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FROM THE EDITOR

Welcome to the Fall 1987 issue, which is the first issue published under our
new name, the ACES Journal and Newsletter. From among several proposed names
(including our former name, which was considered for retention), the Editorial Board
chose this one. We decided to act for two reasons. First, several of you indicated that a
name change was long overdue, inasmuch as the issue was raised last March at the Third
Annual Review. (Although one member indicated that the issue should be decided at
the Fourth Annual Review in March 1988, we received no other requests for a decision
by membership vote, as offered in our letter of 4 September 1987). Second, our ongoing
promotional efforts, which cannot be deferred until March 1988, are better supported by
our new name.

We believe that we have selected a name with which almost all of you will be
pleased. Nonetheless, if you feel otherwise, then we shall reconsider the issue during the
business meeting at the Fourth Annual Review. Please keep in mind, however, that at
least two segments of the computational electromagnetics community have manifested
themselves within ACES. There are those who wish to share their experiences in applied
computational electromagnetics on an informal basis, without stringent criteria for
review and publication. These people are best served by a "newsletter". Others, who
prefer a more prestigious, established, or formal publication, are better served by a
refereed "journal”. Our new name recognizes both segments of the community and is
therefore "neutral”. It is imperative that we not alienate either segment by name or by
deed.

Meanwhile, we have identified new opportunities to promote the ACES
Journal and Newsletter, so that we may better serve both community segments. We shall
capitalize on these opportunities by publishing one or more special issues in the months
ahead, beginning in mid-1988. Each special issue will feature papers on a single topic,
and some will also feature special guest editors. Your recommendations for special
topics are needed -- immediately. The topic for the first special issue will be
announced at the Fourth Annual Review in March 1988. (The special issues are in
addition to the regular issues).

Other promotional activities have placed your Publications Committee in a
unique role -- that of "filling in" for certain other committees. In an effort to include
committee reports in this issue, we learned that only three other committees are active:
Software, Nominations, and Conferences. While the Membership Committee and
Publicity Committee do not appear to exist, they exist in spirit. As we expand the
circulation and authorship base of the ACES Journal and Newsletter, we also attract new
members. The Publications Committee was instrumental in revising the ACES brochure
which is sent to prospective members. The revised version, recently completed, is now
being sent to university electrical engineering departments and to people involved in the
development of electromagnetic modeling codes. At the same time, we are promoting
technical activities by publishing (and in some cases, "recruiting") certain types of
papers. You will notice that various papers in this issue validate computational results
against other data, computed as well as measured. Another paper, tentatively scheduled
for the next issue, bridges some gaps between low- and high-frequency computational
methods, in terms of fundamental mechanisms. Of course, we can never be a complete




substitute for any of these committees, nor is this our intent. (However, if you would
like to assist in membership, publicity, or technical activities, let the Publications
Committee know. Until your committee of interest is functioning autonomously,
consider working with us).

Of our other accomplishments to date, two may not yet be apparent. First,
our new Advertising Editor, Michael Thorburn, is completing arrangements for
advertising. You will observe the results of his efforts in the Spring 1988 and
subsequent issues. Secondly, the editorial review has now involved almost every editor.
If we were ever a "one-person effort”, those days are over.

None of our accomplishments are ends unto themselves. Instead, they enable
us to better achieve our existing goals as well as new ones -- one of which is to address
‘long-standing needs in computational electromagnetics. We shall address these needs,
primarily by seeking and publishing the appropriate material. There is a place for each
of you in this effort, not only to assist but also to be a driving force if you wish. Some
of you can submit papers which promote the state-of-the-art in computational
electromagnetics. Similarly, papers dealing with inter-disciplinary studies in
computational electromagnetics are welcome. Furthermore, we need papers which
present solutions to general-interest problems. These papers will help eliminate the need
to "re-invent the wheel". (A number of electrical engineers and physicists do not like to
waste time solving for themselves an already-solved computational problem. In addition
to the waste, there is another consequence -- the proliferation of similar codes, each
used by only a few people. Standardization efforts then become more difficult). Let’s
not forget the need for additional papers dealing with code validation and performance
analysis. And remember -~ even we do not think of everything!

David E. Stein
Editor-in-Chief
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PRESIDENT'S CORNER

E. K. Miller

‘Where has the year gone? Here it is, almost the end of 1987 and we're finalizing plans for the Spring

1988 Meeting of ACES. This will be our fourth annual review about which you will find more
information elsewhere in this Newsletter.

The topic of this column is related to one of the panel discussions planned for the '88 Meeting, the
problem of software validation. ~We are fortunate that Professor Stanley J. Kubina (Concordia
University, Electrical Engineering Department, 7141 Sherbrooke Street West, Montreal, Quebec,
Canada H4B 1R6, Tel. (514) 848-3093) has agreed to organize and chair this particular panel, as he
has been actively involved in this area for some time. If you have any input for panel consideration or
would like to participate on the panel, please contact Stan as soon as possible.

The ideas discussed here are extracted from various articles that I've written on modeling in the past.
Since they are relevant to the basic issue of validation, I've tried to integrate them into one package.
Thus, if some of what follows sounds familiar, the explanation is that you might have seen portions of
it before. I should also add that software validation will be the topic of a workshop to be held
following the URSI/AP-S Meeting at Syracuse University next June. As mentioned in the December
1987 "PCs for AP" column in the AP-S Newsletter, Prof. Leo Felsen has agreed to serve as co-
organizer of that workshop. With the proliferation of modeling codes and computational resources, the
importance of facing up to the problem of validation can only increase.

SOFTWARE VALIDATION--Software validation is a complex process the outcome of which
establishes the accuracy or reliability of a particular modeling code. In order to place the issue of
accuracy into a broader context, we note that modeling software has three principal attributes, accuracy,
efficiency and utility, of which accuracy must be considered to be the most important. Above all else, a
modeling computation must posses acceptable, preferrably known, and better yet "dialable", accuracy.
This is an attribute to which all others, however desirable, must be considered to be secondary, for
invalid results have no value and can even cause harm. )

Therefore, one of the most time consuming and long lasting of the tasks associated with any model
development is that of validation to establish the code's accuracy for the various kinds of problems for
which it has been designed. Long after work on the model has been completed questions will continue
to arise about whether a given result is valid or whether the model can be applied to a given problem.
There are essentially two kinds of validation procedures that can be considered to answer such
questions, which are: ‘

Internal Validation--A check that can be made concerning solution validity within
the model itself.

External Validation--A check that utilizes information from other sources which
could be analytical, experimental or numerical.

Existing computer models often do not perform internal checks on the results they produce, but instead
leave that as an exercise to the user. For example, NEC (Numerical Electromagnetics Code) one of the
more widely used models, could provide and indeed has been exercised to give various kinds of checks
relating to power balance, reciprocity and boundary-condition matching. But the software to do this is
not a integral part of the code, generally being "patched in" by the user (most often Gerry Burke) for a
particular problem and check. It would seem to be of extremely great potential value if a variety of such



checks could be built into the code and exercised as desired by the modeler or determined to be needed
by the code itself.

As a particular example of the use to which internal checks could be put, consider the case when a
problem new to the modeler is being implemented and the initial results are obtained. Present practice
usually involved "eye-balling" the data to see if it feels right, perhaps having first run some documented
test cases to verify code performance. Since these test cases would not be likely to closely resemble the
new problem, their successful solution would not provide much insight concerning the new results. If
however, a series of checks built into the code could then be exercised at the modeler's discretion to
verify that conditions necessary for a valid solution of Maxwell's Equations are satisfied, confidence in
the model's reliability could increase. These checks might range from being as exhaustive as boundary-
condition matching would be, to being fairly simple, such as checking for reciprocity and power
conservation. They could only be viewed as necessary but not sufficient conditions for solution
validity, and could only involve such behavioral aspects as are not implicit in the model already (e.g.,
some formulations produce symmetric matrices so that bi-static scattering and transmit-receive
reciprocity are assured). It would seem feasible to develop a figure-of-merit from the results of such
checks that would provide in a single number a "quality factor” for the solution.

The second kind of check involves use of independent data from other sources. Perhaps the most
convincing overall is experimental data, but analytical or numerical results should be comparably
useful. Indeed, one of the most convenient computational checks would be provided by a code that
permits two different models to be developed for the same problem, for example by incorporating user-
selectable basis and weight functions. For greatest utility, such checks ideally should not be of single-
point nature, for example to compare results for input impedance at a single frequency. Experience
shows that computer models produce results that exhibit slight frequency shifts, angle shifts or spatial
shifts in field quantities with respect to "exact” solutions, or even other computer models.
Consequently, global comparisons are usually more meaningful, but even then may not be
straightforward. If the shifts mentioned are observed, it would seem appropriate to develop a
correlation measure to establish the minimum squared difference between the two results as they are
shifted along the axis of the common variable. For other models and applications, the results may be
even less directly comparable, as is the case for IE and DE modeling approaches. Some work is needed
in the general area of how results from two different representations of the same problem can be most
meaningfully compared.

ERROR TYPES IN CEM--Finally, the issue of what kinds of errors can occur in CEM deserves
discussion and analysis. It is helpful for initial consideration to categorize the various kinds of errors
that can render CEM uncertain according to:

Level 0 errors--These are the kinds of errors that keep a program from running to
conclusion, and can arise from a variety of causes. They are therefore the most obvious when they
occur, but not necessarily the easiest to correct.

Level 1 errors--Errors in this category are those that occur when a program runs to
conclusion, where the requested output is produced but it contains obviously incorrect results. A fairly
common example is that of obtaining a negative input resistance for an antenna.

Level 2 errors--It is this category of error that is generally most insidious, for a
level-2 error is the kind that is probably most difficult to identify and correct. It occurs when the
program runs and produces what appear to be physically plausible results, but which are invalid for the
problem being modeled. The source of a level-2 error might be a numerical modeling error which
arises from obtaining insufficiently accurate numerical results for the model that has been selected, one
example being non-converged results. On the other hand, it could be a physical modeling error which
arises from an inadequate "match" between the physical reality of interest and the numerical model that
has been used.

Level 3 errors--This category of error is user dependent, as it occurs when the
modeler mis-interprets or otherwise mis-uses the results produced by the computation. It is reasonably




well accepted for example, that computer models produce results that are generally more accurate on a
relative than on an absolute basis. Although the nulls and peaks of a radiation pattern or a transfer
function can be shifted between and computation and measurement, as is often the case, the utility of
the computer model may unaffected for purposes of practical application.

Modeling uncertainties or errors of level-3 type can be assigned to two basic error categories, a physical
modeling error €p, and a numerical modeling error €N. The former is due to the fact that for most
problems of practical interest varying degrees of approximation are needed in developing a simplified or
idealized problem representation that will be compatible with the computer code to be used for the
modeling computations. The latter is due to the fact that the numerical results obtained are almost
invariably only approximate solutions to that idealized representation. We note that although an
analytical expression may in principle represent a formally exact solution, the process of obtaining
;_mmerical results in that case is still one which inevitably involves finite-precision evaluation of the
ormal solution.

By its very nature, the physical modeling error requires some kind of measurement for its
determination, except for those few problems whose analytical solution in principle involves no
physical idealization nor subsequent numerical approximation. One example of such problems is that of
determining the scattering or radiating properties of the perfectly conducting or dielectric sphere.

The numerical modeling error is itself comprised of two components in general, the determination of
which would normally involve one or more kinds of computation. The first and generally more
important of these components is the solution error which arises because the computer model used,
even if solved exactly, would not provide an exact solution for the idealized problem representation.
The solution error arises essentially due to the fact that the computer model is solved using a finite
number of unknowns. -The other, generally less important contributor to the numerical modeling error
is the equation error which arises because the numerical results obtained from the computer model used
may not numerically satisfy the modeling equations. The equation error may be caused both by round-
off due to the computer word size as well as the solution algorithm employed, as in the case of iteration,
for example. The impact of equation error can be expected to increase with increasing condition
number of the direct matrix.

CANONICAL BENCHMARKS--Without essentially "exact" results to serve as benchmarks, there
will always be some lingering doubts regarding the validity, let alone accuracy, of computer models.
Unfortunately, as is well known, there are few closed-form, exact solutions available from classical
electromagnetics. For a 3D computer model to match results for a spherical body is hardly convincing
anymore that the same model will work as well for a more arbitrary body geometry. But without
reference solutions to provide benchmark results, quantification of computer-model accuracy and
validity will remain an open question for the most part.

Therefore, some attention must be given to identifying treatments and problems that might be viewed as
"primary standards" for comparison purposes, much in the same way that the United States National
Bureau of Standards has established standards for various metrological applications. If a set of
standards were to be developed for checking computer models using a prescribed methodology, more
confidence could eventually be placed in a model that satisfied certain testing criteria.

