convenient to analyze with
surface integral equations (i.e., bent wires, airplanes, etc.) do
not fall into the class that naturally produce discrete-
convolutional symmetries in the associated system matrix. This
may limit the use of iteration for treating integral equations.

5. REMARKS ON ITERATIVE ALGORITHMS AND ELECTROMAGNETICS

There are a variety of iterative algorithms in use in all
areas of science and engineering, and many of these are described
in detail in texts on numerical analysis [25]-[27]. The simplest
iterative algorithm is the Jacobi procedure [26]. The K-space
method (1], the Spectral-iterative technique [3], [4], the
Discrete-convolution method [5], [18], and the Hybrid-iterative
method [15], [20] all initially used a form of the Jacobi
algorithm for the solution of the discrete system. The Jacobi
algorithm has low storage overhead and can be implemented in a
few lines of code. Unfortunately, the Jacobi algorithm is not
theoretically guaranteed to converge for general complex-valued
equations. The EM research community has directed considerable
effort toward improving the convergence of this type of

algorithm, without any effective remedy for most of the problems

of interest [6], [9]1, [11], ([19].

In recent years, the convergence problems associated with the
simple Jacobi procedure have been circumvented by the use of the
conjugate gradient (CG) algorithm [25]-[28]. The CG method is
based on the minimization of a quadratic functional, and if
implemented in a robust manner will never diverge. It requires
more storage and computational overhead than the Jacobi
procedure, and if used with the normal equations is subject to
more round-off error per iteration step. For ill- conditioned
systems and finite precision machine arithmetic, the CG method
sometimes stagnates. However, in most cases the improvement in
convergence reliability (posessing an algorithm that will not
diverge) appears to outweigh these potential drawbacks.

As mentioned in Section 3, the convergence behavior of the CG
method has been observed when used to treat integral equations
representing a variety of EM scattering problems [21]. Most of
the time, the algorithm requires between N/4 and N/2 iterations
to converge to necessary accuracy, where N is the order of the
matrix equation under consideration. This behavior is based upon
the use of a zero initial estimate of the solution and a
discretization involving subsectional expansion and testing
functions. The convergence rate is actually determined by the
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number of important eigenvalues (as opposed to extraneous
eigenvalues) projected onto the system matrix, and thus is not
really a function of matrix order. However, for a discretization
density of approximately 10 cells per linear wavelength, and a
plane wave excitation, the number of important eigenvalues
usually falls in the range from N/4 to N/2. For higher cell
densities, the convergence rate is faster relative to matrix
order. :

6. INCORPORATION OF ITERATION INTO EXISTING CODES

The incorporation of iteration into an existing computer code
need not be a difficult task. In general, an iterative algorithm
can be a "black box" much like the Gaussian elimination routines
used, for example, in the LINPACK library [33]. Iterative
algorithms only require the presence of an implicit matrix
operator, which is a subroutine that when given a column vector
returns the product of the NxXN system matrix with the column
vector. (If the CG algorithm is used with the normal equations, a
second subroutine providing the transpose-conjugate of the system
matrix is also required.) Thus, any structure or sparsity may be
taken into account in the operator subroutine, and need not
affect the organization of the iterative algorithm itself. For
instance, the discrete-convolutional structure arising from the
SIT (see Section 4) can be exploited using the fast-Fourier
transform (FFT) as an efficient alternative to conventional
matrix multiplication [23]. The FFT can be implemented within the
operator subroutine, and kept entirely invisible to the part of
the code that performs the iteration.

Because simple iteration schemes sometimes diverge, it might
be desirable to construct a package of several different
iterative algorithms that could be used in conjunction with each
other in an attempt to optimize the speed of solution. If a
simple algorithm was found to be diverging, another could be
invoked until one with favorable convergence properties is
identified. This approach would eliminate one of the drawbacks of
the iterative techniques used in the past, i.e., the algorithm
might only converge for certain ranges of parameters, leaving the
user unable to treat the other cases [1] [6], [9], [19]. At the
same time, it would permit the use of simple algorithms for
problems where they do converge at a reasonable rate, reducing
the overhead as much as possible.

7. SUMMARY

The above discussion has attempted to clarify the use of
iterative methods in computational electromagnetics. It is
apparent that there are situations where iterative solution
methods offer an improvement in efficiency over Gaussian
elimination. In practice, this improvement is based upon the
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relative speed and storage constraints associated with a given
procedure in a specific machine environment. Because these
constraints are not universal, the EM computer code user must
draw his own conclusion based upon the specific problem of
interest. In the absence of one of the three favorable situations
outlined above, it is likely that iterative algorithms may prove
inferior to direct methods of solution, especially if multiple
excitations are to be treated.

The author welcomes feedback from the reader concerning the
use of iterative methods for electromagnetics applications.

8. REFERENCES

[1] N. N. Bojarski, "K-space formulation of the electromagnetic
scattering problem," AFAL-TR-71-75, Air Force Avionics
Laboratory, Wright-Patterson Air Force Base, Ohlio, March 1971.

[2] T. K. Sarkar, K. R. Siarkiewicz, and R. F. Stratton, "Survey
of numerical methods for solution of large systems of linear
equations for electromagnetic field problems," IEEE Trans,
Antennas Propagat., vol. AP-29, pp. 847-856, Nov. 1981.

[3] C. H. Tsao and R. Mittra, "A spectral iteration approach for
analyzing scattering from frequency selective surfaces," IEEE
Trans. Antennas Propagat., vol. AP-30, pp 303-308, March 1982.

[4] 'R. Kastner and R. Mittra, "A new stacked two-dimensional
spectral iterative technique for analyzing microwave power
deposition in biological media," IEEE Trans. Microwave Theory
Tech., vol. MTT-31, pp. 898-904, Nov. 1983.

(5] H. L. Nyo and R. F. Harrington, "The discrete convolution
method for solving some large moment matrix equations,"
SYRU-DECE-83-14, Dept. of Electrical and Computer Engineering,
Syracuse University, Syracuse, NY, 1983.

[6] M. F. Sultan and R. Mittra, "Iterative methods for analyzing
the electromagnetic scattering from dielectric bodies,"
UILU-ENG-84-2541, Electromagnetics Laboratory, University of
Illinois, Urbana, IL, 1984.

(7] D. T. Borup and 0. P. Gandhi, "Fast-Fourier transform method
for calculation of SAR distributions in finely discretized
inhomogeneous models of biological bodies," IEEE Trans. Microwave
Theory Tech., vol. MTT-32, pp. 355-360, April 1984.

[8] T. K. Sarkar and S. M. Rao, "An application of the conjugate
gradient method for the solution of the electromagnetic
scattering from arbitrarily oriented wire antennas," IEEE Trans.
Antennas Propagat., vol. AP-32, pp. 398-403, April 1984.

50




(9] S. Ray and R, Mittra, "Spectral-iterative analysis of
electromagnetic radiation and scattering problems,"
UILU-ENG-84-2550, Electromagnetic Communication Laboratory,
University of Illinois, Urbana, IL, 1984.

{10] P. M. van den Berg, "Iterative computational techniques in
scattering based upon the integrated square error criterion,"
IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1063-1071, Oct.
1984.

{11] s. A. Bokhari and N. Balakrishnan, "Analysis of cylindrical
antennas - a spectral iteration approach," IEEE Trans. Antennas
Propagat., vol. AP-33, pp. 251-258, March 1985.

[12] A. F. Peterson and R. Mittra, "Method of conjugate
gradients for the numerical solution of large-body
electromagnetic scattering problems," J. Opt. Soc. Amer. A, vol.
2, pp. 971-977, June 1985.

(13] L. W. Pearson, "A technique for organizing large moment
calculations for use with iterative solution methods," IEEE
Trans. Antennas Propagat., vol. AP-33, pp. 1031-1033, Sept. 1985.

[14] J. C. Brand and J. F. Kauffman, "The application of
contraction theory to an iterative formulation of electromagnetic
scattering,”" IEEE Trans. Antennas Propagat., vol. AP-33, pp.
1354-1362, Dec. 1985,

[16] M. Kaye, P. K. Murthy, and G. A. Thiele, "An iterative
method for solving scattering problems," IEEE Trans. Antennas

Propagat., vol. AP-33, pp. 1272-1279, Nov. 1985.

[16] A. F. Peterson and R. Mittra, "On the implementation and
performance of iterative methods for computational
electromagnetics," UILU-ENG-85-~2571, Electromagnetic
Communication Laboratory, University of Illinois, Urbana, IL,
1985.

[17] T. K. Sarkar, E. Arvas, and S. M. Rao, "Application of the
fast Fourier transform and the conjugate gradient method for
efficient solution of electromagnetic scattering from both
electrically large and small conducting bodies,"”
Electromagnetics, vol. §, pp. 99-122, 1985.

[18] H. L. Nyo, A. T. Adams, and R. F. Harrington, "The discrete
convolution method for electromagnetic problems,"
Electromagnetics, vol. 5, pp. 191-208, 198S5.

[19] J. P. Montgomery and K. R. Davey, "The solution of planar
periodic structures using iterative methods," Electromagnetics,
vol. 5§, pp. 209-235, 1985,

[20] P. K. Murthy, K. C. Hill, and G. A. Theile, "A hybrid-
iterative method for scattering problems," IEEE Trans. Antennas
Propagat., vol. AP-34, pp. 1173-1180, Oct. 1986.

51




Ty T

)

D B |

)

I D B |

1

(21] A. F. Peterson and R. Mittra, "Convergence of the conjugate
gradient method when applied to matrix equations representing
electromagnetic scattering problems," IEEE Trans. Antennas
Propagat., vol. AP-34, pp. 1447-1454, Dec. 1986.

{22] A. F. Peterson and R. Mittra, "Iterative based
computational methods for electromagnetic scattering from
individual or periodic structures," J. Oceanic Engineering (to
appear in 1987).

[23] A. F. Peterson, "An analysis of the spectral iterative
technique for electromagnetic scattering from individual and
periodic structures," Electromagnetics vol. 6, no. 3, 1986.

[24) A. F. Peterson, C. F. Smith, and R. Mittra, "A note on the
eigenvalues of the electric-field integral equation, the
condition number of the moment method matrix, and the convergence
of the conjugate gradient method," submitted to IEEE Trans.
Antennas Propagat.

[256] A. Jennings, Matrix Computation for Engineers and
Scientists. New York: Wiley, 1977.

[26] G. H. Golub and C. F. Van Loan, Matrix Computations.
Baltimore: The Johns Hopkins University Press, 1983.

[27] D. J. Evans, (ed.) Preconditioning Methods: Analysis and
Application. New York: Gordon and Breach, 1983.

(28] M. R. Hestenes and E. Stiefel, "Methods of conjugate
gradients for solving linear systems," J. Res. Nat. Bur. Stand.,
vol. 49, pp. 409-435, 1952,

{22] D. H. Pries, "The Toeplitz matrix: Its occurence in antenna
problems and a rapid inversion algorithm," IEEE Trans. Antennas
Propagat., vol. AP-20, pp. 204-206, March 1972.

[30] A. George and J. W. Liu, Computer Solution of Large Sparse
Positive Definite Systems. Englewood Cliffs: Prentice-Hall, 1981.

[31] P. P. Silvester and R. L. Ferrari, Finite Elements for
Electrical Engineers. New York: Cambridge University Press, 1983,

(32] K. K. Mei, "Unimoment method of solving antenna and
scattering problems," IEEE Trans. Antennas Propagat., vol. AP-22,
pp. 760-766, Nov. 1974.

[33] J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,
LINPACK Users Guide. Philadelphia: SIAM Publications, 1978.

52




The Radial Functions of Spheroidal Wave Functions
For High Aspect Ratio
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ABSTRACT

Since the series of the spheroidal Neumann functions and the associated Legendre
functions of the second kind converge very poorly at small radial argument £ for both
prolate and oblate, the series expansions of the prolate radial functions in powers
of (Ez-l), and of the oblate radial functions in powers of (£2+l) are particularly
useful in calculating the spheroidal radial functions of the second kind, Réﬁ). This
paper presents new techniques for obtaining the functions Réé) and their coefficients
a?n contained in the first part and b?n in the second part of the functions Réﬁ) for
prolate as well as the coefficients agn and B?n for oblate. In order to compute the
scattering by spheroids with high aspect ratio especially for large size parameter,
the explicit forms of a:n and u:n generated therefrom are listed up to r=12, the

analytical forms of the coefficients bﬁn (r=m case for b:n) at any number m are strictly

derived. Having the spheroidal eigenvalues lmn' the spheroidal angular functions Smn’
and the spheroidal radial functions Rmn’ together with the boundary conditions matching,
we can completely solved the problems of electromagnetic scattering from dielectric

or metallic spheroids.

I. INTRODUCTION

The spheroidal differential equation for radial functions Rmn is expressed as

2
.‘M_(;\ -c2g2t B __ g =90 (1)

d 2 3
& F D% " O 23 m

+1

where size parameter c = x(a2 - bz)k: ¥ is wave number, a is semi-major axis, and b is
semi-minor axis. Radial coordinate £ = a/(a? - bz)& for prolate and £ = b/(a? - bz)ls for
oblate. lmn are eigenvalues of the spheroidal differential equation, with n > m. In Eq. (1)
the upper sign pertains to the prolate coordinate and the lower one to the oblate one. If
replacing ¢ by -ic and £ by if in the equation, we can convert the prolate differential
equation into the oblate one. The spheroidal radial functions Rnm for large values of &,

in general, can be obtained by means of some integral relations,l as follows:

53




2_!5!1 i
R (e,8) = ——— =Y LTI AL (D) () (z
d:n(c)(ZMIT!I E r=0,1
r=0,1

where d:nFc) are the expansion coefficients of the spheroidal angle functions Smn with
respect to the associated Legendre functions Pm:r’ r is the summation index, and the
prime over the summation symbol indicates that the summation is over only odd number of
r when (n-m) is odd, and over only even when (n-m) is even. Superscript j for the radial
functions Rmn(c,a) and for the (mtr)th order spherical Bessel functions zm+r(c£) implies
which of the four kinds of spherical Bessel functions is referred to, that is, spheriéal
Bessel jm+r(c€), Neumann nm+r(c£), and Hankel functions of the first and of the second
kind, hiii(cﬁ) and hiii(c&), in order of j=1,2,3,and 4, respectively.

Because the spherical Bessel functions of the first kind, jm+r(c5), converge
absolutely for whatever value of £ and whichever kind of spheroid, Eq. (2) is always
applicable to the spheroidal radial functions of the first kind, R;;), and the oblate
radial functions Rii)(-ic,is) can be generated just by replacing c by =-ic and £ by if in
the equation. But for the spherﬁidal radial functions of the second kind, Riﬁ), as aspect
ratio increases, the resulting serieslof spherical Nedmann functions converge poorly
while value of £ approches unity for prolate and zero for oblate, respectively. In fact,

(2)

the expansion of R is an asymptotic series being not absolutely convergent for any

mn
finite value of £, as shown by Morse and Feshbach.2 The functions Riz)(c,g) and Rii)(c,a)
in Eq. (2) are, therefore, also not appropriate for small values of £. I had developed
the series expansion in powers of (£2-1) for the prolate radial functions and that in

powers of (£2+1) for the oblate ones instead of Eq. (2), to evaluate Réi). Since the

| radial functions Riz) and Ri;) are defined from the relations
RO @ (e ) = R (e,5) T 122 (e, G-
R @ (c1e,18) = 8D (1c,16) T 18P (-, 10 -
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the discussion is only confined to the functions Rmn

2
11, PONER-SERIES EXPANSIONS OF R'.’

(2)

The procedures for derivation of the functions R are cited from Flammer's book,
with giving more details in some processes and the much higher order terms than in that
book.

The radial functions Rii)(c,z) and the angle functions Smn(c,z), both satisfy the same

differential equation, namely —

d dsmn(c,z)
= QL = gy =g Oy = ¢22% - )s (e,2) =0
1-2 %)
d ) dRmn(c,z) 22
E(z -l)—-—-—-&-i—-(xm—-cz +zz_l)Rmn(c,z)-0
so they should be proportional to each.other:
R::‘) (c,2) = [nclg)(c)]-lsm(t:.z) (5)
where joining factors Ki;)(c) are in the forms:
( (2m+3) (nbmrt1) ¢ Z (o) i2mm) L
1
K_“(c) = for (n-m) odd (5-1)
. 2P o)™ ml(n-';- )1 ety
o (2wb1) (i)t 5 4% (o)D) L
K "“(c) = r=0 for (n-m) even (5-2)

2T )Mt (5B 1 (BB

The series expansions of Smn(c,z) in powers of (1-z2) can be derived with the use of

the associated Legendre functions represented by hypergeometric functions, as found to be:

an(C22) = 2(1 = 22 !““Z (@) (1 - 22)* for (n-m) odd (61
k=0

S p(cs2) = (1 - z?-)”"'z c‘;{:(c)u - 22K for (n-m) even (6-2)
k=0
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in which

mn . 1 = (2m+2r+1)! 3, ,mn

c2k(c) = ;E;?E“'—;? > “'TEF;TTT—(—r)k(m+r+§)kd2r+1(c) for (n-m) odd (6=3)
mn - 1 od (2m+2r)! 1, ,mn

CZk(c) ;E;?;;:;;? r-k‘—'?E;TT—( r)k(m+r+§)kd2r(c) for (n-m) even (6-4)

where the symbol with subsecript k stands for

(1\'.)k = x(x+1) (x+2) -+ (x+k-1), and (X)O =1 (6-=5)
Since |£| > 1, the functions Sm(c.E) might be written as the series expansions in
powers of (£2-1) instead of (1-£2) with the proper change of the "phase” (1-52)13." Utilizing

the relation in Eq. (5) and the adjusted functions Smn(c.ﬁ), we find that

R (e, = (Do) ez - 0 S D) (2 - D¥ for (a-m) odd  (7-D)

R (e, 0 = (@) 2 - 1)*“‘%2% D52 - DX for (am) even  (7-2)

Using the Wronskian identity

®Pe,o 5w’ .

b (&R 6e,0,82 c,0)= - (.0

and the definite integral of & from infinity to the cerfain value of £, one obtains

€
dg

e(g2 - DR (e,0)?