The idea of test standards might be somewhat novel in the computer world, but it has been used for
years in experimentation. Radar scattering ranges, for example, have routinely employed a metal
sphere as a target for calibration purposes. Even if the RCS of the sphere were unknown, the measured
results could have been calibrated with respect to this basic target. Since the sphere was the first 3D
target whose cross section could be quantified in absolute terms, it enabled absolute results to be
inferred for unknown targets being measured. What has worked so well in the experimental world is
worth examining for how it might contributing to the calibration and validation of computed results.

Discussions dealing with all of the above issues as well as others relevant to "software validation” will
be held during the Panel Discussion at the ACES '88 Meeting. We hope to see and hear from you
there. ' ;
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ACES NEWS

. The 4th Annual Review of Progress in Applied Computational Electromagnetics is
scheduled for Tuesday 22 March through Thursday 24 March 1988 at the Naval
Postgraduate School, Monterey, CA. Everyone should have received a flyer
announcing submission and registration deadlines.

. Trish Adler, our most able typist, has departed the ACES scene and is now
supporting her husband, as he grinds his way through college at BYU. We will miss
her, but look forward to Pat Adler picking up the slack. She is "cutting her teeth”
on this Journal/Newsletter.

. The cost of serving non-U.S. members is substantial. Bank charges on conventional
foreign checks average $25 per transaction, so we must restrict foreign members to
BANK DRAFTS or INTERNATIONAL MONEY ORDERS. All foreign
correspondence, publications must be sent via air mail. The postage on a copy of the
conference proceedings can be as high as $35.00. We must establish a policy on this
at the 4th Annual Review.

. The publication of this issue of the Journal/Newsletter was delayed for several
reasons. One of the reasons is that some authors do not understand what
"camera-ready” means. We sometimes receive as camera-ready figures,
second-generation shabby xerox copies of what was a marginally acceptable figure in
its original form. The editors must then request a clean copy (and even then they do
not always get it) or re-do the figures themselves. Sloppy equations require
re-typing the entire article, comsuming valuable time and delaying publication.
Please send ORIGINAL figures, even if they are paste-ups. We can do a much
better job, faster from any original. If you hate to part with a one-and-only
original, we will gladly return them to you if you request. Please do not fold your
submissions when mailing them. Most laser-printer/xerox pages suffer from cracked
and flaking carbon print and we end up with white streaks along the fold lines.
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Announcing

The Fourth Annual Review of Progress in Applied Computational
Electromagnetics

at the Naval Postgraduate School
Moaterey, CA

March 22 - 24, 1988
Call for Participation

Sponsored by DOD/USAECOM, USAISESA, NOSC and DOE/LLNL
in cooperation with
The Applied Computational Electromagnetics Society (ACES)

The purpose of this Fourth Annual Review is to provide a forum for information exchange among
practitioners of applied computational electromagnetics. Contributions by both users and developers of
electromagnetic computer modeling codes are solicited, addressing topics pertaining to experience gained
in practical applications. Research and development issues are of secondary interest.

The Review will highlight topics related to the design, selection, performasnce, and implementation
of current and emerging electromagnetic modeling codes and techniques.

Suggested topics for presentation include (but are not limited to):

*NEC, MiniNEC, GTD, Finite Difference,and other *Applications
code appliications and modifications. *Antenna analysis *Intemal coupling and shielding

*The use of Graphical input/output in EM modeling. *Scattering *Design studies
*Modeling enhancements and new modeling techniques. *Sources, network connections, transmission lines
*Time and frequency domain results *Buried conductors and ground interface effects
*Data presentation *Wire and surface modeis
*Error checking *Educational applications
*Validation of Codes *Computers

*Experimental *Code comparison *User adaptation to new computers and PCs.

*Analytic checks *Solution convergence *Precision requirements

*User interfacing *Workstations

Several special-interest sessions will be featured at this year's Revicw':

1. An EM Code User's panel discussion will be devoted to examples and applications of various codes and
suggestions for needed enhancements.

2. A PC Applications Workshop and Poster session will operate each aftemoon from 3-5 PM. Several PC,s
will be available for anyone to use for demonstrating their own codes, enhancements, etc.

3. A Software Validation panel will conduct a discussion of the relative importance of validation by analysis,
code comparisons and measurements. i

Abstract Deadline: 15 Feb 1988 (Late abstracts cannot be guaranteed inclusion in the program, but may be assigned
to the Poster Session).
A camera-ready manuscript version of oral presentations must be provided to the conference committee before presentation.
These will be inciuded in the Proceedings of the Review. Presentation time must not exceed 20 minutes; it is preferable to
allow some of this time for questions. (Abstract guidelines are included on the reverse side).

Registration fee: Prepaid $150 (Deadline 5 Mar 1988)
Late registration $165
Registration fee will provide the attendee with a compilation of abstracts, a one year membership in ACES, and a
subscription to the ACES newsletter.
Send Conference remittance and abstracts to: Professor Richard W. Adler
Naval Postgraduate School
Code 62 AB
Monterey CA 93943
(408)-848-2352 (AUTOVON 878-2352)
Make checks payable to: The Applied Computational Electromagnetics Society.

Conference programs will be sent to attendees by 5 March 1988.
11




INSTRUCTIONS FOR PREPARATION OF ABSTRACTS®

E.K. Miller
P.O. Box 5504, L-153
Lawrence Livermore National Laboratory
Livermore, CA 94550

The abstract should be in the same format as these instructions. Center the
heading as indicated above. Capitalize the entire title. The heading and the text should
be single-spaced between the heading and the first paragraph and between paragraphs.
References should be included parenthetically in the text, for example (A.B. Smith,
Radio Sci., 26, 348-392, 1978). To permit photographic reproduction, all material must
lie within a rectangle of dimensions 13 by 22 cm.

If the address below the title is not adequate for mailing or if correspondence is
to be sent to other than the first author, then please supply the full mailing address.
Please submit the original typed abstract and three copies to the address given above.

. Deadline for abstract is 15 Feb. Notification of acceptance or rejection will be
mailed to. the first author or other indicated author shortly thereafter. The advance
program including information on accommodations will follow.

(Example of single
figure that might
be used)

NNNLOINES \
/[T
| —/b f—

Maximum lower boundary 22 cm below top edge of title.

LT TR LR R PR L L R YRR P PR L L L ] cocoenceeceacvedws

.We gratefully acknowledge S.W. Maley of the University of Colorado
for abstract format.
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NOMINATIONS COMMITTEE REPORT

At the Fourth Annual Review of Progress in Applied Computational
Electromagnetics, scheduled for 22-24 March 1988 in Monterey, California, we will be
electing new officers and AdCom members-at-large. The positions open are President,
Vice President, Secretary, Treasurer, and two "at-large" positions. If you would like to
be a candidate for any of these positions -- or if you would like to nominate someone
else for any position -- contact Janet McDonald, the chairperson of the Nominations
Committee. Her address is:

USAISESA/ASBH-SET-P -
Ft. Huachuca, AZ 85613-5300,

and her telephones are (602)538-7639/7680.

PUBLICATIONS COMMITTEE NEWS

Beginning in 1988, we shall publish at least one special issue per year, in
addition to the two regular issues. These special issues will enable the ACES Journal
and Newsletter to capitalize on certain promotional opportunities. At the same time,

special issues are a vehicle by which the ACES Journal and Newsletter can play a more
active role in support of technical activities.

Each special issue will feature papers on a single topic. Some of the special
issues will also have special guest editors. We need your recommendations for suitable
topics. Therefore, send your ideas to the Editor-in-Chief

David E. Stein
P.O. Box 530685
Grand Prairie, TX 75063-0685

or telephone (214)266-4309/4590 (days), (214)641-2404 (evenings). The first special
issue will be published by mid-1988, and it is necessary to announce the topic at the
Fourth Annual Review in March 1988. For this reason, please do not wait until March
to send your recommendations; send them now. Furthermore, be specific regarding
scope. A proposed topic which encompasses the near-totality of computational
electromagnetics is of little value.
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AVAILABLE SOFTWARE

Ted Roach

We now show 14 software programs in the library as indicated in the last
volume of the newsletter. I have removed program disk #001 as this is practically the
same as the Artech House version with only the dimension statements moved and few
other changes. Purchasers are directed to Artech House for this program and will then
receive some of the other fine program on that disk. I have at MICROCUBE, six of the
remaining SOFTWARE LIBRARY programs, namely items 2, 3, 4, 5, 12, and 13. Disk
number 013, Miscellaneous, could use some additions. We have no new short basic
programs that are in from members that will go on it. I also have a few public domain
items that are very handy but would need to get approval from their authors to include.
One is LIST.COM that allows one to look through a file with scrolling backward and
forward and includes neat features such as word-wrap for any word processor files,
conversion of hex to ascii, search and other features. We are also looking at other
programs in the library to determine if they should be deleted or kept.

Qur efforts since the previous newsletter, have been to recompile some of the
previous library programs using Quick-Basic 3. This has provided a good reduction of -
computer time for those computers that have a math coprocessor installed. We have also
cleaned up the file handling on our frequency sweep version of Mininec2 (LIBRARY
DISK #002). While most of us are moving to MININEC3 for use on the PC’s, I find the
sweep program so useful that we will leave it in the library until someone converts
MININEC3 to do the same function. For the future, I'd like to also convert our
frequency sweep output files to the GRAPS format so that display on the SMITH
CHART can be automatic.

One thing that we have noted and need to check further on is the possibility
that the Quick-Basic compiler without a coprocessor may be slower than the old
BASCOM compiler. For the present we are continuing to work on expanding the array
sizes of MININEC files to computers with 640k and 512k of users memory for both the
MININEC2 and 3 programs. We note that QUICK-BASIC 4.0 is out and has some
interesting new features. Of particular interest to MININEC users, it is supposed to be
faster and handle larger arrays, than the previous version 3.0. Redimensioning should be
more straight forward if we don’t have to divide the larger arrays up into four
quadrants. I don’t have an upgrade yet. See the short review in PC MAG., 8 Dec. 87
issue, pg 33.

OId library numbers 008 (MININEC3), 009 (GRAPS), and 010 (IGUANA) are
now available from Dick Adler. These programs are available in a package deal with
documentation included.

The remaining program numbers 006 and 007 are still available from Jim

Breakall. Number 011 is still obtained from Dr. Anders and new disk number 014 from
Ray Leubers.
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There exists a set of three programs for use on the PC that finds Gain, Field
Strength, and Isolation for antennas above a ground plane. These were developed by
R.G. Fitzgerell of N.B.S. Boulder (retired) and may be of interest to ACES members for
data that has been confirmed experimentally over a long period of time. Equations for
these programs were obtained from classic antenna articles by Norton, Friis, and others.
We can probably get permission to include these in our library. Note: These programs are
in FORTRAN and need 640k RAM and DOS 2.1 or later to run.

I see that we finally have a copyright release form for the software library
(included back of the last newsletter). I will try to get releases for everything that we
have in the library. Anyone who has provided material for the library, please fill out a
copy of that form and send it to myself or to Dick Adler.

For your information, I note that in the last few issues of the IEEE Circuits
and Devices Magazine, Dr. Miles Copeland is expressing interest in PC software for
electrical engineering. This looks like it may develop into a very useful source of
information for circuits and network analyses, much as ACES is a source for E/M
information. I don’t propose that ACES move too far afield from electromagnetics but
most of our activities require many disciplines and we might recruit some members for
ACES from this group, if we make them aware of our existence. Dr. Copeland is with
the Dept. of Electronics at Carleton University in Ottawa, Ontario, Canada.

With the annual meeting coming up in March, 1988, we need to look at how
our library can be most useful to our membership. I suspect that there may be other
members of ACES who will be very interested in joining the software committee. We
probably do not need to limit membership in the committee at this time. Please let me
know of your specific area of interest and ability to support this group.

OTHER NOTES:

Library disk 012, the SIGDEMO network analysis demo disk has now been
updated with many new features including EGA, joining of points on graphs, automatic
optimization at single frequencies of S11, S21, etc. Inductors are still left off the demo
version.

The EE PUBLIC DOMAIN LIBRARY which has been providing the public
domain software listings from RF DESIGN, MICROWAVES, and other magazines is now
up to 17 disks. A price of $10 per disk saves you from having to type the listing in and
gives some preliminary check of operation. Telephone (516)822-1697.

The PC-SIG public domain library is now probably over 800 disks and rapidly
climbing. Some that I have received recently were lacking enough documentation to
make them usable. However for the most part, these have been well checked out and
include some useful programs. Telephone (408)730-9291.

The Proceedings of the 21st Conference of the Central States VHF Society
held in July, 87 is now available from HAM RADIO MAGAZINE for $10.00. This
included 28 papers on antennas, amps, filters, VHF and microwave techniques, etc.
Looks like a good buy from HAM RADIO, Greenville, NH 03048.
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ACES LIBRARY - UPDATE

CURRENT INDEX OF ITEMS IN LIBRARY:

Item#

001
002

003

004

005

006

007
008

009

010

011

012

013

014

ripti
DELETED

MININEC2F
frequency sweep

ENHANCED MININEC2
double ARRAY size
to 20 wires, etc.

ENHANCED MININEC2
THIN WIRE MININEC2
NEC2

NEC3

NEEDS
MININEC3,NEC-PC,IGUANA,
GRAPS

MININEC3/GRAPS
DELETED

NAC3

Dr. Anders MOM code for thin
wire antennas, compiled for fully
expanded PC up to 800 segments

SIGDEMO

Demo disk for Network Analysis,
Nodal Analysis/Filter design.

A fast, easy to use, moderately
priced commercial program

Misc BASIC programs
RF Designers Toolbox

AT-ESP
Ray Luebbers’ full PC
implementation of the mainframe

ESP Code including graphics using

YDI drivers
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IBM-PC

IBM-PC

IBM-PC

IBM-PC

DEC VAX

DEC VAX

IBM-PC/XT or AT

IBM-PC/XT or AT

IBM-PC

IBM-PC

IBM-PC

IBM-PC/XT or AT




ANNOUNCING

*“THE NUMERICAL ELECTROMAGNETIC ENGINEERING DESIGN SYSTEM"
NEEDS 1.0
(AVAILABLE only to ACES MEMBERS)
An integrated, menu driven PC software package

combining: MININEC3.11

NEC2-PC (with SOMNEC)
IGUANA 4.1

GRAPS

MININEC3.11

The latest version of MININEC, both regular and co-processor versions.

NEC2-PC

A 300 segment PC version (co-processor required) with useful enhancements.
IGUANA 4.1

The Integrated Graphics Utility for Automated NEC Analysis partially automates the

data entry process for NEC2 and MININEC3. The most painless way to learn the
input data setup for NEC.

GRAPS

A simple rectangular, polar and Smith Chart plotting package, designed for use in
IGUANA.

NEEDS also provides additional convenient tools for data input/output processing
with NEC and MININEC.

DOCUMENTATION

User Manuals for all four programs are supplied as part of the NEEDS package.
SOFTWARE
Ten 5 1/4" 360k floppy diskettes supplied.
NFIGURATION
Required: IBM PC-XT/640K RAM

CGA graphics
Math Co-Processor (for NEC2-PC)
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Optional: Graphics compatible dot-matrix printer
(Ex: Epson or HP ThinkdJet)
HPGL - compatible pen plotter
Microsoft Mouse (bus version)
Parallel and 2 serial ports
Graph-Bar Sonic Digitizer

Cost: $ 100 to ACES members only. (Foreign members add $25.)
Make checks payable to The Applied Computational Electromagnetics Society.

Order from: Dr. Richard W. Adler
Code 62AB
Naval Postgraduate School
Monterey, CA 93943

NEEDS contains software from the original #008, #009 and #010 software libraries.

NEEDS becomes #008.
MININEC3 and GRAPS are available to ACES members who do not need nor want

IGUANA. The 2 program package is #009 and is $35 which includes three 5 1/4"
floppies with 2 manuals.(Foreigh members add $10.)
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TWO NEW MININEC3 "SERVICE PROGRAMS"
Robert T. Hart

DRAW

INTRODUCTION

DRAW is a program written for use on an IBM-PC, and is used in
conjunction with MININEC3. An antenna can be analyzed on MININEC3, and pattern
data stored on a disc. The DRAW program then uses that data to draw the antenna
pattern on the CRT display, and can be copied on a conventional line printer.

An example using the DRAW program is shown in Figure 1. The resolution is
limited by the CRT, and a pen plotter will give much higher resolution. However, a
pen plotter is not always available and the patterns plotted by the DRAW program are to
provide operator convenience.

USAGE

This particular program is limited to applications of the MININEC3 program
to plot far-field patterns. A modified DRAW program with appropriate scaling could be
used for near-field patterns. No modifications to MININEC3 are required.

PROCEDURE

During the usage of MININECS3, after an antenna configuration has been
established and the choice is made to compute far-field patterns, MININEC3 asks for
calculation in dBI or volts per meter. Choose d for dBIL.

In response to the next prompt, select the pattern angles as follows: for an
elevation pattern plot, the zenith angle should be entered as -90,1,180. This zenith angle
entry causes the pattern to be plotted from -90 to 90 degrees in steps of 1 degree. For
free space patterns, changing 180 to 360 will allow the full pattern plot. The next entry
is for azimuth angle and should be entered as X,0,1. X corresponds to the desired
azimuth angle for which the particular pattern is to be run.

For an azimuth pattern plot, enter X,0,1, where X is the desired angle for
which the azimuth pattern is to be run. Select the azimuth angle as 0,1,360 for a full
azimuth plot, or change 0 and 360 for only the desired portion of the azimuth plot in
one degree increments.

The next choice on MININEC3 is file pattern (Y/N). Select Y. MININEC3
then asks for a pattern name. For a zenith plot give it the name A:ELPLOT, and for an
azimuth plot give it the name A:AZPLOT.

Both the zenith and azimuth plots may be stored on a single disc in the
A:drive of the IBM-PC. (Note A: drive must be used to be compatible with the DRAW
program). For additional plots, use additional discs. If data has been previously
recorded on a disc, it will be erased and the new data stored. For a single antenna it
may be desirable to store several patterns, for example several zenith plots at various
azimuth angles, before terminating MININEC3. Each disc should be temporarily labeled
for future use.
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To use the DRAW program, call up BASICA and load the DRAW program.
When RUN is executed,. the operator has the choice of either an azimuth or elevation
plot. Elevation terminology is used rather than zenith, since the plot is labeled in degrees
relative to the horizon. (Zenith angle +/-90 degrees).

After selecting elevation or azimuth, the operator is then prompted to select
vertical, horizontal, or combined polarization. Since all three are stored on the disc,
separate plots can be made in any sequence desired by the operator. At this time it is
essential that the data disc be in drive A:.

After the pattern is drawn on the CRT, it may be copied on a conventional
line printer such as Epson FX-85 by using the print screen command. However, to copy
the screen on a printer, the command "GRAPHICS" from DOS must have been used
prior to selecting BASICA. The computer on which the DRAW program was developed
included a Hercules Graphics Card.

BASICA Program

The BASICA program "DRAW" is listed on the following page.
R.T. Hart

Senior Principal Engineer

Harris Corporation

PO Box 334
Melbourne, FL 32902
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DRAW.BAS

10 REM ****** ppay IS A BASICA PROGRAM TO BE USED WITH MININEC3 ***
20 CLS :REM USE AN IBM PC WITH A HERCULES GRAPHICS CARD

30 REM THIS PROGRAM WAS DEVELOPED BY R.T. HART  W5QJR

40 KEY OFF:PI=3.14159

50 LOCATE 25,1

60 PRINT "TO ESCAPE USE CTRL-BREAK

70 LOCATE 15,12

80 PRINT" DO YOU WANT AN AZIMUTH OR ELEVATION PLOT ? INPUT AORE ;
90 A$=INPUT$(1)

100 CLS:LOCATE 10,10

110 PRINT " SELECT EITHER VERTICAL, HORIZONTAL, OR A COMBINED PLOT "
120 PRINT:PRINT:PRINT

130 PRINT FOR THE HORIZONTAL POLARIZATION COMPONENT SPECIFY - ~~--- H*
140 PRINT
150 PRINT " FOR THE VERTICAL POLARIZATION COMPONENT SPECIFY ---------- v
160 PRINT
170 PRINT ™ IF YOU WANT TO COMBINE VERTICAL AND HORIZONTAL SPECIFY ---C”

180 HVCS$=INPUTS(1)
190 CLS:SCREEN 2: REM FOLLOWING STEPS DRAW THE PLOT FORMAT
200 IF A$="A" THEN PRINT "ALL VALUES ARE DBI

210 IF A$="E" THEN PRINT "ALL VALUES ARE DBI
T"
220 IF HVC$="V" THEN PRINT "MININEC3

POLARIZATION"
230 1F HVC$="H" THEN PRINT “MININEC3
L POLARIZATION"
240 IF HVC$="C" THEN PRINT "MININEC3

POLARIZATION"

250 FOR D=0 TO 360 STEP 15
260 AB$="TA=D;NU110"

270 DRAW "X"+VARPTRS$(ABS)

280 NEXT D

290 CIRCLE (320,100),240

300 CIRCLE (320,100),223

310 CIRCLE (320,100),206

320 CIRCLE (320,100),189

330 CIRCLE (320,100),171

340 CIRCLE (320,100),154

350 CIRCLE (320,100),137

360 CIRCLE (320,100),120

370 CIRCLE {320,100),77

380 CIRCLE (320,100),34

390 LOCATE 7,40:PRINT " 0 "
400 LOCATE 2,40:PRINT "+10"
410 LOCATE 11,39:PRINT " -10"
420 LOCATE 9,39:PRINT " -5"
430 LOCATE 13,78:PRINT "0"
440 LOCATE 9,75:PRINT "15"
450 LOCATE 6,72:PRINT "30"
460 LOCATE 3,66:PRINT "45"
470 LOCATE 1,57:PRINT 60"
480 LOCATE 1,23:PRINT "120"
490 LOCATE 3,14:PRINT "135"
500 LOCATE 6,8:PRINT "150"
510 LOCATE 9,5:PRINT "175"
520 LOCATE 13,2:PRINT "180"
530 LOCATE 17,5:PRINT "195"
540 LOCATE 20,8:PRINT "210"
550 LOCATE 23,14:PRINT "225"
560 LOCATE 23,66:PRINT "315"
570 LOCATE 20,72:PRINT "330"
580 LOCATE 17,75:PRINT "345"
590 IF A$="A" THEN B40:REM FOLLOWING STEPS PLOT THE ELEVATION DATA
600 CLOSE #1

610 FILE$="A:ELPLOT.OUT"

620 OPEN FILE$ FOR APPEND AS 1
630 PRINT #1,500;",";500;",";500;",";500;",";500
640 CLOSE #1

650 OPEN FILE$ FOR INPUT AS #1
660 INPUT #1, Q2.Q1,P1,P2,P3
670 IF Q1=500 THEN 1090

680 IF Q2=500 THEN 1090

690 IF P1=500 THEN 1030

700 IF P2=500 THEN 1090

710 IF P3=500 THEN 1090
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DRAW.BAS ‘ Page 2

720 IF HVC$="H" THEN Y=Q1
730 IF HVC$="V" THEN Y=Q2

740 IF HVC$="C" THEN Y=P1

750 IF Y<-14 THEN Y=-14

760 X=50+50/14*Y

770 IF P2<0 THEN B=ABS({P2)

780 IF P2=0 THEN B=0

780 IF P2>0 THEN B=0-P2

800 DRAW "BM320,100"

810 AC$="TA=B;U=X;"

820 DRAW "X"+VARPTR$(AC$)

830 GOTO 660

840 CLOSE #1:REM STEPS 76 TO 99 PLOT THE AZIMUTH DATA
850 FILE$="A:AZPLOT.OUT"

860 OPEN FILE$ FOR APPEND AS 1

870 PRINT #1,500;",";500;",";500;",”;500;",";500

880 CLOSE #1

890 OPEN FILE$ FOR INPUT AS #1

900 INPUT #1, Q2,Q1,P1,P2,P3

910 IF Q1=500 THEN 1090

920 IF Q2=500 THEN 1090

930 IF P1=500 THEN 1090

940 IF P2=500 THEN 1090

950 IF P3=500 THEN 1090

960 IF HVC$="H" THEN Y=Q1

970 IF HVC$="V" THEN Y=Q2

980 IF HVC$="C" THEN Y=P}

830 IF Y<-14 THEN Y=-14

1000 X=50+50/14*Y

1010 B=P3+270

1020 IF B<360 THEN 1040

1030 B=P3-90

1040 DRAW "BM320,100"

1050 AC$="TA=B;U=X;"

1060 DRAW "X"+VARPTRS$ (AC$)

1070 GOTO 900

1080 REM STEPS 101-104 OVERWRITE THE VALUES FOR DBI AFTER PLOTTING
1090 LOCATE 7,40:PRINT "0 "

1100 LOCATE 2,40:PRINT "+10"

1110 LOCATE 11,39:PRINT " -10"

1120 LOCATE 9,39:PRINT “ -5

1130 LOCATE 23,1

1140 PRINT "  DEFINE THIS DRAWING - USE MAXIMUM OF 2 LINES - COPY BEFORE HITTING RETURN "
1150 REM FOR LINE PRINTER - COPY BY USING PRINT SCREEN WITH GRAPHICS
1160 LOCATE 23,1

1170 INPUT Z$

1180 cLS

1190 GOTO 20
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RESONANT
INTRODUCTION

It is often desirable to determine the actual resonant frequency of an antenna. When MININECS is
run at two different frequencies for an antenna, two associated values of reactance will be derived. By
inputting those frequencies and their associated values of reactance in the “Resonant” program, the
actual resonant frequency will be calculated. In addition, the “Resonant” program will also calculate
the actual values of inductance and distributed capacity for that antenna.