R, = 8,0 (8-2)

where disposal of the order for the integral limits is in accordance with the asymptotic

property of Rﬁ) (¢,E) containing Neumann functions nm_Pr(cE), that is —

n (cg) —— - sin[cf, - é(m-i-ﬁ].)n] 0 (8-3)

m+r CE +> @ ck

With the substitution of Eqs. (7-1) and (7-2) in Eq. (3-2), the integrand can be

developed in Taylor series expansions:
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(1) 2 mn
k" (c) ® a (c)
[ 21)( )]2 = (m ] 1 L (g2 - ]-)r for (n-m) odd (9-
c,&

e(g? - D[R cE2(g2 - D™ =0 T
) [ (”(*ﬂlz = &) .
(1) = = (2 - 1) for (n-m) even (9-
c(g2 - 1)[ (c, 5)] c(e2 - H™ =0
where
r
ale) = S (- , (9
dx : (-1) c, (c)x ]
k=0

which we will discuss in Section III.

These integral recursion relations are useful to the integral in Eq. (8-2):

dg 1 dg (n-m) odd
= ) | ———— 1
[52(52 N )ﬂgz - p™IT fr i< m (1
dg - - g _ (2m-2r-1) dg fm_(n—-tl!l) even (10
(g2 - H=T (2m-2r) (g2 - V™°  (2m-2r) J (82 - D™F A
de (82 - D™ r-(m+1) (n-m) odd
2 . T - s - Q2r-2m-1)[ (2 - 1) dg  for " O (1
£<(gc =
2 _ 1yf-m _ . _
f df.m-‘-l- = E(E 1) _ (2r 2m+1)f(sz - l)r de for(n ml ev'en (14
(g2 - HN™T (2r-2m) (2r-2m) r>m

Inserting Eqs. (9-1) and (9-2) in Eq. (8-2), using the relations in Egqs. (10-1)-(10-

and then integrating, we get

R (,6) = o (RS (e,6) ( Flogirt ] + gy (cu8) (1
where
(1)
[ (C)] m-r+l
y=1) (2m=2r+1)! .
Qm(c) = __—"5_—% a_ g r‘[ T r)!] for (n-m) odd (1
(1) 2
l:'cmn (c)] m (- 1T Hl(2m—2r)! .
Q(c) = —_—?“E " M e) r![zm_r(m_r) !J2 for (n-m) even (1.
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One should note that the summation is over from r=0 to r=m. The functions gmn(c,ﬁ) can

be written in the forms:

g (CrE) = (2 - 1)';’"‘2 bi’,‘“(a2 - DFf for (n-m) odd (11-3)

r=0
2 —m —— _mn 2 r

8 n(cs8) = 8(E° - 1) > b (€5 -1 for (n-m) even (11-4)

r=0 .
they satisfy the inhomogeneous radial equation
d ;2 _ )4 o - o252 m? - d (1)
(G52 - v - o - c2e2 + o 9 )egn(er8) = 2 (3eRy, (@10 (11-5)

Substituting Eqs. (11-3) and (11-4) in the differential equation (11-5), we can get
the recursion relations for the prolate coefficients b:m:

mn

__y.mn - P 2}, mn 2,mn (1)y=1 _q\I-m
br(e-m)b™® + ((2-m-1) 2e-m-2)-A #2622+ <2620, = 2(x D)Mo (-T P 2r-m el

+ 2D (-)T ™ 2pem 1), for (n-m) odd (12-1)
4r(r-m)b:n + [(Zr-m)(2r-mr1)-lmm+c2]b:fl + czb:fz - 2(nii)]-‘an(-l)r_m(Zr-m)cg:_zm
for (n-m) even (12-2)

where we have employed the series expansions of Ri;)(c,ﬁ) of Eqs. (7-1) and (7-2) to the
right-hand side of Eq. (11-3).

While m is not equal to zero, by inserting in the Wronskian identity the series
expansions of R;;)(c,s) and Riﬁ)(c,ﬁ) of Eq. (l1) as well as subsequent Eqs. (11—1)-(11—5),

and by using Taylor expansion deduced from Eq. (9-3):

w a™(c)
* R (e
(— k mn 2 _ 1hk 2 =0
-E-O (=1) ey (e) (8 1) ]

the initial prolate coefficients bﬁm are found by equating the lowest power of (£2-1) on

both sides of the Wronskian identity, that is
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b = - (m > Q) for both (n-m) odd and even (13-2)

mn
0 2mgc0

The coefficients b:m are not determinable from the recursion formulae in Eqs. (12-1)
and (12-2) because of the factor (r-m) of b?n in these equations. We will use other method
to obtain the coefficients b:n in section IV.

Power-series expansions of the oblate radial functions can be generated with the

substitution of the corresponding terms:

¢ ———— -ic (14-1)

E — it (14=2)

d‘:“(c)~— d:“(-ic) (14-3)

() chp(-ic) | (14-4)

-c]fn?(c)— "u(ull) (~1c) (14-5)
Thus for the oblate radial functions Ri;), we have

R (cte,18) = (17 h D (i) Hee2 + ' ECHEDICE 1)¥ for (n-m) odd (15-1)

(1) - - hd
Ran (-1c,16) = (17D -100)7HE2 + DT ST -10) (82 + D¥  for (n-m) even (15-2)
=0
The oblate functions Riﬁ)can be obtained from the relation
aifl) (-1ic,iE) = Q;n(-ic)RnE;) (-1c,18) (tan™'g - :-1!17] + g:n(-ic,ia) (16)
with
-m=-1 (1) 2
e (-1ic) m
Q. (~ic) = - ( = J oT% (-1o)—{2m2tD for (n-m) odd (16-1)
- r=0 1277 (m-r)1)
(™% 10))? m
Q (-ic) = ot Gmn(-ic‘ (2m-2r)! for (n-m) even (16=2)
mn ¢ =0 * (2% F@n1?
where
mn r 1
o™ (-1e) = - { — (16-3)
= Ez:: c';:(-ic)xk]2
k=0 x=0
59




-

0

Y

|

*
The functions gmn(-ic,iz) can be written in the forms:

g, (-ic,16) = (62 + 1) l"“Z BT 2T for (n-m) odd (16-4)
('10 ig) = (82 + 1) !m: an 2 for (n-m) even (16-5)
r=0

they satisfy another inhomogeneous radial equation
d .2 a_ _ —dc) - o282 m? }*_ - (1)
{dE(E + l)dE [lmn( ie) CeEs - -—————J gmm( ic,1&) -ZQ (- ic)—ER (-ic,1&)

g2 + 1 ,
(16-6)

Similar to prolate, we can get the recursion relations for the oblate coefficients an:

2Bm:n - _ ZQm(—:l.c)
2r-2 -m—l (l)( ic)

(2r+1) (2r42)850 ) + [z:(2:-2m+1)+m(m-1)-xm(-1c)] Bon + ¢

= _ (k+m) ! = mn (k+m=-1) !
[: 21 (71e) Gldmt ) e T - :“21:(‘1“)(2k*‘“’r:(k+m-r—1):]

k=r-m k=r-mtl
for (n-m) odd (17-1)
(2r+2) Gr4d)Byn ) + ((264D) 2r-2m2)vm(a D=3 (-10) ] 822 + 2630
*
2Qpn (-ic) [ — m (km=1)! ]
- ——x Chy, (=1c) (2k+m) for (n-m) even (17-2)
1% D (-10) % 2 rl(ctu-r-)1

The initial coefficients 80 are found by inserting R(l)(-ic,iﬁ) and Réﬁ)(-ic,ie) in
the corresponding Wronskian identity for oblate and then setting £ equal to zero. Noticing
that

R:.rl.) (-ic,10) = 0 for (n-m) odd (18-1)

we thus obtain

an = - (Egié)t-ic,io)]-l for (n-m) odd (18-2)
B?n - _Q (- 1c)R(1)(—ic,iO) + cRii)(-ic,iO)]_l for (n-m) even (18-3)
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The remaining coefficients Bg: are completely determinable from the recursion formulae

in Eqs. (17-1) and (17-2).

111, THE COEFFICIENTS a_ AND ay'

The explicit forms of the prolate coefficients a?n in Flammer's book are listed up to
r=4. According to the empirical formula given by Asano et al.,a the terminated number M
(m=0,1,2,...,M) for the spheroid with high aspect ratio is proportional to the size
parameter c¢ in the form:

M=c¢ (19)
In order to compute the light scattering by such a spheroid with large size parameter, I
had derived the expressions of a:n up to very large number r.

Defining

f(x) = 1 (20-1)

s k k)2
[kgo (-1) c;;‘(c)x]

applying Taylor series expansion to it:

' X (r)
£ = £0) + B By L By
mn mn mn
mn al a2 ar
-ao + l!' +_""-"2! + e + -+ e (20_2)
r!
and assuming
- mn
¢=F " =1)% -%]xk (20-3)
k=1 ¢y

then developing f(x) by binomial expansion:

£ = (gD 2+ 72 = (M2 I (-D et (20-4)
2=0

where we have used the series idemntity for |G| < 1, we can obtain a:n by equating the power

of x° on both sides in Eq. (20-2).
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The coefficients ar are listed below up to r=12; for convenience, we have omitted

a?n = g (_i3c - EE!L)
c

2 2
% %o 0
A - 3! (4cg _ 6cocy + 2c5)
. c? 3 c? c
0 0 0 0
o0 . 4L [ch _ 12c%cy a 3(2cpcg+ed) _ 2c8)
4 o2 U u 3 B coj
0 0 0 0
a?n __2% [QE% _ 20c§cq + 12(c2c§+c§cs) _ 6(coegteyeg) _ Zﬂ:n]
& 2
€ %o o o <o

c
0

- 30cHcy 3 10 (3cBc+2c3ce) _ 4(6cocycetdchiegted) N

6 5 b
co Co C.o

N
(=N

3(2c2c10+2c“C3+c§) _ 2c]2]

3
o

CS co
™ . yas [Bc% _ 42c3cy + 30(2c3cb+clcg) _ 20(cpcB+3cheycgteicy) n
7 2 7 6 5 4
¢y € <, o o

12(ZCZCuCa+CZC§+cgc1a+65cs)'_ 6(cpcyoteyc)gtegen) 2e1u)

3

c c

0

B

2
0 o

a0 . 8! [222 - Sﬁcgcq + 21(5c3cﬁ+2c295) _ 30(2c5ca+4cic4c5+CEC3) +

the superscripté mn of the coefficients cg: (k=0,1,2,+++) in the following expressions.

(21-1)

(21-2)

(21-3)

(21-4)

(21-5)

(21-6)

(21-7)

(21-8)

e Tl s X
5(12¢cpcbeg+l2cFcycgtbetedticic grelt) - 12(2c3cucygt2coceeatede) o+eycétehis) +
\ c: H
3(2cc)ut2eucyp+2cgeygted) EEli] (21-9)

l.'.'.2 c

0 0
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o o o 0 0
4c3chc3+2cica+c3610) _ 20(3C2CQCE+SCZCEC3+3C%CQC1n+3q%gﬁca+ci§12+CECE) +
C(S} c;

4(6czcuc;2+6c2csc1o+3czc§+3c§c1q+6cgc5c3+3cgc1o+cg) _
3

cU
6(czc1efCuC;q+CGC1z+c3810) + 2:13] (21-10)
o o
mn _ 10! [11ci° 90c3cy , 36(7cBch+oe]eq) _ 56(Schcd+bedeycgrefes) | 21(Scheli+20cicheqt
10 2 10 9 8 7

o o Co €o o

Scick+10c3cucat2ederg) _ 6(20cscBeq+30cscycé+30cscheg+20cicyc) g+20cicgeqt
6 5

o %o

5c3c12+cé) + 10(12c2cucsc,g+6t:2cﬁc1n+2c2ca+6c£c;,c12+6cﬁcsc10+3¢ﬁc§+2cac1q+
4
0

c

3c3c£+2cﬁca) _ 12(2(‘.9_(:1,.(.‘.11,1-2(:2(:5:124-2(:2(:acln'|'cﬁclg+2t:chc.1uﬂgcaﬂ&clzﬂ%(:g) +
3

o
3(2c2c13+2c4c15+2cac1q+2c3c12+c%u) _ 2C29] (21-11)
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c 0

0

0 11! f12c11 _ 110c3cy + 90(4:5;&+c5cs) 72(7c§c&+ngCch+ch&) + 56(5cgcﬂ+15c3cﬁC5+
1 2 L 1 10 K 8
0 0 u 0 0

6c§;4ca+3cgc§+CEC1o) _ aZ(c2CE+10C%CEC3+10qiguc§+10cchC3+5c36uc10+5C5C5C3+

7 6
[o]
%o 0

c3cy2) + 30(6c2g§g§+4c2c3c3+lZc§¢4¢5¢3+6c§c&cIg+2c§ca+ACEC4c12+&cacsc10+

5
0

c

2c3cg+eseyuteitieg) _ 20(6cchcgclg+3czcgca+3QggEc12+3c2c§cg+3c%cuc1q+3c5c5c12+

ct

0

3ccge)gtede) greycd+3chegegtede;g) + 12(2cpeyc)g+2cpcgeyt2epcge)ptegctot
3

€0
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60cic§c10+20cﬂc8+30cipqc12&30:5:5:1Q+15c§pﬁf6cich+cﬁl - 30(4czchca+
6
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0

12c2cﬁc5ca+&c2c§c1o+12cichcsc1u+6cicgp§+6gﬁgﬁg12+6c§c§c3+4c§cuc1u+
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c
0
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0

12c,cgch+l2cocke) gtl2cheyc) g+12ceqe)utl2chege) o+becdcgtacic) g+l2eycéegt

12cﬁc5c1ﬁfﬁcﬂc§+4c§c12+ca) _ 4(6cquch+6czcac15+6czcsc1h+6c2c1nc12+3c%c20+

3
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0

2cge)gt2cgel gt2eygciutedn) - 2cou) (21-13)

o

The explicit forms of the oblate coefficients a:n(-ic) can be easily found from those

of a:m(c) by the relationship

u:n(-ic) - (-1)fa§“(-1c) (22)
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IV, THE COEFFICIENTS by

The functions R;i)(c,ﬁ) can be expressed in terms of the associated Legendre functions

m
of the first kind, Pm+ , and of the second kind, Qm+r

1 ' mn m
S e, ) + S R, )

(2) [
R 7(c,8) =
K(2)(C) r=-2mt+1 r=2m+1l

for (n-m) odd (23-1)

(2) 1 [
R (c,E) = > d (c)QZ, (&) +E d (c)P (E)]
e ’ K(Z)(c) r=-2m oty r=2m+2 -m-1
for (n-m) even (23-2)
the implications of the above-cited symbols refer to Flammer's book, the joining factors

xéi)(c) are given by

B op) 1 (A2Emly y (@HmEL ) 3
K(z)(c) = - 2 2 -Zmzl )(2m+r) for (n-m) odd (23-3)
= (2m-3) (2m-1)m! (ntm+l) te™ =1
2% 0 om) 1 (BB 1 (&) g™ (o) -,
x(z) (c) = 2 2 m_IZm Z d:n(c)—(-g!!'---lf-ﬂ for (n-m) even (23-4)
mn (2m~1)m! (nt+m) !c =0 =t

For £ > 1, from the definition of the functions Q:+r:

™ Qyr (8)
tam
Q® (8 = (g2 - T —HE (24-1)
mr 4O
and the expression of Qm+r in terms of the Legendre functions of the first kind:
(m+r-1) /2
2m+2r-4k-1
Qe (8) = 3 Py ()log of - 3 ey Parer2ke-1(®) (24-2)

k=0

where [v] denotes the integer part in v, we can get the formula for Qm+r , as follows:

L [
x . ;,+1 Den -l [E=D7-(E+D) ] pu=L
Q,. (&) (8108 7 2:: =DHEDTT | TR ner (8

r-1)/2
(2m2r-4k=1) _m )
T 2 (- (D) Parte-2k-15) (26-3)
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By virtue of the hypergeometric functionms, the expression (E-1) - (E + 1)£ can be

written in powers of (Ez-l):5

-0+
€- D= 6+ DY a2 BC- 3, B e, 1 -8 for 2 odd
(g - DY - @ + DY = 2% w7 ¢ :&%l, :&%Z, -1+, 1 - £2) for % even

Since the series expressions of above hypergeometric functions are truncated at
k = — for & odd

k= for & even

where k is summation index for the series expansion of the hypergeometric functioms,

further developments of the expressions (25-1) and (25-2) lead to

2 2=1)/2

(€ - 1)1 - (g + 1)£ = =27¢ (2-k-1)1 k

o7 (2 - 1) for % odd
k=0 (2-2k) 'k!2

(2-2)/2

(- DY - g+ D =-2% g-k-1)!

k=0  (2-2k-1)!k!2

(g% - 1)k for & even

(25-1)

(25-2)

(25-3)

(25-4)

(25-5)

(25-6)

The desired forms for le (E) in Eq. (24-3) can be obtained by using transformations

from the associated Legendre functions of the first kind to the hypergeometric functions

PY(E) = (o)t 2 gylvpe NoiEL VRIRZ 4y L g2)  for (u-v) odd

2 v!(u=-v)! 2’ z
P:(E) = ——121311——(52 - 1)&vF( !%E, !i%iln vtl, 1 - g2) for (pu-v) even

2V0 1 (u-v) !

(26-1)

(26-2)

Now we can determine the prolate coefficients b:n by comparing Eq. (1ll) with Eqs.

(23-1) and (23-2) after expressing the functions Qm (£) and P:_m_l(i) in powers of (£2-1)

with the use of Eqs. (24-3), (25-5), (25-6), (26-1) and (26-2).

It is obvious that b:? in Eqs. (27-1) and (27-2) are composed of three parts, that

is: (1). t e -
s: (1). the part containing the coefficients d2r+l 2r

m
functions Pm+r-2k—1

or d , which is derived from the

(E) contained in Q:+r(5). In Flammer's book, he missed the factor (2k+1)

in the denominator of Eq. (27-1) and gave the wrong upper limits of summation: ((m+2r)/2]
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and ((m+2r—l)/2],instead of correct limits r and [(Zr-l){Z] in Egs. (27-1) and (27-2),
respectively; (25. the part containing the coefficients d;:+l or d;? , which is derived
from the functions Pﬁli(ﬁ) contained in Q:+r with the substitutions of Eqs. (25-5) and
(25-6) in Eq. (24-3). After simplications on mathematics, the terms in this part can be
written in different forms depending upon whether the summation index 2 appeared in the
second part of Eq. (24-3) and (n-m) are odd or even; (3). the part containing the
coefficients d;;r—l or dz:. This part can be obtained by developing the functions P?-mrl(

in terms of (52—1) with the aid of the hypergeometric functioms.