BASIC PROGRAM DERIVATION

The “Resonant” program only contains 32 lines of code and is based on the following:

At any arbitrary frequency F1,Z, = R + j X, (1)
And at arbitrary frequency F2,Z3 = Ry + j X, (2)
Since X); = XL, — XC, =w1L-wlLC 3)
And X3 = XLg — XC; = wpL — ;216 @)
These can be rewritten as f—: =L- ;—151—0—, f—: =L- ;—515 (5)

Solving for L and combining equations, then solving for C,

oo
b (6)

With a known value of C' derived from above, equation (5) can be solved for L. With both L and C

known, the resonant frequency of the antenna is

' F=o ©
"~ 2n/IC

PROGRAM USAGE

When the “Resonant” program is loaded in basic, it is self explanatory. However, it should be noted
that the frequencies chosen for the test should be widely separated from the actual resonant frequency
of the antenna to improve, accuracy. Either test frequency can be either the 1st or 2nd frequency
entered into the program. It is important that the sign (+/—) of the reactance be entered. However,
if the reactance is positive, the + sign need not be included.

Robert T. Hart

Senior Principal Engineer
Harris Corporation

PO Box 334

Melbourne, Florida 32902
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RESONANT . BAS Page 1 -

10 CLS

20 LOCATE 2,33

30 PRINT "RESONANT"

40 LOCATE 5,1

50 PRINT " THIS PROGRAM ALLOWS DETERMINATION OF THE RESONATE FREQUENCY,THE INDUCTANCE,AND THE DISTRIB
UTED CAPACITY OF AN ANTENNA. INPUT DATA NEEDED IS THE REACTANCE VALUE OF THE ANTENNA AT TWO FREQUENCIES
FROM MININEC3."

60 LOCATE 9,1

70 PRINT ™ INPUT 1st TEST FREQUENCY (MHz)";

80 INPUT F1

90 PRINT " INPUT VALUE OF REACTANCE AT 1st TEST FREQUENCY (USE PROPER SIGN)";
100 INPUT X1

110 PRINT " INPUT 2nd TEST FREQUENCY {MHz)";

120 INPUT F2

130 PRINT " INPUT VALUE OF REACTANCE AT 2nd TEST FREQUENCY (USE PROPER SIGN)";
140 INPUT X2

150 Wi=F1*1000000!*2*3.1416

160 W2=F2*10000001*2*3.1416

170 C=(1/W1"2-1/W2°2)/(X2/W2-X1/W1)

180 CC=FIX(C*1E+12)

190 L=X1/W1+1/{W1"2*C)

200 LL=(FIX(L*1E+09))/1000

210 FR=1/(2%*3.1416*((L*C)".5))

220 FF=(FIX{FR*.0001))/100

230 PRINT:PRINT

240 PRINT " TEST FREQUENCY 1 WAS";F1;"MHz WITH X=";X1;"OHMS"

250 PRINT " TEST FREQUENCY 2 WAS";F2;"MHz WITH X=";X2;"OHMS"

260 PRINT ™ ACTUAL VALUE OF INDUCTANCE IS";LL;"MICROHENRYS™

270 PRINT " VALUE OF DISTRIBUTED CAPACITY IS";CC;"pfd”

280 PRINT " SELF RESONANT FREQUENCY OF THE ANTENNA IS";FF;"MHz"

290 LOCATE 22,30

300 PRINT "END OF PROGRAM™

310 END

320 REM RESONANT PROGRAM WRITTEN BY TED HART, HARRIS CORPORATION

RESONANT

THIS PROGRAM ALLOWS DETERMINATION OF THE RESONATE FREQUENCY,THE INDUCTANCE,
AND THE DISTRIBUTED CAPACITY OF AN ANTENNA. INPUT DATA NEEDED IS THE REACTANCE
VALUE OF THE ANTENNA AT TWO FREQUENCIES FROM MININECS3.

INPUT 1st TEST FREQUENCY (MHz)? 7

INPUT VALUE OF REACTANCE AT 1st TEST FREQUENCY (USE PROPER SIGN)? -19.69284
INPUT 2nd TEST FREQUENCY (MHz)? 10

INPUT VALUE OF REACTANCE AT 2nd TEST FREQUENCY (USE PROPER SIGN)? 246.6903

TEST FREQUENCY 1 WAS 7 MHz WITH X=-19.69284 OHMS
TEST FREQUENCY 2 WAS 10 MHz WITH X= 246.6903 OHMS
ACTUAL VALUE OF INDUCTANCE IS 8.128 MICROHENRYS
VALUE OF DISTRIBUTED CAPACITY IS 60 pfd

SELF RESONANT FREQUENCY OF THE ANTENNA IS 7.19 MHz

END OF PROGRAM
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EVALUATION OF ANTENNA PROGRAMS WRITTEN BY R. G. FITZGERRELL

by

J. K. Breakall
Lawrence Livermore National Laboratory
Livermore, CA

Ted Roach, in a letter to members of the ACES Software Exchange
Committee, asked if someone could review and evaluate the programs on a
disk he received, written by R. G. FitzGerrell at NBS, Boulder some time
ago. While on a trip to visit with Dick Adler at the Naval Postgraduate
School in Monterey, Dick provided me the use of his fine PC equipment to
look through the disk and run some of the programs. There are two
programs I found of interest and decided to compare them with MININEC
and NEC. They have apparently been updated and converted to FORTRAN 77
on the PC, from versions that had previously resided on the mainframe. I
will not go into detail describing each of these and just present my
findings since there is a readme file with plenty of description and
references on these codes.

The first program-is called GAIN77 and it computes the impedance
and gain of either horizontal or vertical dipoles in free space and over
perfect and imperfect ground. It also will compute results for a
monopole over perfect ground. The dipole or monopole can either have a
constant radius or be tapered from the feed point to the tip. I tried
the following cases and show the MININEC results for each. I should
mention that GAIN77 uses the sinusoidal current distribution assumption
while MININEC performs a full boundary value solution using the Method
of Moments. I believe that GAIN77 must use the Fresnel reflection
coefficient method for ground effects with some modification to the
impedance results. MININEC models the antenna as if it were over perfect
ground for impedance and then calculates radiation with the Fresnel
reflection coefficient method. Therefore both should do poorly when the
antennas are close to ground. NEC of course, with its Sommerfeld
approach could handle the close ground situation with no problem.

I modeled a horizontal dipole .in free space with a length of .5
wavelengths and radii of .001 and .00001 wavelengths with both codes.
Then I modeled the thinner dipole over perfect ground at the heights of
.05 and .5 wavelengths, since results were worse for the thicker antenna
in free space, as expected, because of the sinusoidal assumption. The
same dipole was then modeled over lossy ground, dielectric constant of
15 and conductivity of .01 Siemens/meter at the same heights. A vertical
.5 wavelength dipole at a height of .3 wavelengths is modeled next over
the same lossy ground. An example of tapering was tried on a .5
wavelength dipole in free space with the radius varying from .0005 at
the center to .00025 wavelengths at the tips.
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The results

Configuration

.5 Lambda
Dipole

Free Space
a=.001

a=.00001

.5 Lambda
Horizontal Dipole
Perfect Gnd
a=.00001

Ht=.05

Ht=.5

.5 Lambda
Horizontal Dipole
Epsilon=15
Conduct=.01

Lossy Gnd

Ht=.05

Ht=.5

.5 Lambda
Vert Dipole
Epsilon=15

.Conduct=.01

Ht=.3
Lossy Gnd

.5 Lambda
Tapered
Dipole
a=.0005 to
.00025
Free Space
a=.0005
constant

follow:

GAIN77
Impedance Gain

75.7+357.6 2.0

74.5+j43.8 2.1

7.1+4j36.3 8.1
at 90
deg el

70.5+j26.1 8.3
at 30
deg el

34.7+j39.8 1.4
at 90
deg el

72.0+333.4 7.2
at 30
deg el

83.1+j41.4 1.2
at 20
deg el

75.3+j48.6

75.4+j52.5
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MININEC3
Impedance Gain

79.9+j38.8 2.1

75.7+j45.4 2.1

5.9+4j38.8 9.0
at 90
deg el

70.6+j27.5 8.4
.at 30
deg el

5.9+j38.8 9.2
at 90
deg el

70.6+j27.5 7.3
at 30
deg el

107.5+j44.7 .9
at 20
deg el

72.5+j1.2

78.7+340.0

HEIGHTS AND RADII IN WAVELENGTHS




As can be seen from the results, the agreement is good for the thin
dipole in free space, within about an Ohm for both the real and
imaginary parts of the impedance and the gain is within a tenth of a dB.
Over perfect ground at the lowest height the results again are in good
agreement in impedance within about 2 Ohms and a dB in gain. The .5
wavelength height results are very close. Over lossy earth the MININEC
results for impedance will of course be the same as over perfect ground
since there 1is no interaction of the lossy ground on the impedance
matrix taken into account. The gain for MININEC at the lower height
looks too high, which one could expect from the Fresnel method breaking
down at such low heights. One would have to run NEC with the Sommerfeld
method t? see how close the GAIN77 answers are at this height. They look
reasonable.

At the .5 Lambda height the results agree within 5 Ohms in
Impedance and a tenth of a dB in gain. This indicates that the effect of
the ground on impedance, whether lossy or perfect, is minimal at the .5
wavelength height. There is only about a dB reduction of gain over this
type of ground also for horizontal polarization at this height. For the
vertical dipole at .3 wavelengths height the real part of the impedance
is about 20 Ohms different from the MININEC perfect ground case. The
gain for both codes are in excellent agreement.

The tapered dipole in free space was modeled in MININEC using a 2
section stepped radius change with the thicker section in the center of
the dipole. The real part of the impedance is in agreement, but the
imaginary part is quite different. A dipole of constant radius is also
shown for comparison. The topic of tapering is discussed in more detail
in another paper in this same issue of the Journal/Newsletter by R.
Adler and myself.

The other code looked at is called PROSE77 and calculates field
strength including the near and surface fields of either a horizontal or
a vertical dipole versus distance (E vs d) over perfect or lossy ground.
I modeled a vertical .5 wavelength dipole at 1 MHz (150 meters long) at
a height of 90 meters over perfect and lossy ground and compared results
with NEC3. I used a radius of .001 meters and looked at the field at
distances of 1 to 5 Km. One thing I discovered with PROSE77 is that the
radiated power is not printed out so it is not possible to compute
absolute field strength for some input power which would be most useful.
If one looks into this in the references the normalizations used will
probably appear and make sense. I simply normalized the NEC3 results to.
the first distance of 1 Km.
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The results follow:

Configuration Distance (m) Total E-field in (mVolts/M)

PROSE NEC3
.5 Lambda
Vert Dipole
Ht=90m, 1MHz 1000 11.6 11.6
Perfect Gnd
Field pt Ht=10m 2000 5.8 5.9
3000 3.9 3.9
4000 2.9 3.0
5000 2.3 2.4

1=89.2+j40.8  7=92.8+j40.2

Same Antenna
over Lossy Gnd

Epsilon=15 1000 10.6 10.6
Conduct=.01 ,
2000 5.1 5.2
3000 3.3 3.5
4000 2.4 2.6
5000 1.9 2.1

1=87.2+j39.9 Z=85.5+j21.0

As can be seen from the results the field drop-offs agree very
well. To really make this PROSE77 code more useful, however, one would
like to be able to determine absolute field strengths as well for some
fixed input power. This code is still much faster and easier than using
NEC3 if one simply wants to see relative field drop-off for a certain
ground and polarization of an antenna at a specific height.

In closing, I hope this short review and evaluation of these codes

has been informative and helpful and I would recommend that they bé
included in the Software Library.
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EM Modeling Notes*
Gerald Burke

Lawrence Livermore National Laboratory
Livermore, CA 94550

“EM Modeling Notes” was missing from the last ACES Newsletter due to lack of
time for writing, but the previous issue contained a discussion of recent work to improve
accuracy of the the antenna code NEC in VLF applications. Further progress in this area
is described here with results showing the improvements as well as how bad the present
code can be for small loops. This column also includes a comparison of NEC results for
a horizontal wire over ground with the eccentrically insulated transmission line model
of R. W. P. King [1]. NEC results are in excellent agreement with King’s which have
been validated by measurements. While there are certainly situations involving complex
antennas over ground that may trip up NEC, this confirmation for a horizontal wire adds
some additional reassurance.

An expanded report of the VLF modifications described in the last column has now
been written [2], and the resulting code NEC3VLF is working well in checkout. It has
not yet become the standard version of NEC-3 for distribution, but the modifications will
be included in the next update. Progress has now been made in fixing the loop problems
demonstrated in the last column by implementing loop basis and weighting functions. The
need for loop bases and weights has been noted previously [3] for a Galerkin method-of-
moments code similar to MININEC. These changes were more messy to implement than
the previous ones in NEC3VLF due to the problems of locating small loops within a
complex wire structure and the interaction of the changes with other code functions such
as solutions for symmetric structures and grounds. A code with the option for loop bases
and weights is now operational, and while more work is needed before it is bug free for
arbitrary models, we can demonstrate the benefits and the severity of the problems in the
present code.

Implementation of Loop Basis and Weighting Functions

The difficulty in modeling loops is easily seen when the electric field of a wire is written

as :
. _a -ikR g1( —jkR
B(F) = Z?f?é [v l il—z——ég—) ds' + k? /e ETé'I(s') da']. 1)

As frequency is reduced the field of the spline basis function, as used in NEC, is dominated
by the first term in Eq. (1) which comes from the gradient of the scalar potential. The
second term decreases as w? relative to the first. However, the sum of equal basis functions
around a loop is a constant current with zero derivative, so that the first term in (1)
vanishes. Thus the sum of matrix columns representing the spline basis functions around

* Work performed under the suspices of the U. S. Department of Energy by the Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.

30




the loop is much less than the individual columns resulting in an ill-conditioned matrix.
With unlimited precision the basis functions used in NEC could handle arbitrarily small
loops. In single precision, however, accuracy is quickly lost as frequency is reduced.

The problem is still worse when a loop is excited by coupling to a source such as
a dipole that produces a large scalar potential. The loop current is then determined by
the line integral around the loop of the field of the dipole. At low frequency the dipole
field is dominated by the gradient term in Eq. (1) which must vanish in the line integra.l
around the closed loop. Hence the sum of matrix rows representing loop segments is much
less than the individual rows, indicating an ill-conditioned matrix. This problem in NEC
is worse than the degeneracy of the basis function fields since the integral of E around
the loop is sampled in a relatively crude form as the sum of the fields at the centers of
segments. Hence, use of double precision does not help the solution for a loop coupled to
a dipole, and large, incorrect loop currents can result. This problem may occur whenever
a wire end with large charge density is near a small loop.

The basis function problem can be fixed by replacing one of the spline basis functions
on each loop with a constant function around the loop. At low frequencies the loop basis
function is then dominant in the solution with the remaining spline functions accounting
for small variations in the current. This change was easily implemented in NEC3VLF since
a constant current on each segment is a component of the normal spline basis functions.
The fields due to point charges on the segment ends were dropped in NEC3VLF, so the
field of the constant current involves only the vector potential as is needed for the loop.

Loop basis functions can also be used on electrically large loops since replacing one
spline basis function with a constant loop function does not change the space spanned by
the basis. The constant function is exactly equal to an equal amplitude sum of the spline
functions. However, care is needed when using loop basis functions on joined loops which.
have two or more segments in common since discarding more than one spline function on
the shared segments will result in a singular matrix.

Use of a loop basis function in NEC is sufficient to obtain accurate results for a loop
containing a voltage source. When the excitation is from an external source, such as a
dipole, a loop weighting function is also needed to accurately sample the field inducing
current in the loop. In implementing the loop weighting function the gradient of the scalar
potential is dropped from the field evaluation since it must vanish when integrated around
a closed loop. With an accuracy and effort compatible with the point matching normally
used in NEC, the line integral of E around the loop is then approximated as the sum of the
vector potentials at the centers of segments. The equation for a loop weighting function is

then
Jw Z a;j Z S A](rl) = Z 8- EI(;';)

j=1 i

where a; is the unknown amplitude of basis function j and the summation on i covers all
segments in the loop. A; is the vector potential due to basis function j, including spline
and loop functions, and E! represents a source field due to an incident wave or voltage
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sources in the loop.

The loop-weighted equation replaces one of the point-matched equations, typically
for the same segment on which the spline basis function was removed for the loop basis
function. The loop-weighted equation, on which we have assumed an exact integral of the
gradient of the scalar potential, cannot be constructed from a sum of the normal delta
function weighted equations. Hence, unlike loop basis functions, use of a loop weighting
function will change the results for either small or large loops. On small loops the change
should be the elimination of errors in the old code. On larger loops some asymmetry may
be introduced into the current on an otherwise symmetric loop, but such effects should be
within the bounds of convergence of the solution.

A tricky problem in implementing loop basis and weighting functions is that of locating
all loops in a complex wire structure. A preliminary code was developed for this task,
although further work is needed. For each segment in a structure the code attempts to
trace a loop of connected segments. At each junction it chooses the segment that is most
nearly directed back toward the starting point. If a free end is encountered it backs up to
the last multiple-wire junction und tries another path, however, at present it gives up after
the second attempt. If a loop that it has found has already been found from a different
starting segment it discards it without checking whether another loop could be traced
from the present starting segment. Also, it does not presently find loops that are closed by
connection to a ground plane and may not avoid situations that lead to a singular matrix.
Clearly this is a tricky problem. Maybe we can borrow something from some other code
(circuits?). Another approach would be to let the user specify the loops for loop bases
and weights. This could most easily be done in an interactive graphics system such as
IGUANA’s Model Builder.

In the new code, the check for loops and the use of loop basis and weighting functions
is activated by entering a non-zero value as the first real number on the GE card in the
NEC input data. The value entered sets the upper limit on the perimeter of loops that
will be found.

Results for Small Loops

The coding for loop basis and weighting functions was added to the NEC3VLF code
described in [2]. All NEC3VLF results shown here were computed in 32-bit single precision,
while NEC-3 results are from the double precision version (NEC~3D) unless otherwise
stated. Validation of results for small loops is more difficult than for open wires since
the double precision NEC-3, which was used as a standard for dipoles, may give the same
wrong results as single precision for loops. The most useful checks on the solution for loops
were found to be convergence as the number of segments is increased, the average gain as
a check of radiated power versus input power and correction of obviously wrong results for
decreasing frequency.

The first structure considered was a loop antenna excited by a voltage source. In this
case the VLF limitation is due to the degeneracy of the fields of the spline basis functions
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Fig. 1. Input admittance of a loop antenna computed by a) NEC-3 in single precision, b) NEC-3 in double
precision, ¢) NEC3VLF and d) NEC3VLF with loop basis and weighting functions. The loop was modeled
with 22 segments and the ratio of wire radius to loop radius was 4.2(10-2). Solution failure is shown by
deviation from the low frequency asymptotic behavior

rather than the field sampling. Use of double precision in NEC-3 does reduce the low
frequency limit in this case at the expense of increased computation time and storage.
As shown in Fig. 1, NEC3VLF with loop basis and weighting functions gives the correct
behavior for input conductance to about the same limiting frequency as double precision
NEC-3. The new code appears to have no limitation for computation of input susceptance.
Hence after the solution for conductance fails the correct value can be determined by
integrating the far-field power on an otherwise lossless antenna. The reason for failure of
the conductance at a circumference of about 4(10™4)) has not been isolated, but may be
unavoidable given the difference in magnitude from the susceptance.

A square loop excited by a driven dipole was modeled to test convergence on a fixed
structure. For a loop with perimeter of 0.4\ the results in Fig. 2, from NEC3VLF with
loop basis and weighting functions, are reasonable for one segment per side and converge
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rapidly. Results from double precision NEC-3 in Fig. 3 show a large error for one segment
per side but are reasonably well converged with ten to twenty segments per side. When
the frequency is reduced so that the loop perimeter is 0.04\ the NEC3VLF results in Fig.
4 show the same convergence as at the higher frequency while the NEC-3 results in Fig.
5 have not converged with twenty segments per side. The dipole was modeled with three
segments in all of these cases.

The incorrect loop currents have little effect on the dipole current until they become
very large. Even the large loop current with one segment per side in Fig. 5 produced only
a 14 percent perturbation in the input resistance and negligible change in the susceptance
of the dipole. The average gain for this case was 11, however. Hence this is an unusual
case where the integral of radiated power, although a stationary function of current, is
overwhelmed by the gross errors in current and is less accurate than the computed input
power.

In the NEC3VLF results of Figs. 2 and 4 the match point on the left-hand segment
on the lower side of each loop has been replaced by the loop weighting function. This
introduces some asymmetry into the current which should be symmetric about d/X of 0.05
and 0.25 in Fig. 2. The asymmetry is most apparent for 2 segments per side and decrea.ses
with convergence as the number of segments is increased.

The next structure modeled was a loop connected to a stub antenna as.shown in Fig. 6.
The NEC-3 result in Fig. 6a shows an incorrect loop current which grows as =2 relative
to the stub current as frequency is reduced. NEC3VLF with loop basis and weighting
functions maintains the current distribution shown in Fig. 6b with the current decreasing
linearly with frequency. The results for input impedance and average gain are shown in

Table 1.

Table 1. Input impedance and average gain of the stub antenna on a loop in Fig. 6 computed by NEC-3
in double precision and NEC3VLF with loop basis and weight functions. C is the circumference of the loop.

NEC-3D Loop Basis and Wt. Functions

C/A R (ohms) X (ohms) @G R (ohms) X (ohms) @G
6.26(1071) 2.22(10') —6.30(10%) 0.90 2.13(10') —-6.58(10%) 0.88
6.26(10~2) 1.19(10°!) -8.65(10%) 1.14 1.15(10"!) —8.89(10%) 0.88
6.26(10~%) 1.18(10~%) —8.67(10%) 24.9 1.14(107%) -8.91(10%) 0.88
6.26(10~4) 1.18(10°%) —8.67(10%) 2400. 1.14(10°%) —8.91(10%) 0.88
6.26(10-%) —-6.25(10"%) —8.70(10%) -0.5 1.14(10°7) —8.91(10%) 0.88

Finally, a stub antenna was modeled on a wire grid fin similar to the probe on some
aircraft tails. As shown in Fig. 7, the NEC-3 result had an incorrect clockwise circulation
of current on the grid while NEC3VLF with loop basis and weighting functions produced
a uniform flow of current towa.rd the stub. As frequency is reduced the circulating current
from NEC-3 grows as f~2 relative to the stub current while the NEC3VLF result remains
stable.
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Fig. 6. Imaginary part of current on a loop with connected stub antenna. The loop circumference is 0.063A
and wire radius is 10~%). The source is one volt at the base of the stub, and the current is normalized by
Imas; 8) NEC-3 result with incorrect loop current, Imgs = 0.41 mA; b) NEC3VLF result with I,,,, = 0.11
mA.

The input impedance and average gain for this structure modeled with loop basis and
weighting functions is shown in Table 2. The NEC3VLF result showed some sensitivity
to the order of segments in the grid, which determines the segments on which the match
points and spline basis functions will be replaced. The difference of the average gains from
the correct value of 1.0 was found to be due to extraneous input power at small, but not
negligible, voltages across the segments on which match points were dropped. These errors
are within acceptable bounds for most applications, particularly for case 2 in which the
segments were entered sequentially by wires rather than by cells. The input impedance
and average gain obtained with NEC-3 in single and double precision are shown in Table
3. The last two frequencies resulted in division by zero in NEC-3S. ‘
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40




Table 2. Input impedance and average gain of the wire grid with stub antenna as computed by NEC3VLF
with loop basis and weight functions for segment length A. Results are shown for two orderings of the

segments.