The complete expressions of b:n are in the forms:

1 = L (2mt4r-4k+1) (2m+2r-2k)! L ]
B i g v d [ - £.(2)
n xﬁ) {g makde gmel(Zld-l.)(m-l-Zr-k-l-l)(Zr-Zk)! %5 1
- E - F (2r-2)! } for (n-m) odd (23
temri PPl oBny (2r-20-2)1
an 1 <2 o S2E=D/2 0 (onidr-bk-1) Qut2r-2k=1)! <
b YT D 4 @ -3 £,(0
= ko (=0 T =0 2%n! (2k+1) (m+2r-k) (2r-2k=-1)! £=1
-5 = . (2r-1)! } for (n-m) even (2:
r=mtl eler me!(2r—2m-1)!
with o+l )
m! (2m+F2r-2+1) 1! (r-i-T)! (2-1)/2 (r-lm-k+~2-) !
£, (2) = -
1 ™ o)1 k) L))t TR0 (@l (:‘Fk-g'-;) ! (2-k) (2-2K) 1k 122%
2 for 2 odd (2°
m! (2m+2r-241) 1 (r43) |
£,(0) = 75 S e
2 2(m~-2) ! (2r+2+1) 1 (r-l-m—i-) !
it (1-2)/2 (o5 1 (6041 (ke 1D +(2-2-1) (1-2%-2) ) }
—_—
{m! @E-Plat TE0 @k-1)! (r+-252) 1 (2-k-1) (2-2-1) 1 (1) 12752
for & even (2
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n! (2m#2r-2) ! (r+£;21) ! (1-1)/2 (ki) 1

£,(2) = - — '
2 22 (0 1 (2e40) () ! TR0 (i) ! (-2 1 () (2200 e 2%
for £ odd (27-5)
( ml(2m+2r-£)!(r+%)! (2-2)/2 (r+m-kl%§1)!
£,(2) =
) 7

2" 2 (nea) 1 (2r40) (ot 2p) TR0 (oK) H(rbeeg) ! (oK) (2-2K-1) et 2

for % even (27-6)

It is worth pointing out that the coefficients b:n derived by Flammer are only for
0¢ mg< 2 without analytical expressions for the numbers m greater than 2.

Compared with the oblate coefficients B:n, which can be directly obtained from the
recursion relation, the expressions of the prolate coefficients b:n are more complicated
but still very useful.

V. CONCLUSION

Calculation mode for spheroidal radial functions of the second kind, Réi), strongly
depends upon the size parameter c and radial argument £. Only for large values of ck, the
ordinary expansion in Eq. (2) is applicable. The expressions relating to the associated
Legendre functions of the first and the second kind in Eqs. (23-1) and (23-2) converge
well, so long as ¢ is not too large for small values of £, that is, for values of § near,
but not inecluding, unity in the prolate case, and for values of £ near, and including,
zero in the oblate case. If values of § are close to unity for the prolate with high
aspect ratio, the above-mentioned two modes break down. Then, the expansions derived in
the preceding sections provide the powerful way for values of E slightly greater than
unity but less than the first value of §,at which Ri;)(c,i) is zero,in the prolate case
and for values of £ greater than zero but less than the first value of £,at which
R;;)(—ic,is) is zero,in the oblate case.

It is worth pointing that the new calculation mode for spheroidal radial functioms
in this paper has been employed to both prolate and oblate spheroids with aspect ratio

as high as 20:1 and size parameter as large as 50v60.
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A Selective Survey of Computational Electromagnetics

E. K. Miller
Rockwell Science Center
Thousand Oaks, CA 91365

ABSTRACT

The continuing growth of computing resources is changing how we think about,
formulate, solve, and interpret problems. In electromagnetics as elsewhere,
computational techniques are complementing the more traditional approaches of
measurement and analysis to vastly broaden the breadth and depth of problems that are
now quantifiable. An attempt is made in this article to place some of the tools used in
computational electromagnetics into perspective with respect to the different kinds of
approaches that may be used and their computer-resource requirements. After a brief
background discussion in Section 2, we review in Sections 3 and 4 respectively some of
the analytical and the numerical issues involved in developing a computer model. In
Section 5 we include some practical considerations from the viewpoint of '
computer-resource requirements, followed by a discussion of ways by which computer
time might be reduced. Our presentation concludes with a brief examination of
validation and error checking. Emphasis throughout is on review and summarization
rather than detailed exposition.

I. INTRODUCTION

Computational ElectroMagnetics (CEM) may be broadly defined to be that branch of
electromagnetics that intrinsically and routinely involves using a digital computer to
obtain numerical results. With the evolutionary development of CEM during the past
20-plus years, two basic lines of improvement can be identified. One is due to advances
taking place in computer hardware and software, providing tools of steadily growing
power with little effort on the part of the electromagnetics community per se. The other
line of improvement originates from within the electromagnetics discipline itself, where
increasing awareness and utilization of numerical techniques has provided an
expanding base of capability for solving problems in electromagnetics. The resuit has

- been to add the third tool of computational methods in EM specifically, and in science

and engineering generally, to the two classical tools of experimental observation and
mathematical analysis.

The goal of this article is to review concisely and conceptually some of the basic issues
involved in CEM, to survey present capabilities and to contemplate future directions
where appropriate. We attempt to accomplish this extremely broad task by introducing
only the detail needed to illustrate the central ideas involved, and providing a selection
of references from which the interested reader may obtain more information. Emphasis
will be focussed on the underlying principles which unify the various modeling
approaches used in electromagnetics while avoiding most of the detail that makes them
different. In section 2 we begin with a brief discussion of the basic idea. In Sections 3
and 4 respectively, we examine some of the analytical and numerical i issues involved in
developing an electromagnetic computer model. Some of the practical implications of
developing models in terms of the required computer resources are considered in
Section 5, followed in Section 6 by a more detailed discussion of various means by
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which computer-time requirements might be reduced. In Section 7 we examine errors
encountered and model validation, followed by a concluding summary in Section 8.
While we attempt to provide some perspective concerning the relationship between
differential- (DE) and integral-equation (IE) modeling, more attention will be devoted to
the latter.

Il. BACKGROUND DISCUSSION

Electromagnetics is the scientific discipline that deals with electric and magnetic sources
and the fields these sources produce in specified environments. Maxwell's Equations
provide the starting point for the study of electromagnetic problems, together with certain
principles and theorems such as superposition, reciprocity, equivalence, induction,
duality, linearity, uniqueness, etc. derived therefrom [Harrington (1961), Van Nostrand
Scientific Encyclopedia (1976)]. While a variety of specialized problems can be
identified, a common ingredient of essentially all of them is that of establishing a
quantitative relationship between a cause (forcing function or input) and its effect (the
response or output).

A. Modeling as a Transfer-Function
This relationship may be viewed as a generalized transfer function (see Fig. 1) in

PROBLEM DESCRIPTION
ELECTRICAL
GEOMETRICAL

)

INPUT TRANSFER FUNCTION OUTPUT
DERIVED FROM |

(SPECIFIED B M/AVK W/ FIAIRTS) (SOURCES,
EXCITATION) EOUATICNS NEAR, FAR-FIELDS)

Figure 1. Transfer-function model for electromagnetics.

which two basic problem types become apparent. For the analysis or direct problem, the
input is known and the transfer function is deriveable from the problem specification, with
the output or response to be determined. For the case of the synthesis or inverse
problem, two problem classes may be identified . The "easy" synthesis problem involves
finding the input given the output and transfer function, an example of which is that of
determining the source voitages which produce an observed pattern for a known
antenna array. The "hard" synthesis problem itself separates into two problems. One is
that of finding the transfer function, given the input and output, an example of which is
that of finding g source distribution that produces a given far field. The other and still
more difficult, is that of finding the object geometry which produces an observed
scattered field from a known exciting field. The latter problem is the most difficult of the
three synthesis problems to solve because it is intrinsically transcendental and
non-linear. Furthermore, such problems are subject to uniqueness constraints which
can impose difficulties and uncertainties in developing their solutions.
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Electromagnetic transfer functions almost always include a field propagator, as the
"cause" mentioned above normally involves a source whose fields produce the "effect".
It is therefore valid to conclude that the essence of electromagnetics is the study and
determination of field propagators, and it follows that CEM inevitably does also. This
conclusion, while perhaps appearing transparent, is actually an extremely fundamental
one as it provides a focus for what CEM is all about, and provides a basis for
classification of model types as we now discuss. '

B. Some Issues Involved in Developing a Computer Model

In order to establish an appropriate perspective for subsequent discussion, we
briefly consider here a classification of model types, the steps involved in developing a
computer model, the desirable attributes of a computer model, and finally the role of
approximation throughout the modeling process.

1. Classification of Model Types

It is convenient to classify solution techniques for electromagnetic
modeling in terms of the field propagator that might be used, the anticipated application,
and the problem type for which the model is intended to be used as is outlined in Table
1.

2. Development of a Computer Model

Development of a computer model in electromagnetics or literally any
other disciplinary activity can be decomposed into a small number of basic, generic
steps. These steps might be described by different names, but would include at a
minimum those outlined in Table 2. Note that by its nature, validation is an open ended
process which cumulatively can absorb more effort than all the other steps together. The
primary focus of the discussion which follows in this article is on areas (3) through (6).

3. Desirable Attributes of a Computer Model

A computer model must have some minimum set of basic properties to be
useful. From the long list of attributes that might be desired, we consider: 1) accuracy, 2)
efficiency, and 3) utility the three most important as summarized in Table 3. Accuracy is
put foremost since results of insufficient or unknown accuracy have uncertain value and
may even be harmful. On the other hand, a code that produces accurate results but at
unacceptable cost will have hardly any more value. Finally, a code's applicability in
terms of the depth and breadth of the problems for which it can be used determines its
utility.

4. The Role of Approximation

As approximation is an intrinsic part of each of step involved in
developing a computer model, we summarize some of the more commonly used
approximations in Table 4. We note that the distinction between an approximation at the
conceptualization step and during the the formulation is somewhat arbitrary, but choose
to use the former category for those approximations that occur prior to the formulation
itself. '

l. ANALYTICAL ISSUES IN DEVELOPING A COMPUTER MODEL
As mentioned above, selection of a field propagator is a first step in developing an
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electromagnetic computer model. Further attention here is limited to propagators which
employ either the Maxwell curl equations or source integrals which employ a Green's
function. We consider briefly first selection of the solution domain and then selection of
the field propagator with discussion here limited to integral- and differential-equation
models.

A. Selection of Solution Domain
Either the IE or DE propagator can be formulated in the time domain, where time
is treated as an independent variable, or in the frequency domain where the harmonic

time variation exp(iwt) is assumed). The numerical treatment of generic time- and
frequency-domain operators denoted by L(w) and L(7) respectively is compared in
Table 5.

Whatever propagator and domain are chosen, the analytically formal solution can be
numerically quantified via use of the method of moments (MoM) [Harrington (1968)],
leading ultimately to a linear system of equations as a result of developing a discretized
and sampled approximation to the continuous (generally) physical reality being
modeled. Developing the approach that may be best suited to a particular problem
involves making tradeoffs among a variety of choices throughout the analytical
formulation and numerical implementation. In the following discussion, we consider
some aspects of these choices and their influence on the utility of the computer model
which eventually results.

B. Selection of Field Propagator
We briefly discuss and compare below the characteristics of |E- and DE-based
models in terms of their development and applicability.

1. Integral-equation (IE) model

The basic starting point for developing an IE model in electromagnetics is
selection of a Green's function appropriate for the problem class of interest. While there
are a variety of Green's functions from which to choose, a typical starting point for most IE
MoM models is that for an infinite medium. Although the formulation might be
accomplished in various ways, one of the more straightforward is based on the scalar
Green's function and Green's theorem. This leads to the Kirchoff integrals [Stratton
(1941), p. 464, et. seq.] from which the fields in a given contiguous volume of space can
be written in terms of integrals over the surfaces which bound it and volume integrals
over those sources located within it. Exceptions to this general rule are discussed below
in Section 4.

Analytical manipulation of a source integral which incorporates the selected Green's
function as part of its kernel function then follows, with the specific details depending on
the particular formulation being employed. Perhaps the simplest is that of
boundary-condition matching wherein the behavior required of the electric and/or
magnetic fields at specified surfaces which define the problem geometry is explicitly
imposed. Alternative formulations, for example, the Rayleigh-Ritz variational method and
Rumsey's reaction concept might be used instead, but as pointed out by Harrington
(1980), from the viewpoint of a numerical implementation any of these approaches lead
to formally equivalent models.
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This analytical formulation leads to an integral operator, whose kernel can include
differential operators as well, which acts on the unknown source or field. Although it
would be more accurate to refer to this as an integro-differential equation, it is usually
called simply an integral equation. Two kinds of integral equations are obtained, one
known as a Fredholm integral equation of the first kind in which the unknown appears
only under the integral, and the other a second-kind equation in which the unknown also
appears outside the integral. In Table 6 are included some of the integral equations
used in CEM, including the magnetic-field integral equation (MFIE) and electric-field
integral equation (EFIE) for perfect conductors for both the frequency domain and time
domain.

2. Differential-Equation (DE) Model

A DE MoM model, being based on the defining Maxwell's Equations,
requires intrinsically less analytical manipulation than does derivation of an IE model.
Numerical implementation of a DE model however, can differ significantly from that used
for an IE formulation in a number of ways for several reasons:

i. The differential operator is a local rather than global one in contrast to the
Green's function upon which the integral operator is based. This means that the spatial
variation of the fields must be developed from sampling in as many dimensions as
possessed by the problem, rather than one less as the |E model permits if an appropriate
Green's function is available.

ii. The integral operator includes an explicit radiation condition.

iii. The differential operator includes a capability to treat medium
inhomogeneities, non-linearities, and time variations in a more straightforward manner
than does the integral operator.

These and other differences between development of IE and DE models are
summarized in Table 7, with their modeling applicability compared in Table 8.

IV. NUMERICAL ISSUES IN DEVELOPING A COMPUTER MODEL

A. Sampling functions

At the core of numerical analysis is the idea of polynomial approximation, an
observation made by Arden and Astill (1969) in facetiously using the subtitle "Numerical
Analysis or 1001 Applications of Taylor's Series". The basis idea is to approximate
quantities of interest in terms of sampling functions, often polynomials, that are then
substituted for these quantities in various analytical operations. Thus, integral operators
are replaced by finite sums and differential operators are similarly replaced by finite
differences. For example, use of a first-order difference to approximate a derivative of
the function F(x) in terms of samples F(x,) and F(x_) leads to

dF(x)/dx = [F(x,) - F(x.)/h; x_sx<x,, (1a)
and implies a linear variation for F(x) between x_ and x_ as does use of the trapezoidal
rule

X

Jl F(x)dx = h[F(x,) + F(x.)}/2 (1b)
X.
to approximate the integral of F(x), where h = x_ - x.. The central-difference
approximation for the 2nd derivative,
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d2F(x)/dx2 = [F(x,) - 2F(xg) + F(x)Vh?; (1c)
similarly implies a quadratic variation for F(x) around xg = x,, - h/2 = x_ + h/2, as does use
of Simpson's rule

X4

j F(i()dx = h[F(x,) + 4F(xq) + F(x.)}/6 (1d)
X,

to approximate the integral. Other kinds of polynomials and function sampling can be
employed, as discussed in a large volume of literature, some examples of which are
Abramowitz and Stegun (1964), Acton (1970), and Press et. al. (1986). It is interesting to
see that numerical differentiation and integration can be accomplished using the same
set of function samples and spacings, differing only in the signs and values of some of
the associated weights. Note aiso that when the function samples can be unevenly
spaced, as in Gaussian quadrature, the result will always be more accurate (for
well-behaved functions) for a given number of samples. This suggests the benefits that
might be derived from using unequal sample sizes in MoM modeling should a systematic
way of determining the best sampling scheme be developed.

B. The Method of Moments (MoM)

Numerical implementation of the moment method is a relatively straightforward,
and an intuitively logical extension, of these basic elements of numerical analysis, as
described in the well-known book by Harrington (1968) and discussed and used
extensively in CEM [see for example Mittra (1973, 1975), Strait (1980), Strait and Adams
(1980), Harrington et. al. (1981), Perini and Buchanan (1985), Ney (1985), ltoh (1986),
Poggio and Miller (1987)]. Whether it is an integral equation, a differential equation, or
another approach that is being used for the numerical mode!, there are three essential
sampling operations that are involved in reducing the analytical formulation via the
moment method to a computer algorithm as outlined in Table 9. We note that operator
sampling can ultimately determine the sampling density needed to achieve a desired
accuracy in the source-field relationships involving integral operators, especially at and
near the "self term" where the observation and source points become coincident or
nearly so. Whatever the method used for these sampling operations, they lead to a
linear system of equations or matrix approximation of the original integral or differential
operators. Since the operations and choices involved in developing this matrix
description is common to all moment-method models, we discuss them in somewhat
more detail below.

When using IE techniques, the coefficient matrix in the linear system of equations which
results is most often referred to as an impedance matrix because in the case of the
E-field form, its multiplication of the vector of unknown currents equals a vector of electric
fields or voltages. The inverse matrix similarly is often called an admittance matrix
because its multiplication of the electric-field or voltage vector yields the
unknown-current vector. In this discussion we instead use the terms direct matrix and
solution matrix since they are more generic descriptions whatever the forms of the
originating integral or differential equations. As illustrated below, development of the
direct matrix and solution matrix dominate both the computer time and storage
requirements of numerical modeling.

In the particular case of an |E model, the coefficients of the direct or original matrix are
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the mutual impedances of the multi-port representation which approximates the problem
being modeled, and the coefficients of its solution matrix (or equivalent thereof) are the
mutual admittances. Depending on whether a sub-domain or entire-domain basis has
been used (see following section), these impedances and admittances represent either
spatial or modal interactions among the N ports of the numerical model. In either case,
these coefficients possess a physical relatability to the problem being modeled, and
ultimately provide all the information available concerning any electromagnetic
observables that are subsequently obtained.

Similar observations might also be made regarding the coefficients of the DE models,
but whose multi-port representations describe local rather than global interactions.
Because the DE model almost always leads to a larger, albeit less dense, direct matrix,
its inverse (or equivalent) is rarely computed. It is worth noting that there are two widely
used approaches for DE modeling, finite-difference (FD) and finite-element (FE)
methods[ Teng and Chang (1984), Mason and Anderson (1985)]. They differ primarily in
how the differential operators are approximated and the differential equations are
satisfied, although the FE method commonly starts from a variational viewpoint while the
FD approach begins from the defining differential equations. The FE method is generally
better suited for modeling problems with complicated boundaries to which it provides a
piecewise linear approximation as opposed to the cruder stairstep approximation of FD.

1. Factors involved in choosing basis and weight functions

Basis- and weight-function selection plays a critical role in determining
the accuracy and efficiency of the resulting computer model. One goal of the basis- and
weight-function selection is to minimize computer time while maximizing accuracy for the
problem set to which the model is to be applied. Another, possibly conflicting goal, might
be that of maximizing the collection of problem sets to which the model is applicable. A
third might be to replicate the problem's physical behavior with as few samples as
possible. Some of the generic combinations of bases and weights that are used for MoM
models are listed below in Table 10 [Poggio and Miller (1973)].

a. Basis-function Selection

We note that there are two classes of bases used in MoM
modeling, sub-domain and entire-domain, functions. The former involves the use of
bases which are applied in a repetitive fashion over sub-domains or sections (segments
for wires, patches for surfaces, cells for volumes) of the object being modeled. The
simplest example of a sub-domain basis is the single-term basis given by the "pulse” or
stair-step function, which leads to a single, unknown constant for each sub-domain.
Multi-term bases involving two or more functions on each sub domain and an equivalent
number of unknowns, are more often used for sub-domain expansions.

The entire-domain basis on the other hand, uses multi-term expansions extending over
the entire object, for example a circular harmonic expansion in azimuth for a body of
revolution. As for sub-domain e@xpansions, an unknown is associated with each term in
the expansion. Examples of hybrid bases can also be found, where sub-domain and
entire-domain bases are used on different parts of an object [Bornholdt and
Medgyesi-Mitschang (1986)).

Although sub-domain bases are probably more flexible in terms of their applicability,
they have a disadvantage generally not exhibited by the entire-domain form, which is the
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discontinuity that occurs at the domain boundaries. This discontinuity arises because an
ng-term sub-domain function can provide at most ng-1th continuity to an adjacent basis

of the unknown it represents assuming one of the ng constants is reserved for the
unknown itself. For example, the three-term or sinusoidal sub-domain basis a; +
b;sin(ks) + cjcos(ks) used for wire modeling can represent a current continuous at most

up to its first derivative. This provides continuous charge density, but produces a
discontinuous first derivative in charge equivalent to a tri-pole charge at each junction.

As additional terms are used to develop a sub-domain basis, higher-order continuity can
be achieved in the unknown that the basis represents assuming still that one constant is
reserved for the unknown. In the general case of the ng-term sub-domain basis, up to

ng-1 constants can be determined from continuity conditions with the remainder reserved

for the unknown. The kind of basis function employed ultimately determines the degree
of fit that the numerical result can provide to the true behavior of the unknown for a given
order of matrix. An important factor that should influence basis-function selection then is
how closely a candidate function might resemble the physical behavior of the unknown it
represents.

b. Weight-function Selection

The simplest weight that might be used is a delta function which
leads to a point-sampled system of equations. But point sampling of the field operators
can reveal any numerical anomalies that might arise as a result of basis-function
discontinuities. Distributed, multi-term weight functions can also be employed on either
a sub-domain or entire-domain basis, to provide a further smoothing of the final
equations to be solved. One example of this is the special case where the same
functions are used for both the bases and weights, a procedure known as Galerkin's
method. The kind of testing function employed ultimately determines the degree to
which the equations can be matched for a given basis function and number of
unknowns. Some specific examples of basis- and weight-function combinations used in
electromagnetics are summarized in Table 11.

2. Computing the Direct Matrix

We observe that obtaining the coefficients of the direct matrix in |IE
modeling is generally a two-step process. The first step is that of integrating the defining
integral equation in which the unknown is replaced by the basis functions selected. The
second step involves integration of this result multiplied by the weight function selected.
When using delta-function weights this second step is numerically trivial. But when
using non-delta weights, such as the case in a Galerkin approach where the same
function is used for both basis and weights, this second step can be analytically and
numerically challenging.

Among the factors affecting the choice of the basis and weight functions therefore, one of
the most important is that of reducing the computational effort needed to obtain the
coefficients of the direct matrix. This is one of the reasons, aside from their physical
appeal, why sinusoidal bases are often used for wire problems. In this case, where
piece-wise linear, filamentary current sources are most often used in connection with the
thin-wire approximation, field expressions are available in easily evaluated, analytical
expressions [Richmond (1965), Miller and Deadrick (1975)]. This is the case as well
where Galerkin's method is employed [Richmond (1974)].
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Aside from such special cases however, numerical evaluation of the direct matrix
coefficients will involve the equivalent of point sampling of whatever order is needed to
achieve the desired accuracy as illustrated below. Using a wire-like one dimensional
problem to illustrate this point, we observe that at its most elementary level evaluation of
the ij'th matrix coefficient then involves evaluating integrals of the form

zi,j = Jwi(s)J-[bj(s')K(s,s')ds']ds
= PmAnWi(Sn)bi(S mIK(sn.S'm) )

= 2. Pmanz(i.im.n); m=1,... M) in=1,...N(i,)

ihj=1,....N
where K(s,s') is the IE kernel function, and s, and s’ are the n'th and m'th locations of
the observation and source integration samples. Thus, the final, direct-matrix coefficients
can be seen to be "constructed” from sums of the more elementary coefficients z(i,j,m,n)
weighted by the quadrature coefficients py, and g, used in the numerical integration,

which will be the case whenever analytical expressions are not available for the zi,j-
These elementary coefficients, given by wi(sn)bj(s'm)K(sn.s'm) can in turn be seen to be

simply products of samples of the integral-equation kernel or operator, and sampled
basis and testing functions. It should be apparent from this expanded expression for the
direct-matrix coefficients that interchanging the basis and weight functions leaves the
final problem description unchanged, although the added observation that two different
integral equations can yield identical matrices when using equivalent numerical
treatments is less obvious [Wilton and Butler (1976), (1981)].

3. Computing the Solution Matrix

Once the direct matrix has been computed, the solution can be obtained
numerically using various approaches. These range from inversion of the direct matrix to
developing a solution via iteration as summarized in Table 12. A precautionary
comment is in order with respect to the accuracy with which the solution matrix might be
obtained. As computer speed and storage have increased, the number of uknowns
employed in modeling have also increased, from a few 10s in earlier years to 1,000s
now when using IE techniques. The increasing number of operations involved in solving
these larger matrices increases sensitivity of the results to round-off errors. This can be
especially the case when the direct matrix is not well conditioned. It is therefore
advisable to perform some sensitivity analyses to determine the direct-matrix condition
number and to ascertain the possible need for performing some of the computations in
double precision.

4. Obtaining the Solution

When a solution matrix has been developed using inversion or
factorization,subsequently obtaining the solution is computationally straightforward,
involving multiplication of the right-hand-side (RHS) source vector by the solution matrix.
When an iterative approach is used, a solution matrix is not computed but the solution is
instead developed from RHS-dependent manipulation of the direct matrix. Motivation for
the latter comes from the possibility of reducing the N dependency of the direct

procedure. As problem size increases, the computation cost will be increasingly
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dominated by the solution time.

V. SOME PRACTICAL CONSIDERATIONS

Although the overall solution effort has various cost components, perhaps the one most
considered is the computer time and storage required to obtain to obtain the numerical
results desired. With the increasing computer memories becoming available, where
even micro-computers and work stations can directly address giga-bytes, the memory
costs of modeling are becoming generally less important than the time cost, with which
we are primarily concerned with here.

A. Integral-equation modeling
1. Frequency domain .
If we consider an IE model specifically, we can show that in general, the
computer time associated with its application is dependent on the number of unknowns
Ny in the frequency domain as

TIE,w = AgiiNy2 + AsoiveNx® + AsourceNxNsources + (3a)
AfieldNxNsourcesNfields
o (AL )39, for Ny > Agii/Asolve
where the A's are computer- and algorithm-dependent coefficients which account for
computation of:
Agi)--the direct (impedance) matrix,
Agolve--the solution (admittance) matrix (assuming inversion or
factorization),
Agsource=—the source distribution for one excitation,
Atielg--one field value, where A¢;g|4<A+ij| depending on

whether a near-field (=) or far-field (<) value is
obtained.

2. Time domain
A similar relationship holds for a time-domain |E model which uses N;

time steps,

TiE,t ~ AsourceNx“NiNsources * AfieldNiNsourcesNfields (3b)
o (/AL )2d+1+P, 0<p<1 depending on the number of sources
where the A's account for computation of the time-domain terms equivalent to their
frequency-domain counterparts above. Although a direct matrix may require solution
initially prior to time-stepping the model, that is normalily avoided by using §t<Ax/c,
which yields an explicit solution.

As can be appreciated from these expressions, the number of unknowns that are
required for these computations to be acceptably accurate have a strong influence on
the computer time eventually needed.

B. Differential-equation modeling
1. Frequency domain
DE modeling is less commonly used in the frequency domain primarily
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because the order of the matrix that results depends on (UAL)D rather than the usual

(UAL)D'1dependency of an IE model. On the other hand, the matrix coefficients require
less computation whether the DE model is based on a finite-difference or finite-element
treatment. Furthermore, the matrix is very sparse because a differential operator is a
local rather than global one as is the integral operator. Matrix fill time is therefore
generally not of concern, and the overall computer time is dominated by the direct matrix
solution time, given approximately by

TDE, = AsolveNxW2 = AsoiveNyPi p=1,2,7/3ford = 1,2, and 3 (3c)

o (L/AL)3d-2
Note that the banded nature of the DE direct matrix has been taken into account where
the bandwidth varies as N, 0, N, 172, and N, 23 respectively (N,[(d-1)/dl)in 1,2, and 3

dimensions.

2. Time domain

Time-domain DE modeling can employ either implicit or explicit solution
methods for developing the time variation of the solution. An explicit technique is one
whereby the update at each time step is given in terms of solved-for past values of the
unknowns and the present excitation, with no interaction permitted between unknowns
within the same time step. An implicit technique on the other hand does allow for
interaction of unknowns within the same time step, but can therefore require the solution
of a matrix equation. In spite of this disadvantage, implicit techniques are important
because they are not subject to Courant instability when cét>Ax as is an implicit
approach.

The solution time for the explicit case is approximated by
TDEt =AstepNxNt (3d)
x (LWAL)d+
while for the implicit case we have
TDEt = (AstepNxNg + Ny)
o (UAL)2d+1
assuming a banded matrix is employed to solve the implicit direct matrix.

C. Sampling requirements

We may estimate the number of samples needed to adequately model the
spatial, temporal, and angular variation of the various quantities of interest in terms of an
object characteristic length L, and sampling dimension d. This may be done from
knowledge of the typical spatial and temporal densities determined from computer
experiments, and/or from invocation of Nyquist-like sampling rates for field variations in
angle as a function of aperture size. The resulting estimates are summarized in Table 13
and apply to both IE and DE models.

These may be regarded as wavelength-driven sampling rates, in contrast with the
complexity-driven sampling rates that can arise due to problem variations that are small

in scale compared with A. Complexity-driven sampling would affect primarily Ny,
resulting in larger values than those indicated above.

We note that the computer time is eventually dominated by computation of the solution
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matrix, and can grow as 3, 18, and 2 respectively for wire, surface and volume objects
modeled using integral equations and matrix factorization or inversion. Thus, in spite of
the fact that main-frame computer power has grown by a factor of about 10% from the
UNIVAC-1 to the CRAYZ2, the growth in problem size is much less as illustrated by Fig. 2.
The curves on this graph demonstrate emphatically the need for finding faster ways of
performing the computations, some aspects of which we next discuss.
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Figure 2. Time development of IE-based modeling capability for wire, plate, and
penetrable cube of characteristic dimension L in wavelengths, and matrix or order N
solvable in one hour of computer time using main-frame computers introduced in the
years indicated.

VI. WAYS OF DECREASING COMPUTER TIME
The obvious drawback of direct moment-method models as Ny increases with increasing

problem size and/or complexity suggests the need for less computationally intensive
alternatives. There are various alternatives for decreasing the computer cost associated
with solving electromagnetic problems using the method of moments. The basic intent in
any case is either to reduce the direct cost of performing a given modeling computation,
or to reduce the number of modeling computations needed to obtain a desired result.
These might include analytical, computational, and experimental approaches or
combinations thereof, some of which we briefly consider here.

A. Analytical

Analytical alternatives might include extensions of the basic approach such as
use of specialized Green's functions, combination of two or more approaches in a hybrid
formulation, or a variety of other possibilities, some of which are briefly discussed below
and outlined in Table 15.

1. Specialized Green's functions

The basic integral equations presented above employ an infinite-medium
Green's function (IMGF), use of which leads to a problem description in terms of only the
surface sources. The IMGF "propagates” the fields of these sources throughout the
problem volume of interest, and satisfies as its only "boundary condition” the
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Sommerfeid radiation condition as'r--->o0. The required boundary conditions on the
object(s) being modeled are satisfied through the MoM solution of the formal integral
equation.

One analytical approach for developing more efficient IE models is use of the specialized
Green's functions which satisfy additional boundary conditions. Although such Green's
functions are available for only a relatively small set of separable geometries, they
none-the-less provide a useful alternative for some problems of practical interest. These
include planes, cylinders, spheres, ellipsoids, etc. for which delta-source Green's
functions provide formally a means of modeling wires or other objects located in their
vicinity. The tradeoff in using such Green's functions is that of reducing the number of
unknowns needed in the model at the expenses of dealing with a significantly more
complex integral-equation kernel.

For example, modeling an object near the infinite, planar interface between two half
spaces could include the interface tangential fields as unknowns as well as those
associated with the object itself [Miller (1981)]. Alternatively, a Green's function which
satisfies the interface boundary conditions can be used instead, one possibility being
inclusion of the Sommerfeld integrals as part of the integral-equation kernel [Miller, et. al.
(1972a), (1972b)]. Although this is advantageous in that the fields over a (necessarily)
truncated area of the infinite interface do not need explicit solution, the complexity of
numerically evaluating the Sommerfeld integrals must then be dealt with. Even so, the
advantages of using the specialized Green's function make it an attractive alternative.
Examples are given by: Lucke (1951) and Lytle (1971) for a cylinder; by Einziger and
Felsen (1983) for a cylindrical sector; by Tesche (1972) for a planar region bounded by
perfectly conducting, parallel plates; by Tesche and Neureuther (1970) for a sphere; and
by Pathak (1983) for an eigen-function expansion of dyadic Green's functions. In Table
16, we summarize several of the types of Green's functions that have been or might be
used in IE modeling.

2. Hybrid approaches

One example of a hybrid approach is that of combining MoM with the
geometrical theory of diffraction (GTD), as first reported by Thiele and Newhouse (1969)
and more recently as summarized by Burnside and Pathak (1980). GTD has the
attractive property that the computation time is essentially independent of increasing
problem size or frequency, in contrast with the moment method. On the other hand,
increasing complexity can result in the need to trace more rays and compute more
diffraction coefficients, which can ultimately limit the applicability of GTD models. As an
alternative to modeling a given problem using only the MoM or GTD alone, they can be
used in combination to exploit their complementary advantages, thereby obtaining a
model which is significantly better than either one used separately. Such "hybrid"
techniques appear to be one of the more promising means for developing the models
needed for large, complex problems.

Other hybrid techniques have been developed, one example being the combined use of
a DE model and a modal expansion, termed the unimoment method by Mei (1974). As
implemented by Mei, this technique involves solving a bounded, three-dimensional,
body of revolution using a DE model and matching this solution across a spherical
enclosing surface to an external, infinite medium where the solution is given by a modal
expansion. A similar solution to a two-dimensional problem was presented by Miller and
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Olte (1966) for an inhomogeneously sheathed, infinite cylinder. Combination of DE and
IE modeling in the time domain is described by Taflove and Umashankar (1980), where
the IE model provides the short-circuit currents on a body whose interior response is
subsequently obtained using the DE model. Several of these hybrid treatments are
summarized in Table 17.

3. Other

Other analytically based methods for simplifying the formulation and/or
the subsequent computation include the impedance boundary condition (IBC) and the
physical optics (PO) approximation. The IBC [Senior (1981)] involves an assumption
that the tangential electric and magnetic fields on the surface of a penetrable object can
be related through a surface impedance Zg 4, .9., Etgn = ZgrfnXHign, Where nis a

surface normal and Zg ¢ = (1 + j)w J6/2 with § the skin depth. This assumption halves

the number of unknowns needed for modeling the object since the magnetic field can
replace the electric field throughout the IE model, as is usually done, or vice versa. The
benefit of the IBC occurs primarily in the computational effort needed in obtaining the
solution matrix, as computing the direct matrix is essentially unchanged because the
interaction fields of the replaced unknown must still be accounted for.

For acceptable results, the radius of curvature of the body must be large with respect to
skin depth 6. A modified form which is applicable to bodies having a smaller radius of

curvature is given by E,, = (1 - p)ZgfHy and E,, = (1 + p)Zg,4H, where p = (1 - j)§(Cy,
-Cy)/4 and C,, and C,, are the principal curvatures [Mitzner (1967)]. Note that the object

need not be solid, as the IBC can also be used to develop a sheet-impedance model for
dielectric shells [Harrington and Matuz (1975)).

Just as the IBC can be used to eliminate one-half of the unknown surface fields involved
in modeling a penetrable body, the PO approximation can eliminate the remaining
unknowns. It involves making the further assumption that the surface current can be
expressed directly in terms of the incident field. For a perfect conductor, the substitution
Jg= 2nxH'"C is made, although more generally we might use Jg = (1-R)nxH'"C and K¢ =

-(1+R)nxE'NC, where R is the plane-wave reflection coefficient for the object. Using the
PO approximation thus circumvents the need to compute a direct matrix or to obtain its
solution, and the fields resulting from the incident excitation can be computed directly by
evaluating the appropriate source integrals.