Case 1 Case 2
A/ R (ohms) X (ohms) &G R (ohms) X (ohms) G
2.(1072) 4.90(10!) -8.11(10%) 0.77 5.91(10') —8.00(10%) 0.93

2.(1073) 1.39(10-1) —9.77(10%) 0.77 1.65(10~1) —9.80(10%) 0.92
2.(1074) 1.37(1073%) -9.78(10%) 0.77 1.63(107%) —9.81(10%) 0.91
2.(10-5) 1.37(10-5) —9.78(10%) '0.77 1.63(10-5) —9.81(10°%) 0.91
2.(1079%) 1.37(10°7) —9.78(10%) 0.77 1.63(10-") —9.81(10%) 0.91

Table 3. Input impedance and average gain of the wire grid with stub antenna as computed by NEC-3 in
single precision (NEC-3S) and double precision (NEC-3D).

NEC-3S NEC-3D
A/ R (ohms) X (ohms) G R (ohms) X (ohms) G
2.(10~2) 60.98 —7.82(10%) 1.01 60.98 —7.82(10%) 1.14
2.(10-3) 0.60 —9.38(10°%) 0.30  1.78(10"!) —9.66(10%) 1.19
2.(1074) —7.55 —8.74(10%) —0.0001  1.76(10~%) —9.67(10%) 5.66
2.(10-%) e Gk ¥ 1.75(107%) —9.67(10%) 484.
2.(10~%) b o ***  9.81(10-5) —9.04(10%) 0.08

The severity of the errors with the standard NEC solution would seem to make use
of the new treatment for loops essential. However, the implementation of this treatment
is not as straightforward as were the VLF enhancements for dipoles. The NEC3VLF code
with loop basis and weighting functions is now operational but needs more work to be
able to handle arbitrary structures including symmetry, ground planes and out-of-core
solutions. The present NEC-2 and NEC-3 can be very inaccurate for a loop antenna near
the ground. The problems are related to those discussed above but are made worse by the
limited accuracy of the interpolation tables for Sommerfeld integrals. It is not known how
much loop basis and weighting functions would help in this case but is appears well worth
trying. The code modifications and results described above are discussed in more detail in

4]
The Horizontal Wire Qver Ground

We now shift topics to validation of results for antennas over ground. With the
Sommerfeld integral model for ground, NEC-3 can model arbitrary wire structures in
air near an interface, buried in the ground or penetrating from air into the ground. A
horizontal wire can be modeled to within about 10~%)\¢ of the interface, or closer with
some adjustment of the numerical integration code. Validation of such results is difficult
due to lack of accurate measurements for known ground parameters.
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One case for which measurements and analytical results are available is for the prop-
agation factor on a horizontal wire near an interface. This problem can be solved from
a modal approach leading to a nonlinear equation involving an infinite integral over wave
number to be solved for the propagation factor [5]. When the wire is in air with wave
number k2 over a ground with wave number k4 and k4 > k2 a closed form result for the
propagation factor on the wire has been derived by King et al. [1,6] by considering a
coaxial transmission line with lossy outer conductor and eccentrically located inner con-
ductor as the outer conductor radius goes to infinity. The result for the propagation factor

kp =L —jar is

_ 2 1 K1(2k4d) . I (2k4d)
k1 = "’{1 t in(2d/a) [(2/:44)2 T T 2ked 7T 4kad
(2ksd  (2ked)®  (2kqd)’ 172
“( 3 T4 T T (2)

where a is the wire radius and d is the height of the wire above the ground. This equation
is written for time dependence e“* and is the conjugate of that given in [6]. K; and I;
are modified Bessel functions of order 1. Specialized forms of this expression, given in an
appendix of [6], are needed for accurate evaluation in the limits of large or small d. The
propagation factor from this formula has been compared with measurements for a wire
over water with good agreement [7].

To determine the propagation factor on a wire with NEC, a wire several wavelengths
long was modeled with a voltage source near one end and the other end loaded to min-
imize the standing wave. The attenuation constant oy was then determined from linear
regression on the log of magnitude of the current while 81 was found from the phase shift
divided by distance.

The values for a7 and 81 determined from NEC are compared with those from Eq. (2)
in Fig. 8 for a ground with € = 10— ;1000 and for wire radii of 10~3)g, 10~%)¢ and 10~4),.
This complex permittivity would correspond to a reasonably good ground (¢ = 0.01 S/m)
at about 200 kHz. The agreement is seen to be very good for this case. NEC was also run
to determine the resonant length of a dipole versus height and was in good agreement with
King’s equation. Similar good accuracy would be expected from NEC for lower ground
conductivity, although Eq. (2) would lose accuracy in this case.

With these results the modeling of a long wire antenna such as a Beverage with NEC-
3 seems pretty safe. The feed and termination points with ground stakes were validated by
an independent numerical treatment developed by Johnson [8]. Of course a real antenna
may have more than a simple ground stake or counterpoise where it meets the ground and
then things get complicated.
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COMPARATIVE PERFORMANCE OF MININEC
FOR VARIOUS COMPUTERS AND LANGUAGES

C. C. Smith
Kaman Sciences Corporation
P. O. Box 7463
Colorado Springs, CO 80933

It is a truism in computer science that the best benchmark of performance is
the very task that you intend to use the computer for. General purpose benchmarks
tend to give artificial results that do not reflect performance in a specific task. This
user note is intended to provide readers with a simple benchmark of MININEC3
performance for a few computers and languages.

Even with such a restricted field of performance as MININEC3, variations in
results occur with different test cases. This no doubt is due to differing efficiencies in
such tasks as computation and RAM access. The two test cases shown here show such
variations.

Both test cases are performed at 3.0 MHz. The first is a single wire in free
space with 40 segments. End one is at (0,0,0) and end two is at (0,0,47.5). The radius is
0.001. Pulse 20 is driven with one volt at zero phase. The expected result is
Z = 66.4 -j47.1 at the drive point. The time to fill the matrix and the time to factor it
are noted.

The second test case has three wires over perfect ground. Wire one has 12
pulses, end one at (-10,-1,2) and end two at (-.5,0,10). Wire two has 12 pulses, end one
at (10,1,2) and end two at (.5,1,10). Wire three has one pulse, end one at (-.5,0,10) and
end two at (.5,0,10) so that it joins to end two of both wires one and two. (MININEC3
actually places 11 non-zero pulses on wires one and two, and two pulses on wire three).
Pulse 24 is driven with one volt and zero phase. The expected impedance is
Z = 2.03 - j925.5 at the drive point.

The results are given in the tables below. The computers tested were an IBM
XT (with added memory), an AT&T 6300, a Toshiba 1100+, and an Atari 520ST.
BASCOM compiled BASIC (CB) was tested on the IBM, the AT&T and the Toshiba. In
addition, on the AT&T, a Mark Williams C (MWC) version, a Turbo Pascal 8087
(TP-8087) version and a standard Turbo Pascal (TP) version were tested. On the Atari,
the language was Logical Design Works compiled BASIC (LDW) (with the trace feature
on to facilitate further debugging.

Times were noted by using the timer inherent to the language. Only rough

timing was done externally to eliminate totally spurious results due to code errors from
being reported.
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Test Case 1

Computer / Code Fill Factor
IBM XT / CB 0:18 . 1:01
AT&T 6300 / CB 0:08 0:30
AT&T 6300 / MWC-8087 0:03 0:08
AT&T 6300 / TP -8087 0:05 0:20
AT&T 6300 / TP 0:14 1:01
Toshiba 1100+ / CB 0:09 0:32
Atari 520 ST / LDW 0:14 0:26
Test Case 2

Computer / Code Fill ‘ Factor
IBM XT / CB 5:.03 0:16
AT&T 6300 / CB 2 26 0:08
AT&T 6300 / MWC-8087 .
AT&T 6300 / TP -8087 1.25 0:04
AT&T 6300 / TP 7:30 0:14
Toshiba 1100+ / CB 2:39 0:08
Atari 520 ST / LDW * &

Note: a * denotes that a substantial error occurred in computmg Z so that time results
are considered invalid.

These results are informative but not conclusive. A benchmark with loads and radiation
patterns should also be devised, since these are time consuming additions to the code
that undoubtedly receive much use.

46




PANDORA’S BOX
Dawson Coblin, Editor

A COMPARISON OF NEC AND MININEC ON
THE STEPPED RADIUS PROBLEM

by

J. K. Breakall
Lawrence Livermore National Laboratory
Livermore, CA

and

R. W. Adler
Naval Postgraduate School
Monterey, CA

~ Dick Adler and I both were asked to model antennas using tapered
wires or actually stepped radii in sections along a wire. I was trying
to model a large Yagi where I had some measurements of the pattern and
impedance and Dick was tasked to provide results on a large Log-Periodic
(LP) antenna using tapered elements. We both thought this should be a
fairly easy task and simply put in the geometry of the elements with the
appropriate radii in each section. Well, to our amazement and surprise
we stumbled onto something which we feel is quite serious and of concern
to further modeling when stepped radii are involved. We will try to be
as brief as possible on this finding since this section is just supposed
to be an area to report problems and results and not to be a full blown
arena for additional papers. Here we go!!

The antenna which we chose to describe and which serves as an
example for the problem is as follows: A dipole is modeled in free space
which includes 3 sections, the middle section being .25 wavelengths in
length and of radius .00025 lambda and then 2 end sections of each .125
wavelengths in length and of radius .000125 lambda. Therefore, there is
a step in radius of a factor of 2 at .125 lambda from the center of the
dipole where the feedpoint will be located. The total length of the
dipole is .5 lambda. We first modeled this antenna with NEC using
symmetry and kept increasing the number of segments in each section to
see if some convergence could be obtained in an impedance versus
frequency sweep around resonance. We varied segmentation from 2 to 50
segments per section until we seemed to have achieved convergence. The
results are shown in Figures la and 1b for the real and imaginary parts
of the input impedance respectively. As can be seen the real part seems
to be quite insensitive to the number of segments and converges very
quickly. However, the imaginary part is very sensitive and it took about
40 segments per section before convergence was obtained. When we tried
to use the results of this convergence study in the modeling of the Yagi
using a lot of segments per section, the patterns and impedance appeared
very suspicious and incorrect. We spoke to Bill Myers at TASC and John
Denny at Bell Labs and they also informed us of similar findings when
they modeled Yagis in the past. We tried to model the Yagi with MININEC,
a formidable task since the total number of segments is limited on our
version on the PC. We seemed to be getting very good agreement with the
measured information we had when this was tried. Was MININEC working
better and giving more accurate results than NEC? We decided to
investigate this question further.
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We modeled our dipole mentioned above with NECGS using rotational
symmetry in a wire cage equivalent of the actual problem with wires
across the annulus formed by the stepped transition region in radii. The
geometry is shown in a blown-up view in Figures 2 and 3. We used the
equal area rule which states that the total unwrapped area of each of
our 6 wire cage wires would equal the same surface area of the actual
antenna. This is discussed in an excellent paper by A. C. Ludwig in the
IEEE Transactions on Antennas and Propagation, September, 1987. The
results are shown for all three models, MININEC3, NECGS, and NEC3 in
Figures 4 and 5. As can be seen, the real part of the impedance is in
agreement with NECGS and NEC3 and in general agreement with MININEC3,
considering the magnitude of the impedance. For the imaginary part
MININEC3 and NECGS are closer in agreement than NEC3, especially at the
higher frequencies. To appreciate the differences more clearly, we have
plotted the imaginary part behavior on the same scale as the real part
in Figure 6. NEC3 is clearly not agreeing with NECGS or MININEC3 and one
can see the more sensitive nature of the imaginary part of the
impedance. The Yagi is very sensitive to the imaginary part of the
impedance when forming the proper current ratios and phasings required
to generate a clean pattern with low sidelobes. Slight changes in these
current ratios and phasings will have dramatic effect on the sidelobes.
The gain, of course, is not as sensitive. To show why the apparently
converged result in NEC3 is really incorrect we have plotted the
impedance variation with 50 segments per section in Figures 7, 8, and 9.
Again the real part is in agreement with NECGS, as expected, from the
quick convergence mentioned above. The imaginary part of the impedance
is substantially different, however, which explains the abnormal
behavior in the Yagi and LP results.

Well, what should one do to come up with a solution to this
problem? We have found that one can use MININEC3 to model a tapered
element correctly and then plot the impedance versus frequency, as has
been done here. Then one can select an equivalent radius for the element
which can be just the average of the radii for all sections of stepped
changes. In the case of the dipole described here, the average or
equivalent radius would be (.00025 + .000125)/2 or .0001875 lambda. Then
one simply adjusts the length of this equivalent constant radius element
to have the same resonance as that of the fully tapered element, as
found using MININEC3. One will then find that the impedance versus
frequency behavior will be the same for either the exact tapered element
and the equivalent radius element.