A further logical extension of IBC and PO is typified by the reflection- coefficient
approximation (RCA) or modified-image theory that has been used in modeling interface
problems [Miller, et. al. (1972a), (1972b), Burke and Miller (1984)]. In applying the RCA,
not only are the interface sources not solved for, but their integration over the interface is
circumvented by approximating their effects with image fields multiplied by Fresnel
plane-wave reflection coefficients. This is an exact procedure for perfectly conducting,
planar interfaces, but is otherwise an approximation although the RCA has a reasonably
wide scope of applicability. The RCA is one way of avoiding the rigor, but computational
complexity, of the Sommerfeld Green's function for the interface problem as discussed
above. By extending the concept of an image treatment, an approach of rigor
comparable to the Sommerfeld treatment can be developed [Lindell, et. al. (1985)], but
also of comparable computational complexity [Burke and Miller (1986)].
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B. Numerical

There are a number of numerical possibilities by which the cost of a
moment-method model might be reduced. These include using alternate solution
techniques for solving the linear system of equatlons and full 31 exploiting problem
symmetries, the goal of either being to reduce the N2 and N dependencies of the matrix
fill and solution terms in Eq. (3). Another possibility is provided by the so-called
near-neighbor approximation (NNA) which involves neglecting interactions between
source-field points separated by more than some specified distance when using a
sub-domain basis [Ferguson, Lehman, and Balestri (1876)], or between modes
separated by more than some wavenumber difference when using an entire-domain
basis [Medgeyesi-Mitschang and Putnam (1983), (1985)]. The fill time for the direct
matrix and its subsequent solution time can then also be reduced, although achieving
the latter depends on being able to exploit the sparseness of a matrix whose non-zero
coefficients may in general be widely distributed throughout it. Some of these numerical
means of reducing computer time are summarized in Table 18.

1. Alternate Solution Techniques
The number of multiplies/divides (operations) needed in applying direct
solution techniques to linear systems is proportional to Nx3. For this computational

investment there is obtained a solution matrix which is independent of the RHS forcing
function or excitation. Solutlons are then available for an additional computational cost
per solution proportional to N (muttiplication of an N, /'th order matrix by an N,'th order

vector or the equivalent).

If a RHS-dependent solution is acceptable, then techniques which have a lower-order
dependence on Ny can be considered. This might be the case for example where an

antenna or single-source problem is being modeled or where the fields scattered from
an object for a limited number of incidence angle or sources are needed. In such
situations, iterative, rather than direct solution techniques provide logical alternatives.
While the details can vary since a variety of iteration strategies are available, the basic
goal is to achieve an acceptably accurate solution after a number of iterations N; such

that N;«N,. Since each iteration requires on the order of N,(2 operations, this means that
a solution for one RHS might be achieved after Nszi operations rather than the N, 3
required by a direct solution.

Some of the better-known iteration techniques are Jacobi, Gauss-Seidel, and
Gauss-Seidel with simultaneous over relaxation [Press, et. al. (1986)], with the first being
of interest only in a comparative sense. They vary basically in how the updating is
performed at each iteration step. .

A quite different kind of iteration procedure that has received much attention recently is
the conjugate-gradient technique (CGT) [Sarkar (1986)]. This approach actually can be
found in two forms. One is where CGT is applied to an already-computed direct matrix,
and in that sense is conceptually similar to other iteration methods, in which form it is
called the conjugate-direction method. The other is where CGT is incorporated into the
process of generating the original matrix itself, in which case the effect is to adaptively
vary the basis and weighting functions being used for the MoM model. An especially
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attractive property of CGT is that convergence is guaranteed after a sufficient number of
iterations Nj, although because N) can be in principle as large as Ny that outcome may

not be very beneficial since up to Nx3 operations could possibly be needed. The

convergence rate of CGT, as is the case of other iterative techniques, is determined by
the eigen-value spectrum of the operator matrix, with the best situation being all eigen
values nearly equal. In this respect, CGT "prefers" a well-conditioned matrix, as one
measure of matrix conditioning is a small ratio of the maximum to minimum eigen value.
A distinct advantage of CGT is that a quantitative error measure is provided at each
iteration step so that there is no numerical uncertainty about when the iterations can be
concluded.

2. Exploiting Problem Symmetries

Problem symmetries provide one of the more effective means of reducing
both computer time and storage. The three basic types of symmetry are reflection,
rotation, and translation symmetry. The first arises when an object is reflected about 1, 2
or 3 planes, as demonstrated by a straight wire, rectangular plate and right-angle
quadrilateral. Rotation (or circulant) symmetry occurs when an object reproduces itself
upon rotation through 2n/n radians where the number of rotational sectors is denoted by

the integer n. When n is finite, as for a regular polygon having n sides, the rotation
symmetry is discrete. But n can also be effectively infinite, as for a circular loop which

exhibits continuous rotation symmetry. The relationship between discrete and
continuous rotational symmetry is equivalent to that between the discrete and continuous
Fourier transform. Translation symmetry results when an object is created by rectilinear
translation of some fixed shape, for which a straight wire again serves as the most basic
example [Medgeysi-Mitschang and Putnam (1983)].

Such symmetries can occur singly or in combination and can involve one or more
unknowns per symmetric sector. The right circular cylinder provides an example that
exhibits all three types (3 reflection planes, rotation about its axis, and translation along
its axis). The computational benefits of symmetry accrue both in reducing computer
storage and solution time because object symmetry: creates a repetitive pattern in the
direct matrix, the solution matrix, and the resuiting solution, thus reducing the number of
needed operations. We further discuss each symmetry type briefly below. Exploiting
object symmetry requires that the excitation (RHS) be decomposed in the same manner
as the object itself, in a fashion analogous to how a plane wave is expanded in circular
harmonics when incident on an infinite, circular cylinder.

a. Reflection symmetry _

Consider the example of one-plane reflection symmetry provided
by a single horizontal wire located over a perfectly conducting, infinite plane. In this
case, the direct matrix takes the form

Zgg Zs

Z=

Zis Z;
where the subscripts "i" and "s" refer to the image fields and the self fields respectively
and we observe that Z;; = Zgg, and Zgj = Z;s. But since the current I; on the image will
be the negative of the current Ig on the actual wire for any excitation applied to the latter,

the direct matrix simplifies to
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Similarly, if the wire were to be parallel to a perfect magnetic interface, then the image
current would be equal to the actual current and the direct matrix simplifies to

= Zoo+ Zsi
These two cases correspond respectively to odd- and even-mode excitation. Compared
with an unsymmetric problem having the same number of unknowns, the storage is
reduced by one-half and the solution time by one-fourth. We note that this particular
problem exhibits not only object and hence direct-matrix symmetry, but solution
symmetry as well due to the constraints imposed by the image plane.

In general, the computer time for reflection symmetry can be expressed by

T ref = Afil(Nx/2P)? + AsolveM(Ny/2P)3 (42)
where p = 1,2, or 3 is the number of reflection planes, and m = 1,...,2P is the number of
excitation modes for which a solution is required.

b. Rotation Symmetry

In the case of rotation symmetry, the direct matrix has the general
form
Z12523... Z,
Z,2Z4 22 e Zpyq

2523...2,24
where each Z; can be a single coefficient or a matrix of order ny where there are ny =
N,/n unknowns per rotational sector. For the circulant matrix which results from rotation

symmetry, Zj; = Zj,k_cn j+k- B Where , B=1if i+k>n, j+k>n respectively and are

otherwise zero. Rotation symmetry thus produces a special Toeplitz matrix, in that it is not
only diagonal but has only n independent coefficients or blocks rather than the 2n-1 of
the usual Toeplitz form.

Because of its structure, a circulant matrix yields solutions that are given by a Fourier
series of discrete, orthogonal modes. Solution of the original matrix thus can be
transformed to solution of m =1 to n reduced or modal matrices, the actual number m

needing solution depending on the kind of excitation being used. Each of these reduced
matrices yields a solution for one of the m modes out of which the general, overall
solution is constructed. Reduction of the original direct matrix into these modal matrices
can occur because the angular variation of each solution mode is known. This is
analogous to how knowledge that a horizontal wire over a perfectly conducting ground
plane has oppositely directed currents is used in the case of reflection symmetry. In the
case of rotation symmetry and mode number m for example, the solution in sector ris
related to that in sector s by exp[im(r-s)]. Therefore, knowledge of the solution in sector
s=1 is sufficient to construct the modal solution for any mode m.

The solution time for a problem having rotation symmetry is given for the general case by
T rot = AfiiNeZ/n + Asoivenm(Ny/n) (4b)
where the fill time is thus reduced by a factor of n and the solution time by a factor of at
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least n< relative to a problem without symmetry. Similarly, the storage is reduced by a
factor of n as well. It is worth noting that when n = Ny the solution time is proportional to

1smsNy.

c¢. Translation Symmetry

An object having translation symmetry produces a matrix having
the structure

Z12323...2,

25Z242p...2, 4

ZnZn_1 ....21
which is similar in appearance to a circulant matrix and where again each Z; can be a
single coefficient or a matrix of order n, where there are ny = Ny/t unknowns per t cross

sections in the direction of translation. While the matrices produced by rotation and
translation symmetry are both of Toeplitz form, they exhibit subtle though significant
differences. For rotation symmetry, the inverse (solution) matrix is circulant as well, but
for translation symmetry the inverse (solution) matrix is instead the sum of two products
of two triangular Toeplitz matrices [Bitmead and Anderson (1980)]. One consequence of
this difference is that the computer time needed for translation symmetry is not reduced
as much as for rotation symmetry. In particular, rotation symmetry resuits in a solution
time which varies between Nx0 and N, 1, depending on the number of excitation modes,

while that for translation symmetry can be as high as N,(2 depending on the algorithm

used. The overall computer time associated with translation symmetry is approximated
by

Teo tran = AfiiNx + AsoiveNxllogNyl® (4c)
where the latter term arises from transforming the Toeplitz matrix of order Ny into a
circulant matrix of order 2Ny, [Bitmead and Anderson (1980)].

d. Combinatorial Symmetry

When a problem possess two or more kinds of symmetry it can be
possible to exploit their combination as a factored sequence to obtain very significant
further reduction in solution time. The possibility for doing so depends on the extent to
which the modes which characterize each kind of symmetry remain orthogonal or
separable. When mode coupling occurs between separately symmetric objects because
they are not symmetrically oriented, as demonstrated by co-planar, identical, polygonal
loops, then although the self-interaction of each object remains separable their
interaction is not. If the loops are co-axial with their sides aligned however, then both the
rotation and reflection symmetry can be fully exploited. One such example is given
below to demonstrate the effects of combinatorial symmetry.

e. Example of Symmetry Application
Because the full impact of symmetry may be best appreciated by
using a numerical example, let us briefly consider modeling a coaxial array of Np

identical, parallel, regular polygons having Ng sides so that Ny = NgNp. This problem
leads to an overall direct matrix of Ny 'th order which can be put in a block circulant array
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of NgxNg translation matrices each of order Np. Since the sum of Toeplitz matrices is a
Toeplitz matrix, the direct, block circulant matrix can be reduced to Ng Toeplitz matrices
each of order Np. Each of these Ng matrices can then be solved a time proportional to
Np2.

For purposes of illustration, let Np = Ng = 1,000 for a total of 1,000,000 unknowns, and

assume that NEC [Numerical Electromagnetics Code, Burke and Poggio (1980)] is being
run on a CDC-7600 computer for which Ay = 1.4x10°7 hour and Bgg)ye = 5.6x10710

hour. The overall computer time can thus be concluded to change from (ignoring the fill
time which is insignificant relative to the solution time)

T ~ 5.6x108 hours (=64,000 years) without symmetry;
to T = 5.6x102 hours with rotation symmetry utilized;

to T =~ 5.6x10"1 hours (~34 min) with both symmetries exploited.

A time reduction by a factor of ~ N,(a"2 =109 is achieved in this case. Assuming that

roundoff or other errors do not invalidate the numerical results for problems having this
number of unknowns, the possibility of solving extremely large problems having
high-order symmetry seems feasible. This is worth considering not only for those
problems of practical interest that do have exploitable symmetries, but for testing other
techniques for reducing computer time such as the near-neighbor approximation.

3. Near-neighbor Approximations

Motivation for the near-neighbor approximation (NNA) comes from the
possibility that a window can be defined outside of which interactions are small enough
to be ignored while still retaining acceptable accuracy in the solution. The NNA can be
applied spatially in which case the rationale for ignoring interactions comes from the
geometric attenuation of the fields with increasing distance from the source [Ferguson,
et. al. (1976)]. A modal NNA can also be implemented for which the rationale is provided
by the observation that coupling between modes tends to decrease as the difference
between their mode numbers increases [Medgyesi-Mitschgang and Putnam (1983),
(1985)]. The benefit in either case is that a direct matrix is produced having a smaller
proportion of non-zero coefficients as object size increases, with a consequent potential
reduction in both computer storage and solution time.

If the average number of non-zero coefficients in each row of the sparse, direct matrix
which results from the NNA is W, then the matrix fill time increases only as WN, rather

than Nxz. The subsequent solution time however depends on a number of factors, the

most important one being the pattern of non-zeroes in the direct matrix. For the
one-dimensional problem of a straight wire for example, the NNA direct matrix is banded
of width W about the main diagonal and can be solved without further approximation in a
time proportional to NXW2 and a savings relative to a full-matrix solution ~ Nxz.

For two- and three-dimensional problems it is not generally possible to exploit matrix
sparseness as easily and fully, as a banded matrix having many zero coefficients within
the band is produced. The resuit for a square plate and a penetrable cube is a solution
time proportional to Nx2 and Nx7" 3 respectively with a corresponding savings over a
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full-matrix solution of order N, and Nxz*'3.-- While these may not be insignificant
reductions in solution time for large-enough Ny, realizing the fullest benefits of the NNA
requires some other approach to exploit matrix sparseness.

4. Other

Other numerical techniques for reducing computer-time requirements
might be considered. Two we discuss here are "borrowed" from the area of signal
processing, adaptive modeling for reducing the number of unknowns needed to achieve
a desired accuracy, and model-based parameter estimation for increasing the utilization
efficiency of what has been computed.

a. Adaptive Modeling

Most CEM seems to involve sampling of both the unknowns to be
solved and the equations to be matched in a way that is determined more by problem
geometry than electromagnetic requirements. Perhaps the simplest example is that of a
straight wire for which equal-length segments are most often employed when using a
sub-domain basis, resulting in equally spaced equation-match points as well when using
collocation. This modeling strategy is used more for convenience than from knowledge
that it provides the best accuracy for a given number of unknowns. The use of adaptive
sampling could lead to improved modeling performance by adjusting the sampling to the
requirements of a particular problem.

There are at least two ways by which adaptive sampling might be implemented. The
simpler approach which we denote as static adaptation, would develop pre-determined
sampling strategies for various problem classes which would then be used when
problems from among them are being modeled. The other, more complex but potentially
of better performance, would invoive dynamic adaptation to increase the sampling
during the course of the modeling computation. The latter approach would require
quantitative assessment of the modeling error at a given stage in the computation
together with a strategy for changing the sampling to improve the modeling accuracy.
One version of the conjugate gradient technique is adaptive in this sense. A desirable
attribute of dynamic adaptation is to utilize as fully as possible all previous computations
when increasing the sampling at a given stage in the process, so that information
already computed is not discarded.

b. Model-based parameter estimation

Identifying trends in data by sequentially connecting adjacent
points with straight lines or using smoothed approximations thereto is an exercise
familiar to any engineering student, a procedure typically described as curve fitting. The
basic idea is to see whether curves which "fit" the data exhibit any sort of explainable
behavior which reveals some underlying physics and/or mathematics. A classical
example of curve fitting is polynomial interpolation and extrapolation as previously
discussed in connection with selecting basis and testing functions for using the moment
method.

When the curve-fitting procedure employs an analytical description based on the physics
of the process which produced the data, the exercise may be more accurately described
as one of model-based parameter estimation (MBPE). The analytical description
provides the model whose parameters are adjustable constants needing numerical
determination before the model is quantifiable. These constants are estimated by fitting
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the model to the data, usually in some least-mean-square sense. In electromagnetics,
and in the context of our previous discussion that source-field relationships establish a
transfer-function representation, we observe that MBPE is a tool for solving the inverse
problem. One example is that of finding the complex resonances or poles of objects from
their temporal or spectral responses using an exponential- or pole-series model.

Besides being a tool for treating inverse problems, MBPE also provides a means for
developing more efficient tools for the direct or analysis problem. The principle in the
latter case comes from the observation that the mathematical complexity of a formal,
analytical solution can obscure the physical simplicity of what that solution describes. As
a specific example we can cite the Sommerfeld solution of the interface problem whose
treatment has drawn much attention. While the Sommerfeld integrals can be

. complicated to evaluate either analytically or numerically, the fields they describe exhibit

reasonably simple spatial variation. It was this simplicity that was exploited by
Brittingham et. al. (1977) in linearly interpolating in a spatial mesh of pre-computed
Sommerfeld fields to develop the direct matrix for wires near an interface. By replacing
direct Sommerfeld-integral evaluation with this simple curve-fitting procedure, the
computer time required for using such models was reduced by a factor of 100 or more.
Latter, an analytically more accurate model than linear interpolation was developed
based on asymptotic approximations to the Sommerfeld integrals with even better results
[Burke and Miller (1984)].

Modeling interfaces appears to be just one of many direct problems in electromagnetics
that are suited to MBPE for increasing their numerical efficiency. Other examples of
MBPE include developing more efficient algorithms for computing the radiation pattern of
a parabolic reflector [Bucci et. al. (1983)], and synthesizing and imaging aperture and
antenna source distributions [Miller and Lager (1978), Inagake and Garbacz (1982), and
Miller (1983)].

c. Numerical Green's function

The solution matrix that is obtained for a given object or structure
in essence is the numerical equivalent of a generalized Green's function in that the
boundary conditions prescribed in obtaining the matrix are satisfied over the structure's
surface whatever the excitation to which it is exposed. Whether that excitation is caused
by an incident plane wave to model its scattering properties, or a localized field to model
its radiation characteristics, the solution matrix represents a self-contained numerical
analog of the structure it approximates.

In many applications however, for example when antenna placement on the structure is
being evaluated, the basic solution matrix is incomplete without including the antenna(s)
in the model as well. Although their inclusion will not significantly increase the size of
the direct matrix that must be solved when these added antennas are small relative to
the overall structure, each new position they occupy changes that part of the direct matrix
to which they contribute. In such cases it is computationally advantageous to partition
the direct matrix into two parts, one for the basic structure and a remaznder that accounts
for the antenna-structure interaction. We thus have

Zss Zgy

Z =

Zas  Zaa

where "s" and "a" subscripts denote the structure and antenna respectively. A solution to
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the moment-method problem can then be expressed as

Is = Yss[Bs - Zsalal =15 + /s

Ig=YgaalEq- Zoglgl =1 + /5 _
where | and / are the self- and mutual-interaction currents respectively. By substituting Ig
into the second equation, we obtain

la = (1- YaaZasZsa) ' (Ia - YaaZasYssEs)

Is =g - YssZsala
so that a matrix of only order "a+a" rather than "s*s" needs to be solved for each new
antenna location. The role played by Y¢g in this case is analogous to that of an analytic

Green's function for various special geometries as discussed above. The reduction in
computer time is of order "s" relative to solving the combined problem.

Vil. VALIDATION, ERROR CHECKING, AND ERROR ANALYSIS

A. Modeling Uncertainties

The process of proceeding from an original physical problem to computed results
is one which is subject to numerous uncertainties caused by a variety of factors.
Perhaps foremost among these factors is the degree of arbitrariness associated with
many of the choices that are made by the code developer and/or modeler in the course
of eventually obtaining numerical results. Whereas the numerical evaluation of classical
boundary-value problems such as scattering from a sphere is numerically robust in the
sense that different workers using different computers and different software can obtain
results in agreement to essentially as many significant figures as they wish, the same
observation cannot be made for moment-method modeling.

Modeling uncertainties can be assigned to two basic error categories, a physical
modeling error €p, and a numerical modeling error €y as outlined in Table 19. The

former is due to the fact that for most problems of practical interest varying degrees of
approximation are needed in developing a simplified or idealized problem
representation that will be compatible with the computer code to be used for the
modeling computations. The latter is due to the fact that the numerical results obtained
are almost invariably only approximate solutions to that idealized representation. We
note that although an analytical expression may in principle represent a formally exact
solution, the process of obtaining numerical results in that case is still one which
inevitably involves finite-precision evaluation of the formal solution.

By its very nature, the physical modeling error requires some kind of measurement for its
determination, except for those few problems whose analytical solution in principle
involves no physical idealization nor subsequent numerical approximation. One
example of such problems is that of determining the scattering or radiating properties of
the perfectly conducting or dielectric sphere.

The numerical modeling error is itself comprised of two components in general,
determination of which would normally involve one or more kinds of computation. The
first and generally more important of these components is the solution error which arises
because the computer model used, even if solved exactly, would not provide an exact
solution for the idealized problem representation. The solution error arises essentially
due to the fact that the computer model is solved using a finite number of unknowns. The
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other, generally less important contributor to the numerical modeling error is the
equation error which arises because the numerical results obtained from the computer
mode! used may not numerically satisfy the modeling equations. The equation error may
be caused both by round-off due to the computer word size as well as the solution
algorithm employed, as in the case of iteration, for example. The impact of equation
error can be expected to increase with increasing condition number of the direct matrix.
As an indicator of the kinds of issues that must be kept in mind when developing a
numerical model, a brief list of generic modeling guidelines is presented in Table 20.

B. Validation and Error Checking

One of the most time consuming and long lasting of the tasks associated with any
model development is that of validation. Long after work on the model has been
completed questions will continue to arise about whether a given result is valid or
whether the model can be applied to a given problem. There are essentially two kinds of
validation procedures that can be considered to answer such questions, which are:

1) Internal Validation, a check that can be made concerning
solution validity within the model itself as summarized in Table 21.

2) External Validation, a check that utilizes information from other
sources which could be analytical, experimental or numerical as
summarized in Table 22.

Existing computer models often do not perform internal checks on the resuits they
produce, but instead leave that as an exercise to the user. For example, NEC
(Numerical Electromagnetics Code) one the more widely used models, could provide
and indeed has been exercised to give various kinds of checks relating to power
balance, reciprocity and boundary-condition matching. But the software to do this is not
a integral part of the code, generally being "patched in" by the user for a particular
problem and check. It would seem to be of extremely great potential value if a variety of
such checks could be built into the code and exercised as desired by the modeler.

1. Internal Checks

As a particular example of the use to which internal checks could be put,
consider the case when a problem new to the modeler is being implemented and the
initial results are obtained. Present practice usually involved "eye-balling” the data to
see if it feels right, perhaps having first run some documented test cases to verify code
performance. Since these test cases would not be likely to closely resemble the new
problem, their successful solution would not provide much insight concerning the new
results. If however, a series of checks built into the code could then be exercised at the
modeler's discretion to verify that conditions necessary for a valid solution of Maxwell's
Equations are satisfied, confidence in the model's reliability could be established. These
checks might range from being as exhaustive as boundary-condition matching would be,
to being fairly simple, such as reciprocity and power conservation. They could only be
viewed as necessary but not sufficient conditions for solution validity, and could only
involve such behavioral aspects as are not implicit in the model already (e.g., some
formulations produce symmetric matrices so that bi-static scattering and transmit-receive
reciprocity are assured). It would seem feasible to develop a figure-of-merit from the
results of such checks that would provide in a single number a "quality factor” for the
solution.

2. External Checks
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The second kind of check involves use of independent data from other
sources. Perhaps the most convincing overall is experimental data, but analytical or
numerical results should be comparably useful. Indeed, one of the most convenient
computational checks would be provided by a code that permits two different models to
be developed for the same problem, for example by incorporating user-selectable basis
and weight functions. For greatest utility, such checks ideally should not be of
single-point nature, for example to compare results for input impedance at a single
frequency. Experience shows that computer models produce results that exhibit slight
frequency shifts, angle shifts or spatial shifts in field quantities with respect to "exact"
solutions, or even other computer models. Consequently, global comparisons are
usually more meaningful, but even then may not be straightforward. If the shifts
mentioned are observed, it would seem appropriate to develop a correlation measure to
establish the minimum squared difference between the two resuits as they are shifted
along the axis of the common variable. For other models and applications, the results
may be even less directly comparable, as is the case for IE and DE modeling
approaches. Some work is needed in the general area of how results from two different
representations of the same problem can be most meaningfully compared.

Viil. CONCLUDING REMARKS

In the preceding discussion, we have presented a selective survey of computational
electromagnetics. Attention has been directed to radiation and scattering problems
formulated as integral equations and solved using the Method of Moments. Beginning
from the viewpoint of electromagnetics as a transfer-function process, we concluded that
the basic problem is one of developing source-field relationships, or field propagators.
Of the various ways by which these propagators might be expressed, we briefly
discussed the Maxwell curl equations and Green's-function source integrals as providing
the analytical basis for moment-method computer models. We then considered at more
length some of the numerical issues involved in developing a computer model, including
the idea of sampling functions used both to represent the unknowns to be solved for and
to approximate the equations that they must satisfy. Some of the factors involved in
choosing these sampling functions and their influence on the computational
requirements were examined. Next, we discussed some ways of decreasing the needed
computer time based on either analytical or numerical approaches. Some closing
comments were directed to the important problem of validation, error checking and error
analysis. Throughout our discussion, emphasis has been given to implementation
issues involved in developing and using computer models as opposed to exploring
analytical details.
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Table 1
CLASSIFICATION OF MODEL TYPES IN CEM

FIELD PROPAGATOR DESCRIPTION BASED ON:

Integral operator Green's function for infinite medium or special boundaries.

Differential operator Maxwell Curl Equations or their integral counterparts.

Modal expansions Solutions of Maxwell's Equations in particular coordinate
system and expansion.

Optical description Rays and diffraction coefficients.

APPLICATION REQUIRES:

Radiation Determining the originating sources of a field.

Propagation Obtaining the fields distant from a known source.

Scattering Determining the perturbing effects of medium
inhomogeneities.

PROBLEM TYPE CHARACTERIZED BY:

Solution domain Time or frequency.

Solution space Configuration or wavenumber.

Dimensionality 1D, 2D, 3D.

Electrical properties of Dielectric; lossy; perfectly conducting; anisotropic;

medium and/or boundary inhomogeneous; non-linear.
Boundary geometry Linear; curved; segmented; compound; arbitrary
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Table 2

STEPS IN DEVELOPING A COMPUTER MODEL

STEP
Conceptualization

Formulation

Numerical implementation

Computation

Validation

ACTIVITY _

Encapsulating observation and analysis in terms of
elementary physical principals and their mathematical
description.

"Fleshing out" of the elementary description into a more
complete, formally solved, mathematical
representation.

Transforming into a computer algorithm using various
numerical techniques.

Obtaining quantitative results.

Determining the numerical and physical credibility of the
computed results.
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Attribute

Accuracy

Efficiency

Utility

Table 3 .
DESIRABLE ATTRIBUTES IN A COMPUTER MODEL

Description

The quantitative degree to which the computed results
conform to the mathematical and physical reality being
modeled. Accuracy, perferably of known and better
yet, selectable, value is the single most important
model attribute. It is determined by the physical

modeling error (€p) and numerical modeling error (€py)
[see Section VII].

The relative cost of obtaining the needed results. Itis
determined by the human effort required to develop the
computer input and interpret the output, and by the
associated computer cost.

The applicability of the computer model in terms of problem
size and complexity. Utility also relates to ease of use,
reliability of results obtained, etc.
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Table 4

REPRESENTATIVE APPROXIMATIONS THAT ARISE IN MODEL

APPROXIMATION

Conceptualization
Physical Optics

Geometrical Theory
of Diffraction

Geometrical Optics
Compensation
Theorem
Born-Rytov
Rayleigh
Formulation

Surface Impedance

Thin-Wire

DEVELOPMENT
IMPLEMENTATION/IMPLICATIONS

Surface sources given by tangential components of incident
field, with fields subsequently propagated via a Green's
function. Best for backscatter and main-lobe region of
reflector antennas, from resonance region (ka>1) and up in
frequency.

Fields propagated via a divergence factor with amplitude
obtained from diffraction coefficient. Generally applicable for
ka>2-5. Can involve complicated ray tracing.

Ray tracing without diffraction. Improves with increasing
frequency.

Solution obtained in terms of perturbation from a reference,
known solution.

Approach used for low-contrast, penetrable objects where
sources are estimated from incident field.

Fields at surface of object represented in terms of only outward
propagating components in a modal expansion.

Reduces number of field quantities by assuming an impedance
relation between tangential E and H at surface of penetrable
object. May be used in connection with physical optics.

Reduces surface integral on thin, wire-like object to a line
integral by ignoring circumferential current and
circumferential variation of longitudinal current which is
represented as a filament. Generally limited to ka<1 where a
is the wire radius.

Numerical Implementation

oflox --> (f -f.)/(x -X.)

Jix)dx --> Z(x;) Ax;

Computation

Deviation of numerical

model from

physical reality
Non-converged

solution

Differentiation and integration of continuous functions

represented in terms of analytic operations on sampled

approximations, for which polynomial or trigonometric
functions are often used. Inherently a discretizing operation,

for which typcially Ax <\/2n for acceptable accuracy.

Affects solution accuracy and relatability to physical problem in
ways that are difficult to predict and quantify.

Discretized solutions usually converge globaly in proportion
to exp(-AN,) with A determined by the problem. At least two

solutions using different numbers of unknowns Ny are
needed to estimate A.
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Table 5

COMPARISON OF STEPS IN TIME- AND FREQUENC Y-D(?MAIN MODELING

Fr in
o/ot = iw

L(w,|r-r'f(w,r)
= g(&),l')

{Maxwell's equations}

{Plus boundary conditions, etc.}

Time Domain
Time dependent

L{lr-r'Dt(z.r') = oft,r)
T =t-r-r')/c

where r is observation point, r' is source point, ¢ is speed of light in medium

L(w,|r-r'|) depends

on & and |r-r'|
Zzu-f- = gj
ij= '|,...,Nx

where Ny is number of
space samples

fi = ZYig;
where Y = Z-1

Solution obtained for
many sources but
single frequency

Do for M = 1,...,Nf
frequencies to get fim

{Note that}

{Apply MoM to get Nth order system}

{Matrix manipulation yields}

{Observe}

fim and fj are related by
Fourier transform

L(|r-r']) depends on |r-t'|

only

2.Z;fk = 9ik

L= 1, Ny k= 1,..,N;
where Ny is number of
time samples

fik = ZYij9k
where Y= 21
(Inversion needed only

once and only for
implicit solution)

Solution obtained for
single source but
many frequencies

105



D I D D B D D

|

Table 6
SOME INTEGRAL EQUATIONS WIDELY USED IN ELECTROMAGNETICS
REQUEN MAI COMMENTS
Magnetic-Field Integral Equation
J(r) - 2nx§d(r')xV'g(r.r')]da‘ Suited for smooth closed bodies.
S = 2nxHINC(r) Note source term is physical
=Ly optics current [Oshiro (1965)].
' . - ' -
t-§{iw Hdg(Ma(r.r') - [mE(r)]V'g(r,r')}da’ Applicable to general bodies
S = t-EiNc(r) such as wires, plates, and shells.
= Lg(J) [Andreason (1965)].
ined-Fiel ral ion (CFIE)

-

LH(J) + <LE(d)/M = 2nxHINC(r) + o<t-EINC(r) /M Eliminates the spurious solutions

that occur in either the EFIE or
MFIE at interior resonances
[Mautz and Harrington (1978)].

TIME DOMAIN

-Fiel r i

Js(rt) - (1f2n)nx£ {1/R + c T3t H{[Js(r't)]xRY/R2ds’ Limitations similar to FD MFIE

= 2nxHINC(r 1) [Bennett and Weeks (1970)].
I -Field | I i

(1f4n)nx£{-a.ls(r' 1')/ot'+[1/R + c'18/at'] Applicability comparable to FD EFIE

- [Mieras and Bennett (1982)].
[n"E(r' ,t)R/R]}/Rds' = nxE'"C(r 1)

where: r and t are the observation position and time
r' and t' are the source position and time
t' =t - R/cis the retarded time

R = [r-r'| with r and I’ on the surface S

denotes a principle-value integral
g(r.r') = e'ikR/(4nFl)
n, t are unit normal and tangent vectors to the surface
o is an adjustable parameter to determine relative weighting of MFIE and EFIE
contributions, with best results occurring for 0.2<x<1
M is free-space impedance
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Table 7
COMPARISON OF IE- AND DE-FIELD PROPAGATORS
AND THEIR NUMERICAL TREATMENT
DIFFERENTIAL FORM INTEGRAL FORM

Field Propagator_ Maxwell Curl Equations Green's function
*At infinity Local or global" lookback”  Green's function
(radiation to approximate outward
condition) propagating wave
*On object Appropriate field values Appropriate field values

specified on mesh bound-  specified on object contour
aries to obtain stairstep or  which can in principal be a

piecewise linear approxi- general, curvilinear surface,
mation to the boundary although this possibility
seems to be seldom used
Sampling Requirements
*No. of space samples Nyox(L/AL)P Ny ox(L/AL)D-1
*No. of time steps Niox(L/AL)=cT/8t Ny (LVAL)=cT/8t
*Linear system Sparse, but larger Dense, but smaller. In this
L is problem size comparison, note that we
D is no. of problem dimensions (1,2,3) assume the |E permits a
T is observation time sampling of order one less
AL is spatial resolution the problem dimension, i.e.,
8t is time resolution inhomogeneous problems
are excluded.
Solution time

*Frequency domain T, <Ny P=(L/AL)PP;2<p<3 Ty oxNyP=(L/AL)(D-1)P;2<p<3
*Time domain TyoxNyNi=(L/AL)D+1 TyocN, 2Ne=(L/AL)2D-1
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Table 8
RELATIVE APPLICABILITY OF IE- AND DE-BASED COMPUTER MODELS

TIME DOMAIN ISSUE FREQUENCY DOMAIN
DE IE DE IE
' MEDIUM
2\ v Linear v v
X X Dispersive v v
v X Lossy v v
| ~ Anisotropic ) v
V X Inhomogeneous v X
vy X Nonlinear X X
v X Time-varying X X
OBJECT
~ v Wire ~ v
v v Closed Surface v v
v v Penetrable Volume V V
~ v Open Surface ~ v
BOUNDARY CONDITIONS
V V Interior Problem V \
~ v Exterior Problem ~ v
v v Linear N v
V v Non-linear X X
) v Time-varying X x
~ X Half-space ~ v
OTHER ASPECTS
~ ~ Symmetry Exploitation V v
~ v Far-field Evaluation ~ v
X ~ Number of Unknowns ~ v
v ~ Length of Code -~ X
SUITABILITY FOR HYBRIDING WITH OTHER:
~ Numerical Procedures v v
X ~ Analytical Procedures ~ v
X ~ GTD X v

where:
v signifies highly suited or most advantageous
~ signifies moderately suited or neutral
x signifies unsuited or least advantageous
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Table 9

SAMPLING OPERATIONS INVOLVED IN MoM MODELING

EQUATION

Sampling of:
Unknown via basis-
functions bj(s')

using
f(s') = Eajbi(s').

Equation via weight
functions w;(s)

<wi(s),L(s,s')Zajbj(s')>
= <w;(s),g(s) >
to get Ziiaj = gj-

Operator.

Solution of:
Zijaj =g

for the ai.

DE MODEL
L(s")(s') = g(s")

Sub-domain bases usually
of low order are used.

Known as finite-difference
procedure when pulse basis

is used, and as finite-element
approach when bases are
linear.

Point-wise matching is
commonly employed, using a

delta-function. Pulse and linear

matching are also used.

Operator sampling for DE
models is entwined with

sampling the unknown in terms

of the difference operators
employed.

Interaction matrix is sparse.
Time-domain approach may

be explicit or implicit. In
frequency domain, banded-
matrix technique usually
employed.

IE MODEL
L(s,s)f(s") = g(s)

Can use either sub-domain
or entire-domain bases. Use

of latter is generally confined
to bodies of rotation. Former

is usually of low order, with
piece-wise linear or sinu-
soidal being the maximum
variation employed.

Point-wise matching is com-
monly employed, using a

delta function. For wires,
pulse, linear, and sinusoidal
testing is also used. Linear

and sinusoidal testing is also
used for surfaces.