We have found that another problem exists in MININEC3, if the
radius of the wires are greater that about .001 wavelengths. It was
discovered that there is a difference between NEC and MININEC when used
to verify experimental Yagi measurements performed at the NBS and
described in a previous paper in the ACES newsletter by Breakall (Vol 1
No 2, p58). We have since found that the problem only occurs when the
wire radius is greater than the above mentioned criterion. The radius
used in the NBS Yagis was .004 lambda which exceeds the criterion. It
causes a frequency shift to appear between NEC and MININEC. When the
radius is less than .001 lambda, NEC and MININEC seem to track very well
on Yagis and impedance sweeps on dipoles. This problem has been relayed
to Jim Logan and company at NOSC and he said they have some ideas on the
problem and will report any changes or fixes. Jerry Burke has been given
the results for the stepped radius problem in NEC and will also be
looking at possible reasons and fixes.
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In summary, we have identified a problem for tapered
dipole/monopole elements. NEC cannot correctly predict input impedance
for tapered conductors (especially the reactive part which seriously
affects Yagi gain and resonance and also Log-Periodic Array frequency
response). MININEC can be trusted to correctly predict tapered dipoles,
but only for thin ones where the radius is less than .0005 lambda. For
these thin elements, we use MININEC to find an equivalent length
constant-radius element. This equivalent element is then used in NEC
for arrays, etc. For elements thicker than MININEC can handle, it is
possible to build a circular cage of thin conductors, but it would be
very resource-consuming to have to do it with NEC. (NECGS is much
faster for rotationally symmetric structures but is not universally
available since it 1is a derivative of NEC3, which is branded as
"military critical technology"). An interesting note: we found no
theoretical treatment available for tapered dipoles and very little
measured impedance data. . We had to take our clues from tapered Yagi
antenna designs.

Well, that’s about all for this time. We feel we are going to be in
this column more than we would like, based on these and other findings
which we will report on later. We hope that you will also tell us your
findings. We are sure there must be an ample number out there; enough to
keep this Pandora’s Box overflowing. Most can be solved with simple
explanations and fixes. If nobody reports them, we will never know and
you might be allowing somebody to go down the same darkened path. Let’s
hear from you all.
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BACKSCATTERING FROM A CUBE
A.C. LUDWIG
General Research Corporation
P.0. Box 6770, Santa Barbara, CA 93160

ABSTRACT

Three analytical techniques——the method of moments, geometrical
theory of diffraction, and physical optics (without fringe current cor-
rection)—are applied to the case of backscattering from a cube.

Results are compared to experimental data. It is relatively easy to
compute specular scattering with good accuracy; it is much more diffi-
cult to obtain good accuracy for corner incidence, which is emphasized
here precisely because it provides a more rigorous test of an analytical
technique. As expected, the method of moments provides good results
when the segmentation is on the order of 0.1 wavelengths, and in some
cases up to 0.26 wavelengths. Single-diffraction geometrical theory of
diffraction predicts peak scattering within a few dB for a cube dimen-
sion of 0.1-3 wavelengths, which is the full range of experimental data,
but is not accurate between peaks. Physical optics predicts peak scat-
tering within a few dB for a cube dimension of 1-3 wavelengths, and is

also not accurate between peaks.
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1 INTRODUCTION

A cube is a useful benchmark case for the class of scattering
bodies consisting of flat faces. In this paper, monostatic backscatter-
ing is computed using the geometrical theory of diffraction (GTID) and
physical optics (PO), which are nominally high frequency techniques, and
the method of moments (MOM), which is nominally a low frequency tech-

nique. Experimental results are compared to the computed data.

This paper is not intended to be the final word on this subject;
on the contrary, it has the modest goal of presenting a comparison of
results obtained using a simple-minded application of currently avail-
able tools. GTD analysis was restricted to single-~diffraction terms,
physical optics was not corrected for fringe currents, and the NEC MOM
code was used as is, without any real attempt to probe into reasons why
results are good or bad. Bistatic scattering was not addressed. Any of
these improvements would greatly increase the difficulty of the analy-
sis. In summary, the goal of this paper is to‘address two questions:
(1) how accurately can backscattering from a cube be calculated using a
quick and dirty application of available techniques; and (2) what are
the limitations of the techniques for a given size, incidence angle,

etc.?

GTID and PO generally agree near specular reflections in directions
normal to any of the faces of the body. Therefore, to discriminate be-
tween the techniques, the direction 8 = 45°, ¢ = 45° for the geometry
of Fig. 1.1, which is about as far as possible from specular, is empha-
sized. For this angle, data were obtained for wavelengths A such that
the cube dimension a/A ranges from 0.1l to 1.8 using MOM, and 0.l to
10.0 for GTD and PO. However, as discussed below, no technique is accu-
rate over the full computed range. Experimental data was obtained for

the a/A range of 0.1 to 3.0.
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2 METHOD OF MOMENTS COMPUTATION

The Livermore Numerical Electromagnetics Code [l1] (NEC) was used

for the method of moments calculations. This code includes both a patch
model based on the magnetic field equation, and a wire grid model based
on the electric field equation. For the patch model, each cube face was
divided into 25 square patches of equal size, giving a total of 150
patches. For the wire model, the division was basically the same, but
with the edges of each patch replaced by a wire, giving a total of 300
wires. The wire diameter was 0.0318a, to satisfy the "same surface

area” criterion [2].

According to the NEC User's Manual [l1], this patch subdivision
should be good for a/A up to 1.0, and the wire subdivision should be
good for a/A up to 0.5. As shown in Fig. 2.1, in fact the patch and

8 = 48°
o w 45°
E, INCIOENT POLARIZATION I.\

SCATTERING CROSS SECTION oAA?, 0B
1
3
L

=30 L
[ L] 10 15

NORMALIZED CUBE DIMENSION, ad

Figure 2.1. Cube monostatic backscattering versus a/) .
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wire grid results agree well up to a/j = 0.5 , but the experimental
results agree better with the wire model results for a/y > 0.5 . (Also
shown in the figure are GID results which are discussed in the following
section.) The experimental and analytical results shown in Fig. 2.1
have not been scaled in magnitude, and the agreement in absolute terms
is excellent. For a/y > 1.0 , the MOM results diverge badly, which is
not surprising. Of course, a finer patch subdivision could increase the
range of accuracy, but the 300 by 300 matrix for the cases run here is
close to the practical 1imits of the VAX 785 used to obtain the solu-
tion. Symmetry was not used to reduce the number of variables, and this
would be a good way to extend the region of validity. Internal reson-
ances are also a potential problem for a/j > 0.5 , and shorting these

out would be another useful improvement.

In summary, the patch MOM results agree with the experimental
results only up to a/) = 0.5 , which corresponds to a 0.1y by 0.1y
patch size. Somewhat surprisingly, the wire model results agree rea-
sonably well up to a/) = 1.3 , which corresponds to a wire grid segment
length of 0.26) . For larger values of a/) , the wire grid and patch
model MOM results diverge from each other and from the experimental

results.
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3 GEOMETRICAL THEORY OF DIFFRACTION COMPUTATION
The GID computation was based on cormer diffraction coefficients
similar to those used by Sikta et al. [3]. The actual coefficients used

were developed by Marhefka [4]. Only single diffraction terms were con-
sidered. It is well known that multiple diffraction is important for
cube dimensions on the order of 1) , so these results are certainly not
representative of good GTD practice for small values of a/) . However,
the complexity of GID analysis rises sharply when multiple diffraction
is included, so these results do show what can be obtained with a rela-
tively simple GTD analysis. For the case considered here, the dif-
fracted field from each contribution is given by

-jks
d i e
= =D E
o It
(3.1)
-jks
d__nelie
%L Dh%L 3
where superscripts d and i denote diffracted and incident
fields, respectively; subscripts || and | denote paral-

lel and perpendicular field components, respectively

8 1is the two-way path length from the illumination source

1
to the corner

k = 2x/)
Ds and Dh are the "soft” and "hard”™ diffraction
coefficients

E]l and E] are parallel and perpendicular to the plane of inci-

dence, defined with respect to a local coordinate system for each edge,

1The distance s 1is calculated using a "far-field" approximation so the
source is implicitly assumed to be at an i{nfinite distance from the
cube.



as illustrated in Fig. 3.1. The unit vector ; is in the direction of

incidence; s , EII and E] are mutually orthogonal. Also shown in

fig. 3.1 are the local incidence angles Bo and ¢° + The unit vector
s 1is the same in both global and local coordinates (Figs. 1.1 and 3.1),
but the field components and incidence angles in global and local coor-
dinates are in general completely different. The explicit form for the

diffraction coefficients are

tan g
-— o 1
Dﬁ = +j T F 3 2 cot %E
2% cos Bo
(3.2)
2
- cos ¢° T - 2¢° T+ 2¢0
+ |F cot —r=—— + CcOot —p———
2 2 2n 2n
m cos B
o
where Bo and ¢° are as defined in Fig. 3.1

n 1is the wedge angle parameter; the internal wedge angle is

(2~-n)", so n=3/2 for a cube, n =2 for a flat plate

PLANE OF INCIDENCE

Pt
e/

Figure 3.1, Local edge coordinate system.
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and F 1is defined by

_ -4.2
Flx] = 2jl/x|ed® f e > dt 3.3)

Ivxl
Each of the three edges forming a corner will make a contribution to the

scattered field, if it is illuminated by the incident field. If the

global incident angles are restricted to the quadrant

0<9 <n/2
(3.4)
0<¢ <n/2

then there will be 18 edge contributions, as illustrated in Fig. 3.2.

A computer program was written to evaluate the resultant of any

subset of these contributions. For example, by selecting contributions

18 14

Figure 3.2. Eighteen edge contributions to the scattered field.
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1, 3, 4, 6, 7, 9, 13, and 14, the scattering of just one face is
obtained (see Fig. 3.2), and if the parameter n is set equal to 2, the
result is the scattering of a square flat plate.2 This was the case
considered by Sikta et al. [3], and was used as the first test case; the
new results agree well with Sikta et al., as shown in Fig. 3.3. For the

| |
NEW RESULTS
= == SIKTA ET AL RESULTS [

20
/ (a) & = 90°

: __/\/\/-V

-10
(b) & = 60°

-20

SCATTERING CROSS SECTION o/A2, dB

-10
2N
-20 /I
bkl
-30 1/

0 30 60 90
AZIMUTH ANGLE ¢, deg

Figure 3.3. First test case: scattering from a 2) by 2\ square flat
plate.

2
It is necessary to be careful that ¢° is calculated correctly when n

values other than 1.5 are used.
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gecond test case, the cube was modified to match a rectangular block
evaluated by Ross et al., and reproduced by Kell and Ross [5]. The
block dimensions are 14.763A, 17.716A , and 2.226A in the x, y , and
z directions, respectively. In this case, the new results are indis-

tinguishable from Ross et al., as shown in Fig. 3.4.

The program was then applied to the 6 = ¢ = 45° case of particu-
lar interest here, with results as shown in Fig. 3.5. (Also shown in
the figure are PO results which are discussed further in the following
section.) It is seen that the computed scattering cross section varies
over about a 30 dB range as frequency varies, but without a general sys-
tematic trend versus frequency. The results for a/A { 1.8 are repli-
cated in Fig. 2.1. The maximum level of the GTD scattering agrees with
experiment within a few dB, but the details of the variation with fre-
quency are not predicted well. Note that although the program agreed
well with the first test case for a 2) plate, Sikta et al. comment
that "...many higher order terms are required for scattering outside the

principal planes” [3].

The physical optics results also predict the maximum level
within a few dB for a/)A between 1) and 3) ; the main divergence
between PO and GTD is the deep nulls obtained with PO; however, neither
GTD nor PO agree well with experiment in the null regions. The PO and
GTD results for maximum scattering diverge by more than 10 dB for larger
values of a/)\ ; unfortunately, no experimental data are available in
this range at this time. One potential difficulty in verifying the
results experimentally up to a/X = 10 is the sensitivity to alignment
errors. Figure 3.6 shows a comparison of results where the azimuth and

polar angles are varied by 1.0°. It is seen that the results vary by
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several dB. Therefore, very careful angular alignment is required for a

good verification.

As noted previously, the analytic and experimental results are not
scaled and agree quite well in absolute terms. The analytic results are
for monostatic backscattering; the experimental results were actually
taken with a separate transmit and receive antenna with a 5-degree bi-
static angle between them. This small bistatic angle probably accounts
for some of the difference between experimental and calculated values at
the larger values of a/) . It would be useful to calculate the results
for this bistatic angle to see how significant this is, or obtain true
monostatic data, but this is left undone for this study.