Sampling needed depends
on the nature of the integral
operator L(s,s'). An important
consideration whenever the
field integrals cannot be
evaluated in closed form.

Interaction matrix is full.
Solution via factorization or
or iteration.
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. Table 10
EXAMPLES OF GENERIC BASIS/WEIGHT-FUNCTION COMBINATIONS

Method ith Term of Basis ith Term of Weight
Galerkin ajb;(r') w;i(r) = bj(r)
Least square ajby(r') Q(r)3¢(r)/a;
Point matching 3 8(r—tj) 8(r-r;)
General collocation ajbi(r') &(r-r;)
Subsectional collocation U(rj)Zajkbk(r') 8(r-r;)
Subsectional Galerkin U(rj)Zajkbk(r') U(r;)2b;(r)
where:

r' and r denote source and observation points respectively
aj, aj are unknown constants associated with the j'th basis function (entire domain)

or the k'th basis function of the j'th subsection (sub-domain)
U(rk) is the unit sampling function which equals one on the k'th sub-domain and is

zero elsewhere
bj(r') is the j'th basis function

wj(r) is the i'th testing function

S(r-rj) is the Dirac delta function

Q(r) is a positive-definite function of position
€(r) is the residual or equation error
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Table 11
EXAMPLES OF SPECIFIC BASIS/WEIGHT-FUNCTION

COMBINATIONS
Application jth Term of Basis ith Term of Weight
1D/Wires [Richmond (1965) (1966)] Constant--ain(s) Delta function--§(s-s;)
1D/Wires [Chao and Strait (1971)  Piecewise linear--aj4 (s-si-s j/2) + Piecewise Iinear—(s—si-s j/2) +
ajz( s-sl-+8 l/2 ) ( s-sj+8 112 )
1D/Wires [Mei (1965) 3-term sinusoidal-aj1 + al-gsin[k(s-sj)] + Delta function--8(s-s;)
ajzcosk(s-sj)]
1D/Wires [Richmond 1974)] Piecewise sinusoidal—-ansin[k(s-sj-a ]-12}] +
Piecewise sinusoidal-- aizsin[k(
s-sj+b ]/2 )] sin[k(s-sj-& jlz)] +
sin[k( s-si+8 1!2 )|
2D/Surfaces [Oshiro(1965)] Weighted Delta tuncii'on--aiS(s—s]-)Aj Delta function--8(s-s;)
2D/ Rotational Surfaces Piecewise linear axially, and exp(ing)  Same (Galerkin's method)
[Mautz & Harrington(1969)] azimuthally
2D/Surfaces [Glisson & Wilton (1980)] Piecewise linear Same
(Galerkin's method)
2D/Surfaces [Putnam and Piecewise linear subdomain/Fourier series Same
(Galerkin's method)
Medgeysi-Mitschang (1986)] entire domain
3D/Volumes [Schaubert et. al. (1984)] Piecewise linear Same
(Galerkin's method)
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Method
Cramer's

Rule

Inversion

Factorization

lteration

Symmetry
Reflection

Translation
(Toeplitz)

Rotation
(Circulant)

Banded

Table 12

SUMMARY OF OPERATION COUNT FOR SOLUTION OF
GENERAL DIRECT MATRIX HAVING Ny UNKNOWNS

To Obtain To Obtain

Solution Matrix Solution Comments

Expand in co-factors ~Ny! Not an advisable procedure,

leading to --> but useful to illustrate just
how bad the problem could
be!

Nx3 Nx2 Provides RHS-independent
solution matrix

N, 3/3 N, 2 RHS independent solution
matrix

- Nxz-Nx3 Each RHS requires separate
solution

(1t02P)x(N,/2P)3 N, 2/2P For p=1t03 reflection planes

1(:1,()N:,(2 Nx2 For ny unknowns per section
of translation, with {(ny)
weakly dependent on ny

mx(N,/n)3 Ny For n rotation sectors
and m=1ton modes

N,(W2 N, W For a bandwidth of

W coefficients
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Table 13
NOMINAL SAMPLING REQUIREMENTS FOR VARIOUS FIELD QUANTITIES

Quantity Value

N, , total number of spatial samples ~d(L/AL)Y = d@rly/a)d
(per field quantity)

N; , number of time steps for time-domain model ~ (LVAL) = (2rL/A)

N¢ , number of frequency steps to characterize ~ (LL2AL) = Ny/2

spectral response from frequency-domain model

Nsources » Number of incident sources for monostatic ~ (4L/3AL) = 8rlL/A
radar cross section in one plane

Nfields, number of far fields needed for bistatic pattern ~ ~Ngqrce = (4L/3AL
in one observation plane”

where:

A is the wavelength at the highest frequency of interest.

AL is the spatial resolution being sought.
L is object maximum object dimension or dimension in observation plane.
d is the pumber of spatial dimensions being sampled, and is not necessarily the

problem dimensionality D. The distinction is important because when an appropriate
Green's function is available, the source integrals are usually one dimension less than
the problem dimension, i.e., d = D-1. An exception is an inhomogeneous, penetrable
body where d = D when using an integral equation.

Assuming ~6 samples per lobe of the scattering pattern are needed.
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Table 14
HIGHEST-ORDER TERMS IN SOLUTION TIME APPROXIMATIONS FOR
DE AND IE FREQUENCY- AND TIME-DOMAIN MODELS

PROPAGATOR -->  Differential Eq. Integral Eq.
DOMAIN ‘
b
Frequency ToE,w = « WAL32 T o~ (VAL )3
Time explicit Tpgy = o (ALY Tigt= o (LAL)2d+

implicit  Tpg ¢ = o (L/AL)2A+

where a single calcaluation is performed (one frequency for a FD solution or one source
for a TD calculation). -
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Table 15

SOME ANALYTICAL MEANS OF REDUCING COMPUTER TIME

Method _
Specialized Green's

functions

Hybrid models

Impedance boundary
conditions

Physical optics

Implementation

Delta-source fields for geometry
of interest

Interactions between parts of
problem modeled using
different formulations

Boundary smooth enough
that ratio of local fields
determined by constitutive
parameters

Local surface field determined
by constitutive parameters
and incident field

Motivation
Eliminate need to solve
unknowns over the

specific surface

Model self interaction
using most efficient
formulation

Reduce number of
unknowns by a factor
of two

Eliminate all unknowns,
but excitation dependent
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Table 16

A SUMMARY OF SOME SPECIALIZED GREEN'S FUNCTIONS

Problem
Planar, penetrable .
interface.

Infinite, circular cylinder.

Sphere.

Infinite, paralle! plates.

Rectangular waveguide.

Rectangular cavity.

Green's Function
Continuous radial spectrum
[Banos (1966)].

Continuous axial spectrum
and discrete azimuthal
(cosine/ sine) series
[Lucke (1951)].

Discrete spectrum in elevation
(Legendre polynomials) and
azimuth (cosine/sine series)
[Tesche & Neureuther (1970)].

Discrete spectrum (infinite set
of images) in transverse
direction [Tesche (1972)].

Extension of parallel plate
treatment to two transverse
image sets and double series.

Extension of rectangular
waveguide to closed cavity,

with three image sets and triple

series [Wu and Chang (1986)].

har: risti
Infinite integrals whose
numerical evaluation is
time consuming and having
analytical approximations of
limited applicability.

Adds to difficulty of integral
evaluation needed to sum
azimuth series.

Double series can be compu-
tationally demanding.
Simplifies for single, radial
monopole.

Series is slowly convergent,
and is poorly behaved at
resonant separations.

Double series increases the
convergence problem from
~N to ~N2.

Triple series convergence
~N3, but transformed to
single series by Wu and
Chang.
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Table 17

SOME HYBRID MODELS USED IN COMPUTATIONAL

GTD/IE
[Thiele and
Newhouse (1969)].

Modal/DE
[Mei (1974)].

Modal/Experimental
[Wacker (1981)].

IE/DE
[Taflove and

ELECTROMAGNETICS

Implementation
Addition to MoM impedance

matrix of fields due to diffracted

rays.

Develop solution for penetrable

object using DE and match to

modal outward propagating fields.

Measure antenna near fields over

plane, cylinder, or sphere and

transform to far field using modal

expansion.

Apply IE model over enclosing

surface within which fields are

Umashankar (1980)]. modeled using DE.

Motivation
Reduce number of MoM
unknowns when

modeling large objects.

To include radiation
condition in frequency-
domain, DE model.

To permit measurement in
near field of antennas too
large for practical, direct
far-field measurement.

To exploit exterior-region
advantage of |[E and interior-
region generality of DE.
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Table 18

SOME NUMERICAL MEANS OF REDUCING COMPUTER TIME

Method

lterative technique
to solve direct matrix

Exploiting problem
symmetries.

Near-neighbor
approximations.

Adaptive modeling.

Model-based
parameter estimation.

Numerical Green's
function

Implementation

Bequirements
Various special-purpose
iteration routines which include

convergence checks

. Special programs for filling

and solving symmetric systems of
various kinds.

Strategy for setting interaction-

window width and exploiting
sparseness of direct matrix.

Variation of numerical model as
computation proceeds to achieve
a specified local accuracy.

Development of approximate,
simpler expressions to replace
rigorous, but computationally
time-consuming, rigorous ones.

Development and storing of
solution matrix for primary
object of interest.

Motivation
Reduce solution time
from N,3 to ~N,,

Save varying amounts of
computer time/storage,
but limited in
applicability.

Save factor of Ny or

more in time/storage, but
produces approximate
solution.

Fewer unknowns and
controllable error, but
increased programming
complexity.

Reduce time needed

to obtain direct matrix, or
number of samples
needed, e.g., to estimate
transfer function.

Need only to solve
interaction terms to
mode! effect of other
nearby objects.
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Table 19

ERROR TYPES THAT OCCUR IN COMPUTATIONAL ELECTROMAGNETICS

CATEGORY
Physical Modeling
Error, €p '

Numerical Modeling
Error, € N

DEFINITION
Arises because the numerical model used is normally an
idealized mathematical representation of the actual physical

reality.

Arises because the numerical results obtained are only
approximate solutions to that idealized representation, and is

comprised of two components:
1) Solution error--The difference that can exist between
the computed results and an exact solution even were the
linear system of equations to be solved exactly, due to
using a finite number of unknowns; and
2) Equation error--The equation mis-match that car occur
in the numerical solution because of round-off due to
finite-precision computations, or when using an iterative
technique because of limited solution convergence.
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Table 20

GENERIC GUIDELINES FOR IE MODELING

MODELING PARAMETER
OR ISSUE.

Wire Length, L

Wire diameter, d

Wire segment length, A
As related to diamter

As related to wavelength

Step change in wire radius, éa

Source location

Angle of wire bend, o

Axial separation of parallel
wires, r
With match points aligned

Otherwise

Wire mesh model of solid
surface

Mesh size AxA
Wire radius

Surface-patch area, Ag
Frequency domain
Time domain

Piecewise model of curved
wire or surface of radius of

curvature R
Starting time in time-domain

NOMINAL RANGE

OR VALUE
L>10d

A>nd

A>d

A<\/2r
A>108a

Do not place on
open-ended segment

o>2na/A

r>3a

r>10a -

A<AN10

a=A/2rn

A>2ny AS
?\min>2mfAS

R>A
R>v As

EinC(t)[max2

120

REASON

Neglect of end caps in
thin-wire treatment.
Neglect of circumferential
effects.

Use of thin-wire kernel in
integral equation. Can be
relaxed by use of extended
kernel [Burke and Poggio
(1980)].

Necessity of sampling current
densely enough in
wavelengths.

Neglect of sources on stepped
surface (similar to end-cap
problem).

Avoids non-physical situation of
driving wire at open end.
Keeps adjacent wires from
occupying too large a common
volume.

Neglect of circumferential
current variation.

Avoids placing one match point
in error field of a junction.

To reduce field "leakage" to
acceptable level.

To have wire area equal to
surface area of solid.

Need to sample currents

densely enough in
wavelengths.

Necessity of sampling a
circular arc at least 6 times per

2r radians.
To achieve numerically smooth




solution, tgy

Stopping time in time-domain
solution, tsp\

10XEMC(tg4) - buildup of exciting field and 10X

. accuracy.
E'MCt)max Stabilize final response.

10X|EINC(t->00)-ENC(sgp)|
or I(t) reaches steady state

Time step in TD solution, § cé<A Satisfies Courant stability
condition. Required for explicite
solution.

Maximum frequency of transient g~2f 5« Ensures source spectrum does

source in TD solution, using
Gaussian excitation, i.e.
EINC(t) = exp(-gt?)

not exceed upper frequency
for model validity.
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Table 21

NTERNAL CHECKS USEFUL AS MEASURES OF SOLUTION VALIDITY

CONVERGENCE MEASURES

MEASURE EXAMPLE JESTS
Local lim[l(s)], im[E(r)] Convergence of input

aS N")Nmax

Global Il(s)l*(*s)ds or
JEMNE" (nax"
Random 2F(ry), with
(local or F(ry) a field
global) quantity which is
function of a
random variable
.
Power Pin *+ Ploss
Boundary Etan(r) =0,
Condition r' on object
Matching modeled
Reciprocity

"Non-physical  ---
Behavior"
of Solution

impedance, current,
fields, etc.

Convergence over

entire object of current

or convergence of field

in n=1,2, or 3 dimensions.
Convergence of any

field quantity measured

by a random observation
variable.

OTHER MEASURES
Whether supplied power

equals sum of radiated
plus dissipated power.

Degree to which specified

conditions on the boundary
are satisfied.

E(@4 inc’gzscat) Whether interchanging
- E(gzmc'% scat)

observation and source

locations yields identical
results.

Computed results to
exhibit physically behavior.

PROPERTIES

Reasonable measure
of solution behavior, but

can yield non-monotonic
result.

A more complete
measure of convergence.

Permits estimation of
convergence and

uncertainty of
convergence estimates.

Provides good check on
antenna source model for

radiation resistance. A
necessary, but not suffic-
ient condition.

Most fundamental check

on solution. Consistency
requires use of same
weight function as for
model itself. Can be
computationally
expensive. Necessary
and sufficient condition.
Useful check for antenna

and bistatic scattering

patterns. Necessary but
not sufficient condition.
Can be a subjective
check. One example is
provided by spatial
oscillation in current
when thin-wire
approximation is violated.
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Table 22
EXTERNAL CHECKS USEFUL AS MEASURES OF SOLUTION VALIDITY

ANALYTICAL
MEASURE EXAMPLE JESTS PROPERTIES
Any observable Sources, near Any observable provided Provides a necessary
provided by and far fields. by the computer model. and sufficient
a formally condition for solution
exact validity. Available
solution. for only special
geometries, but
gives canonical
benchmarks.
COMPUTATIONAL
Far fields. Radiation pattern, Consistency of the quantity A useful test, but one
bi-static and least sensitive to which is often
mono-static solution errors. subject to angle
scattering shifts between
pattern. results from two
models.
Near fields and Near-field cuts, Quantities most often A more demanding
sources. current and directly computed by test for comparison,
charge model. but one which often
distributions. exhibits spatial
shifts between
models.
Input impedance/  --- Source models and Especially sensitive
susceptance. single-port input measure in terms of
characteristics. input susceptance.
Highly advisable to
examine over a
range of frequencies
because shifts in
frequency also
occur.
EXPERIMENTAL
Same observables --- Physical modeling Perhaps the most
as used for error and relative reassuring check to
computational correlation of actual make, but also often
checks. problem with numerical the most difficult.
model.
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GEMACS - AN EXECUTIVE SUMMARY

Kenneth R. Siarkiewicz
RADC /RBCT
Griffiss AFB NY 13441

ABSTRACT

The General Electromagnetic Model for the Analysis of
Complex Systems (GEMACS) is a continually evolving computer
program developed by the Air Force to accomplish a
sophisticated analysis of the electromagnetic field phenomena
associated with a given radiating or scattering Air Force
system.

Originally conceived to be a tool for use in electromagnetic
compatibility (EMC) analysis, it is growing in power and
capability into a system of modules that can be applied to
the investigation of almost any electromagnetic phenomenon
associated with a physical radiating or scattering system.

This paper is meant to be an informational tutorial on GEMACS,

without equations, whose sole objective is to acquaint the
reader with this powerful, general- purpose, user-friendly
electromagnetic fields analysis systemn.

"This paper consists of two separate parts, each dealing with

the same material but presented in a different format to
accommodate two broad general classes of reader. The first
major division contains little explanatory text and numerous
figures and is meant to give a quick overview of the system
of GEMACS for those without the time and/or the motivation to
get into very much detail. Be forewarned, however, that this
first division is meant to give the reader the motivation to
find the time and the inclination to read and digest all of
the more detailed material in the second part of the paper.
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PART I. THE QUICK LOOK

The following figure describes the philosophy that underlies
the initial and continuing development of the GEMACS computer
code. It is meant to be all things to an electromagnetic
fields analyst, and to be so in an efficient and accurate

manner.

E-+ + -+ PP PR

PHILOSOPHY

We Are Incorporating into GEMACS All
Solution Techniques Which Are Required
to Give Engineering Answers to Practical
EM Problems that Occur in the Design,
Development, Production, and Analysis
of Major Systems.

1 1 7 T 11 - - 1 1+ -+ - b e

A sampling of the general classes of problems that can be
analyzed on arbitrary platforms such as aircraft, spacecraft,
huts, and weapons systems is shown in the following figure.
The output of GEMACS is in the form of tabular data giving
the current distribution on wires and surfaces, coupling
between pairs of antennas, near- and far-field electric field
strengths, antenna terminal parameters, and the listing of
the data contained in any one of the intermediate data sets

generated in the analysis of a system.

APPLICATIONS

Antenna Performance
EM Radiation and Scattering
EMP
EMC
Jamming Susceptibility
ECM and ECCM
Radar Cross Section

e - - b e e
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A number of algorithms and formulations is built into the
GEMACS system of modules. This is what gives the analyst the
ability to analyze many different classes of problems
efficiently and accurately. Some of these can be classified
as physics models and some are the mathematical solution
techniques that solve the resulting system of simultaneous
linear equations that is the result of the application of the
physics models to the structure being studied.

R S S S s S S S S s S s s s S S S s S s S s S S T S I T S T I I T S S s =

PHYSICS

Method of Moments (MOM)
Geometrical Theory of Diffraction (GTD)
Finite Difference (FD)
MOM/GTD/FD Hybridization
Loaded Wire Scatterers
Imperfect Ground

MATHEMATICS

Model Order Reduction
Banded Matrix Iteration
Lower/Upper Matrix Decomposition

e et 4§+ F T3 FF 3T T

There are at the present time three widely used and fairly
general physics formulations that are resident in the GEMACS
system. They apply to structures that are small compared to
the wavelength, or at most a little larger than the resonant
frequency region, (Method of Moments), to structures that are
very large compared to the wavelength (Geometrical Theory of
Diffraction), and to the interior of the structure (Finite
Difference). The main characteristics of each of these three
modeling techniques are shown in the following figure.
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METHOD OF MOMENTS

Electrically Small Objects
Fine Resolution
Wire Grid or Patch Models
Impedance Interactions
Exterior Environment

GEOMETRICAL THEORY OF DIFFRACTION

Electrically Large Objects
Coarse Resolution
Plates and Cylinders
Ray Tracing
Multiple Reflection/Diffraction
Exterior Environment

FINITE DIFFERENCE

Electrically Moderate Size
Fine Resolution
Cell Gridding
Wires Within Cells
Electric Fields
Interior Environment

RS S S S S S S S S S S S s s s e S S s e e s s s s s s E s ST e EEEEEEEEEEEEEE

In order to perform a complete analysis of the structure
under consideration, one must take into account all regions
of the problem (i.e., interior cavities, apertures, and
exterior environment) even when one is focusing on a specific
part of the structure. This is the case for which the
built-in hybridization capability within GEMACS comes to the
fore. This hybridization process is totally invisible to the
analyst once he has defined the types of interactions in
which he is interested and has specified the quantities to be
output by GEMACS. The use, coupling, and interaction of the
various modules, as well as the transfer of data among the
modules in the proper dimensions, are automatically handled
by the overhead structure of the GEMACS system. It is this
modularity that also allows for the relative ease with which
new modules can be added to provide increased capabilities
within the GEMACS system, or the relative ease with which the
existing modules can be modified to increase their accuracy
or applicability.
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HYBRIDIZATION METHODOLOGY

Exterior Problem Interaction
Matrix Is Calculated Using MOM/GTD
Interior Problem Interaction Matrix

Is Calculated Using FD
Total Problem Solution Is Found by
Using Householder Method of Modified
Matrices to Link the Separate
Solutions at Their Common Interfaces.

-+t + & + + + -+ ¢+ ++ -+t

This then completes the broad overview of the GEMACS system.
It is more than a computer code in the strict sense of the
word. It is a number of modules each of which are designed
to perform a specific set of procedures or functions, and
each of which is tied to the whole through a well defined
data structure and transfer discipline. GEMACS is therefore
a system in the broad sense of the word.

T N N N I I I T e I S S E TS E OSSR EEEESEEEE

AVAILABILITY

No charge
FORTRAN Source Code
Contact Author
315-330-2465

F+ + ¢+ + + F —+ F 3

It is hoped that the reader has made it thus far and that he
is intrigued enough to make/take the time to read the
following detailed summary (still without equations)
regarding the GEMACS system.
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PART II. THE DETAILED SUMMARY

Early in the decade of the 70s the Air Force recognized the
need for a set of computerized mathematical models that would
provide system, equipment, and circuit designers with an
analysis capability to focus in on those system components
and frequency ranges for which an electromagnetic
interference condition could exist once system integration
had been completed. There would be one or more
electromagnetic compatibility analysis computer programs that
would be applicable to ground, airborne, and space platforms,
any of which could have an arbitrary collection of
transmitting and receiving antennas. The locations of these
antennas were allowed to be also totally arbitrary. The
presence of apertures (filled or unfilled) served to further
confuse the situation. A further complication was presented
by the fact that the exterior skin of the structure could be
a highly conductive metal or paint, or it could be made of
some advanced composite material (sometimes painted), or more
usually a combination of both. The basic frequency range of
the equipments was 3 MHz to 40 GHz. This should give some
idea of the broad generalities within which the problem could
be defined.

A system variable that was recognized as very troublesome and
hard to define a priori was the amount of electromagnetic
coupling that could be expected between any two points in
space, exterior and/or interior to the external geometry of
the system being considered. An abundance of somewhat
specific models was available, depending on structure
geometry, electrical size, observable being quantified and
desired accuracy of its calculation, etc. There were also
available some very general, very sophisticated techniques
which could be used to model complex structures across broad
ranges of frequency. These latter techniques required large
amounts of computer resources to perform the analysis.
Coincidentally, this was also the time frame in which the
computer industry was blossoming out with powerful versions
of hardware at relatively modest costs compared to a decade
earlier.

In addition to the requirements levied on the physics models
for use in electromagnetic fields analysis, several
constraints were placed on the design and coding of their
respective implementing computer programs. Since it was
envisioned that each computer program would be distributed to
many government, industrial, and educational agencies and
institutions thereby involving a multiplicity of computer
systems, it was deemed necessary to put a strong emphasis on
making the computer programs as transportable as possible.
Therefore, all coding was to be in FORTRAN (originally ANSI
standard 1966 and now 1977), utilizing no assembly language,
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including no non-ANSI standard utilities or functions, no
overlaying, no graphics packages, and other such options that
could restrict the transfer of the computer program from one
machine to another.

The types of output data that were to be provided were not
much better defined than the physical characteristics of the
problem. Broadly speaking the Air Force needed data
regarding the near- and far-field patterns of antennas as
they were located on the structure, the input impedance of
the antennas (again in situ), the coupling between pairs of
antennas considering their locations and the locations of all
scattering and reflecting centers, the electric field
distribution present in apertures of arbitrary dimensions and
arbitrarily filled, the value of the current on the skin of
the structure, and the radar cross section (monostatic and
bistatic). To make matters even worse, the Air Force wanted
to have these data anywhere in the frequency spectrum, both
within the design band of the individual equipments as well
as out of that design band.

In April 1974 RADC initiated a contract to develop an
electromagnetic fields analysis program using the Method of
Moments (MOM) technique to model the system and perform the
analysis. Briefly explained, the system is modeled by a
number of electrically small straight-wire subsections and/or
by a number of electrically small subareas (or patches).
Each of these elements is then conceived to be a point source
radiating to, and interacting with, all of the other elements
making up the system geometry. These various interactions
are represented by a set of simultaneous equations, which is
represented in a matrix notation and solved by a suitable
solution process. Given the boundary conditions and the
external electromagnetic environment (the right-hand-side of
the equation), the currents on the subsections and/or the
current densities on the subareas are calculated for a
particular frequency. Once these currents and current
densities are known, it is then a simple matter of matrix
multiplication with a suitable Green's function to obtain the
field at any point (or series of points) in the near or far
field of the structure. Coupling between the terminals of
antennas and the input impedance of any antenna fall out of
the solution with ultimate ease. Proper positioning and
incrementing of the source with respect to the structure
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under consideration will allow one to calculate the
monostatic and/or bistatic cross section of the object.

The advantages to the use of the Method of Moments technique
are many. The technique requires very little electromagnetic
fields expertise to properly and completely model the system
and perform an analysis. Knowing the current density
everywhere on the surface of the system gives the analyst
quite a bit of flexibility and capability to further
calculate and quantify many other electromagnetic phenomena
associated with the system. Due to the fact that all of the
computations, the geometrical description, and the output are
stored on a checkpoint file (magnetic tape or disk pack) the
analyst has a database for the system, which can be modified
at some future date to reflect a proposed modification to the
physical system. It is then a relatively simple and
inexpensive process to then determine the new electromagnetic
posture of the modified system.

A serious drawback to the indiscriminate use of the Method of
Moments to analyze any structure for any problem type and
observable is the fact that when the geometry becomes
electrically large (i.e., exceeding what could be considered
a resonance region problem) the amount of computer resources
required to obtain the answer becomes impractical for most
budgets. It is for this reason that a second general
technique was implemented within the GEMACS computer program.
This is the Geometrical Theory of Diffraction (GTD), which is
a high-frequency (elecrically large structure) asymptotic
formulation whose accuracy increases as the frequency of the
analysis increases.

When using the GTD formulation for the analysis of a
structure, one models the system geometry as a set of plates
with or without a cylinder and its endcaps. The electric
field at one or more points of interest is then computed
using ray tracing techniques, following the ray from the
source through a series of reflections and/or diffractions
from plates, the cylinder, plate edges, and endcap rims.
Each such scattering center is treated as a local source of
electromagnetic energy, and the contributions from all such
localized sources are summed at the field point. In this
formulation the current distribution on the structure is not
calculated. However, the code can calculate such
observables as the electric field distribution in the near

131




YTy O TT%Y O ™Yy My

)

)

and far field of the object, the coupling between antennas,
the radar cross section, etc.

These two formulations have been totally hybridized within
the GEMACS computer program. It should be noted though that
the algorithms are physically separate in their own modules
even though the computations are mathematically combined
without any intervention by the analyst once the problem has
been defined by him. Such total hybridization even extends
to the description of the geometry to be analyzed. One
single consistent command language and one coherent geometry
modeling language are imbedded within GEMACS, both extending
to the use of both physical/mathematical formulations. It is
extremely convenient to now determine, for example, the
antenna terminal characteristics even when that antenna is
located on an electrically large structure. One simply
models the antenna and its near physical environment with
wire subsections and small patch subareas, and then places
this localized geometrical description within the context of
a GTD representation of the overall geometry. This procedure

- can be followed for as many specialized areas of interest as

necessary. Such a modeling scheme will therefore allow one
to calculate the current density in the vicinity of an
antenna or an aperture. One can also determine the terminal
parameters of antennas located on a large and complex
structure without incurring the cost associated with modeling
the entire geometry using MOM modeling elements.

Thus, we have in GEMACS an extremely powerful tool that
allows one to efficiently and completely model and analyze
the complex external electromagnetic environment associated
with a system of arbitrary electrical size, taking very
particular care in areas of critical concern. Furthermore,
there is a very high degree of transportability associated
with this particular computer program, thus allowing for a
relatively straightforward installation of this program on a
wide range of commonly used computer systems. In addition,
maintenance, updates, and distribution are available in one
location (RADC), providing easy access to user
intercommunication, continuing guidance and education, and
current information regarding modifications and corrections.

However, the Air Force problem also extends to the interior

of the structure. What happens once the external
electromagnetic field penetrates the surface of the
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structure? What is the distribution of the interior electric
field in the presence of wires, racks, bulkheads,
dielectrics, and all else? Where does the energy penetrate,
and how much energy is present in each of the apertures?

What is needed is another technique or set of techniques that
can be hybridized with the MOM and GTD techniques already
present. We need a way to analyze the aperture coupling as a
function of frequency, incidence angle, and polarization of
the incoming wave. We need a method to predict the electric
field present at any point in space within the geometry,
taking into consideration all that exists within the system.
RADC contracted with the BDM Corporation/Albuquerque to
address these technological needs.

They have designed an upgrade to GEMACS which hybridizes a
Finite Difference (FD) algorithm in the frequency domain with
the MOM and GTD formulations to solve both the exterior and
interior problems in the presence of each other, coupling
them by a finite difference model of any connecting
apertures. The apertures themselves will be treated as
interior cavities (filled or empty, thick or thin) such that
every geometry will be represented by at least three
regions--the exterior, the aperture, and the interior. A
second aperture would then result in a four-region problem,
and so on. Solving all regions simultaneously will then
assure the analyst that all interactions are being properly
considered in relationship to each other.

Much consideration was given to reduce the order of the
interaction matrix equation so that the analysis will not be
totally impractical in terms of required computer resources
and turn-around time, as well as the resolution and round-off
limitations of computing machines. The implementation of the
Model Order Reduction Formulation and the CONECT command into
the GEMACS vocabulary not only accomplishes this goal of
minimizing the resources needed for the FD solution, but can
also be useful in reducing the magnitude of the analysis even
if only an exterior problem is being analyzed.

The result is a logical extension of the vocabulary and
syntax within GEMACS. The exterior-only interaction matrix
equation is logically expanded to include the new coupling
phenomena introduced by the presence of the aperture and the
interior of the structure. This is totally invisible to the
nalyst. He is only required to specify the interactions
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that he will want to be considered. The classes of problems
that are able to be treated include external field-to-
internal wire coupling, aperture coupling, antenna coupling
to internal wiring, bundle-to-bundle coupling for bundles

of wires, aperture loading and shielding design, cavity
resonance phenomena, to name just a few. The observables
that are calculated include the currents on wires and in wire
bundles, the power delivered to a known load, and the
shielding effectiveness of bulkheads with holes for cable

feedthroughs.

There is of course one very obvious problem that must be
faced if one desires to accomplish a very thorough analysis
of a system. Who is going to input all the geometry data
into the front end of the GEMACS system of analysis tools?
An auxiliary, but also important, question is concerned with
the accuracy and resolution of such input data. How does one
avoid the normal typographical errors on input? How closely
can one read system drawings for locations, distances, etc.?
How finely can one model a structure, given the finite size
of the computer word? :

These problems are being seriously considered at RADC, and
some alternative solutions are being studied. Top priority
is being given to the question of inputting tremendous
amounts of geometrical data with a minimum of effort on the
part of the user and a minimum of possibility of error
occurring at the time of input. Some work on the development
of a graphics input processor for MOM and GTD is now being
pursued in another division at RADC. A concentrated effort
to expand the present work to include the graphics capability
for the FD geometry is planned for FY 86. Graphics packages
to a certain extent can be expected to limit the
transportability characteristic of GEMACS, but what will have
been accomplished at RADC will be included as a separate
module to be sent to those agencies possessing a compatible
computer graphics system. The methodology for the
implementation of a graphics input processing capability will
of course be totally transportable and fully documented as
the RADC effort progresses.

The same line of reasoning can also be applied to
post-processing the tables and data that can be obtained as a
result of the GEMACS analysis. More conclusions -- and more
meaningful conclusions -- can be reached when the tabular
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data are cast in a form that is more easily read,
interpreted, and presented either orally or in a written
report. This capability of generating graphical output
appears to be more straightforward to implement than the
input graphics, but the limiting of transportability will
still result.

Many other lines of development are also possible and can be
pursued if the requirement for the added capability is
sufficient within the community of the Air Force and its
contractors. Examples of such extensions include the
explicit characterization of Radar Absorbent Materials (RAM)
and advanced composite materials, calculation of monostatic
and bistatic radar cross section, and analysis in the time
domain. ‘

In summary, what is available is a veritable tool box of
techniques that can be used by an electromagnetic fields
analyst in a variety of scenarios on arbitrary physical
geometries to study in detail and with a fair degree of
accuracy almost any conceivable observable of interest. In
addition, the range of applicability to new and novel
scenarios, geometries, and observables is still increasing.
Furthermore, a central agency that is available for
distribution, debugging, and information dissemination gives
the community a certain amount of confidence that the latest
and best data regarding GEMACS are available quickly and
accurately.
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New Version of ESP

E.H. Newman
Ohio State University
ElectroScience Lab
1320 Kinnear Rd.
Columbus, OH 43212
Tele: (614) 292-4999

April 29, 1987

The purpose of this note is to announce that Version III of the
"Electromagnetic Surface Patch Code" (ESP) and user’s manual is ready for distribution.
ESP is a user oriented computer code, using the method of moments (MM), for the
analysis of the radiation and scattering from 3D geometries consisting of an
interconnection of thin wires and perfectly conducting polygonal plates. Since the
method is based upon an MM solution of an electric field integral equation, it is
applicable to open and closed surfaces.

The ESP code can model an almost arbitrary thin wire antenna as an
interconnection of straight segments. An arbitrary perfectly conducting surface is
modeled as an interconnection of perfectly conducting polygonal plates, The code uses a
special attachment mode which enforces continuity of current at wire/plate junctions,
provided that the junction is at least 0.1\ from a plate edge. The code can also treat
several plates which intersect along a common edge.

The user defines the plates by specifying the (x,y,z) coordinates of the corners
of each plate, as-well-as the maximum segment size in wavelengths for the MM modes.
The code then segments each polygonal plate into overlapping, piecewise sinusoidal,
quadrilateral, surface patch, dipole modes. Similar overlap modes are automatically
inserted to enforce continuity of the normal component of current at plate/plate
junctions. As the frequency is changed, the density of the modes is automatically
adjusted so that the size of the quadrilateral cells do not exceed the specified maximum
segment size in wavelengths. Thus, from the user’s standpoint, the plate model is
frequency independent. The main advantage of polygonal plate modeling is that a user
can define a shape as complex as an aircraft with about a dozen polygonal plates, and
not be directly concerned with the possibly hundreds of surface patch modes into which
the plates are segmented. Our experience is that this represents a practical method for
specifying complex shapes without the need for a special computer assisted graphics or
geometry package interfaced to the code.

In summary, the ESP can treat geometries consisting of:

1. thin wires with finite conductivity and lumped loads

2. perfectly conducting polygonal plates

3. wire/plate junctions (at least 0.1 %\ from the edge of a plate)

4. plate/plate junctions, including several plates of different size which
intersect along a common edge.

5. excitation by either a voltage generator or a plane wave.
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ESP can compute most of the quantities of engineering interest including:
1. current distributions

2. antenna input impedance, radiation efficiency, and mutual coupling
3. far zone radiation patterns (both polarizations)

4. back, bistatic, and forward scattering patterns (full scattering matrix).

There are three main improvements in Version III of the ESP code. First, it
is written in standard FORTRAN 77. Second, many errors or problems, uncovered by
the author and users of the code in the last few years, have been corrected. The author
would especially like to thank Prof. Ray Luebbers at Pennsylvania State Univ. and the
antenna group at Lockheed, Sunnyvale for their in depth and valuable suggestions.
Finally, all graphics or plotting has been removed from the basic ESP code. Instead,
ESP writes data files which can then be read by separate codes to produce the geometry
and pattern plots. Two auxiliary plotting codes, written in the "Graphical Kernel
System" (GKS) language are provided for this purpose.

We follow export controls in the distribution of the ESP codes. Our policy is
to only send to U.S. government agencies and U.S. companies with U.S. government
contacts. In these cases, the ESP Version III code plus user’s manual can be obtained
(for a nominal fee to cover material and handling costs) by writing to:

Librarian

Ohio State University
ElectroScience Laboratory
1320 Kinnear Rd.
Columbus, OH 43212

Requests for the ESP code from non U.S. companies must be done on a
government to government basis.
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