4 PHYSICAL OPTICS COMPUTATION
The physical optics method is based on the approximation that omn

illuminated surfaces the currents J are given by

T = 2n x H, (4.1)

where ﬁl is the incident magnetic field. On shadowed surfaces, the
currents are zero. The scattered field is then obtained by integrating
the current contributions over the surface using standard equations [6].
It is well known that physical optics gives a poor approximation for the
currents near edges and/or shadow boundaries; however, in spite of this,

the bottom line results for the scattered fields are often a good

approximation. It is generally accepted that GTD is more accurate than
PO for this class of problems.3 However, at the very least, PO provides
an excellent check on GID insofar as confirming the general character of

the results, as shown below.

The scattering cross—section was calculated for a cube 10} on a
side for both a principal plane ¢ = 0° , and for b= 45° ; g was
varied over a 0° - 90° range. The PO results are compared with GTD
results in Fig. 4.1. For this case, the physical optics results are
identical for Ee or E incident polarization. The GTD results are
not identical, but the comparison between PO and GTD is very similar for
both polarizations; the Ee polarization results are shown in Fig. 4.l.
It is seen that the general features of the patterns agree quite well.
However, in directions near nulls or near g = 90° for the ¢ = 45°

pattern, the results deviate by more than 20 dB.

The PO results at g = 45° and ¢ = 45° versus a/) have been

shown previously in Fig. 3.5. Again, the general features agree well

3

If PO is corrected for fringe currents using the Physical Theory of
Diffraction (PTD), the accuracy may be comparable or superior to GID—
each technique has its advocates.
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Figure 4.1. PO and GID results for a 10A cube.

with GTD, but large deviations in level are evident. As mentioned
above, it is generally believed that the GTD results are more accurate

than PO.
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5 SUMMARY AND CONCLUSIONS

The method of moments results are generally reliable only for seg-

ment lengths of 0.1\ or less, but the wire grid model provided good
results up to a 0.260 segment length. Single-diffraction GTD gener-
ally predicts the maximum values of backscattering versus frequency '
within a few dB over the entire range of experimental values——up to

a/A = 3=—but does not accurately model behavior between maxima.

Physical optics results are surprisingly accurate for most scat-
tering directions, and even for the 6 =¢ = 45° direction are fairly
accurate for 1 < a/A < 3 ; PO results diverge by roughly 10 dB from
GTD results outside this range for the 6 =¢ = 45° direction.

Experimental results for the larger values of a/A would be valu-

able, but special care must be taken to assure good angular alignment.

A cube is as basic and elementary a shape as a sphere; scattering
from a sphere can be calculated so accuratelyvand reliably that calcu-
lated values are used as a standard to calibrate experiments; in con-
trast, no technique considered here is really satisfactory for calculat-
ing scattering from a cube. This appears to be a problem worthy of fur—

ther attention.
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ABSTRACT

In this paper we present a detailed application of a subgridding
scheme for the finite difference time domain (FDTD) numerical solution
to Maxwell's equations. The subgridding scheme will be necessary for
greater detail and for localized calculations when other methods for the
subcell modifications of the regular FDTD are not applicable. We have
made comparative calculations, as a function of mesh size, of the
reflection coefficient and shunt capacitance associated with two infinite
parallel plates with a finite discontinuity in plate separation.

*This work was performed under the auspices of the U. S. Department of
Energy by Lawrence Livermore National Laboratory under contract No.
W-7405-Eng-48.
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1. Statement of the Problem

Shown in Figure 1 is a cross-section of infinite parallel plane
conductors. The heights of the two sections are such that only the TEM
wave will propagate for a chosen frequency. The plates should be
considered to extend to infinity in the x and z directions, even though
the boundaries for our calculations are at X[ = 2 A to the left of the
discontinuity, and Xgr = 11 A to the right. We will show that our
calculational algorithm that uses grids of different sizes in different
regions can give meaningful results. These results will be compared to
calculations using a uniform coarse grid and a uniform fine grid
throughout.

| I - / 7
- Z
] .
Fig. 1. The cross-section of infinite parallel plane conductors.

Our calculational tool, as sketched in Fig. 2, is the finite difference time
domain algorithm! with various grid sizes and time steps in various

regions.2
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Fig. 2. A possible zoning for the FDTD calculation.

When a sinusoidal TEM wave traveling from the left encounters a
step discontinuity, higher order TM modes will be generated in order to
satisfy the boundary conditions. The frequency and the heights will be so
chosen that only the TEM mode will propagate. Regions of various spatial
and time divisions are shown in Fig. 3.

L4
|
I
|
' - X
A /
A% )
: Ax 2 5
- |
AX sk2 Y
atfp, Sy | At ax 4,
£ i

Fig. 3. Regions of different spatial and time subdivisions.

2. Input Information

We chose a sinusoidal wave with Ei = § Ei; Hi =2 Hi. Ei and Hi
do not depend on z.

Ei(x,t) =Re (A o & ™ } ; wherek= m./:e- . 1)

f=%x 1010 Hertz (1a)
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Therefore, in free space

T

5 (1b)

A.=3x108/§-x101°=.04m=4cm . 9=-

choose 9=-% so that the source will be a sine function. Also let
h=1 cm, (2a)

h =oah,where0<asl. (2b)

It is physically plausible that the boundary conditions (namely, the
vanishing of the tangential components of the electric field on the
conducting planes) can be satisfied with TM modes and the TEM mode.
The lowest TM mode is the TM;o mode (half sinusoidal in y and no z

dependence). If we choose o = 0.25, so that hy = 0.25 cm, then

Act = 2 (.25) = .5 cm, the cutoff wavelength to the right. (3a)

Ao =2 (1.00) = 2 cm, the cutoff wavelength to the left. (3b)

but A =4 cm > At and > A, ; therefore, the TM;¢ mode cannot propagate
on either half of the guide. Choose Ax = h./8 (this will allow 32 zones per
wavelength, a very fine zoning).

3. Boundary Condition on the Left

Far away to the left of the discontinuity, we have

Bxt) = ¥ E'xt) + Ex,t) (4)
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where Er(x,t) is a reflected TEM wave. If x, is the left boundary,

t
N
Er(xp,t+At) = Er(xp+ct+cAt)
(xg,t+at)
= Er((xp+cAt) + ct))
= Er(xp+cAt,t) s
(Xprest 1)
(X 1) LXcAX,t)
Fig. 4. Interpolation to get
EX(xy t+At).

The value of ET at (x1,+cAt,t) will be obtained by interpolation.
Thus,

Ax - c At Er(xL,t) + E.A_t Er(xL+Ax,t) (4a)

E'(x, t+At) =
Ax Ax

It is to be observed that cAt < Ax is due to stability considerations. We also
note that Ei(xp,t+At) = Ei(xp-c(t+At)) and this is given.
E(x; t+At) = Ei(xL,t+At) + Er(xL,t+At) (5)

Ax - cAt
AXx

= El(x, t+At) + (E(x,t) - E'Gxy b))

+ EAi‘.t. (E(x,,+Ax,t) - Ex, +Ax,t))
X

E'(x,t) = Re { exp Got + jlox - jlex - j2) }
=sin(cot+ka-kx) if ot+kx -kx>0
Ei(x,t) = 0if ot + kx, - kx < 0.
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Or
i sinowt , ift20 ;
E(xvt)={ 0 ift<0.

(t-kAx) . if ot-kAx20 ;

E'xp+Ax,0) = {sf)n if ot-kax<0 . (52

m=2nf=‘°‘2—"x1o‘° k =w/3x10° . (5b)

4. Boundary Condition on the Right

Far away to the right of the discontinuity, we have only a
transmitted wave traveling to the right. If we let xg be the right boundary,
we have

E(xg,t + At) = E(xR - c(t+At)) = E((xR - cAt) - ct)

= E(xR - cAt,t)
Or
Ax - cAt
E(XR, t+At) = e E(xp,t)
cAt
+ A_x E(XR - Ax,t) (6)
(Xg ,tret)
<x ~4ax, +)
R ) (X&'C.‘-t)t) ka’ 'x, )

Fig. 5. Interpolation to get E(xR, t+At).'
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5. The Transmission Line Approximation

" We can obtain a transmission line approximation of our

problem by assuming that the electromagnetic field is that given by 1-D
TEM Maxwell's equations.

E, oH,

€ aty T (7a)
oH oE
atz =" axy L

—-—.,.I
} /

Fig. 6. A unit width two-line transmission line.

Referring to Figure 1 for the coordinates and Figure 6 for the
direction of the voltage and current, we let

V =‘h Ey
-_'--Hz e lm

where h is the separation between the parallel planes.
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(7b) and (7a) can be written as

aVv dl
-5; = - hp. -a—t (8a)
oA _ gav
Frihl (8b)

(8a) and (8b) are the familiar transmission-line equations with

L=hyp henrys/m (9a)
C= % farad/m (9b)

The wave velocity is

and the characteristic impedance is
R O N N
e B

where 1 is the "characteristic” impedance of a plane TEM wave. For the
purpose of analysis, we take x=0 at the discontinuity as shown in Figure 7.

Y. Y.

Azo

Fig. 7. Two different transmission lines connected at x=0.
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Our crude approximation is equivalent to the wave propagation in
two different transmission lines connected at x=0. The symbols in Figure 7
are

Z. = Y.! , the characteristic impedance for x < 0,
Z, = Y. , the characteristic impedance for x > 0,

If we use the superscript + to denote a positive traveling wave and the
superscript - to denote a negatively traveling wave, we get at x=0.

V=V'+V
I =I'+T =(UZ)V*-V)
For x=0 +» we have
V=Z+I

as there is only an outgoing wave to the right. Combining

+
\4 |x=0. |==0+ z1|x=0+
z
+ +
=2.1 IX=0_=T(V -V |x=0.
yields
vev 2k oy (10a)
= Z +27 = a
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At x=0,, we have

v -en |x=o+ =(V'+V) |x=o_

(10b)

=1+R)V' | =TV

v |
x=0_ x=0_ x=0_

where R and T are the reflection and transmission coefficients,
respectively, at x=0.

2 -7
R = 7 +7 (lla)
+ -
2Y.
T=1+R=Y_+Y (11b)

If we calculate (or measure) the reflection coefficient at a position nA to the
left of x=0, we get the same value as given in (11a). And, if we calculate (or

measure) the transmission coefficient at a position nA to the right of x=0, we
would get the same 7.

6. The Transmission Line Approximation with Approximate
Account for Fringing at the Discontinuity

A more refined approximation would be to use the
transmission line approximation for the dominant TEM mode with a shunt
capacitor at x=0 to account for the fringing of the electric field at the
discontinuity (x=0). Figure 8 shows such an admittance.2

. 4
T‘{ = juC

Fig. 8. Shunt admittance at the discontinuity.

Ye
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For the two semi-infinite transmission lines connected together as shown
in Figure 8, the boundary conditions at x=0 are

V(0,t) = V*(0,t) + V'(0,8) =V(0,,t)
I0,t) = Y.(V'(0,t)- V(0t) = (Y, +Y,) V(O,,t)

with
V(0,8 =R V'(0,t) ; V(O_,t) = TV'O,t) .
We find that
Y-Y-Y
R = il S (11c)
Y +Y L+Y d
2Y
T=1+R=Y_+Y++Yd » (11d)
Also, if

) + jot -jkx  +HkXy imeo . .

] Viix,t)=Re(e e’ e e’ ") with x =ni
\* then
i Vixt) = Re(R®e L™ V2

~ ForR=|R|ei°rweget
L‘ Vix,t) = |R| sin (@t +6)

: Both [R | and 6 can be obtained from the time history of

;

l Ex,t) = Exyt) - Exy0

|
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We can then go back to (11d)

Y Y 2Y.
+Y +
atET T 1+R
or
2Y ‘
Yd = -Y - Y, 12)
1+R

From (12) we can get C as required in Figure 8.

In Appendix A we give more details to compute Y4 and hence C from
our numerical scheme.

7. Calculational Results

We take h. =1 cm and Ax = Ay = 1/8 em. This would allow 32 zones
per wavelength. The left calculational boundary is 2\ from the
discontinuity and the right calculational boundary is 11A from the
discontinuity. The left boundary condition is imposed at x = - 2A and the

right boundary condition is imposed at x = 11A. For the time interval of
calculation, the effect of the right boundary is not felt at the left boundary,
as we only wish to test the effect of the change of grid sizes. At t=0 we set
the electric and magnetic fields equal to zero. This will give us the initial

condition. For t 2 0 we set

; = sin ot
g | 7
="
In Figure 9a-c we show
fort20 .
E, | .
=-

Using Tables la-c we can calculate the time difference, At, between the
cross-over points of the incident and reflected Ey for different values of
hs /h.. Since @ is known, we can then calculate the phase angle
between these Ey from §r= @At. We then derive the shunt capacitance
as .shown in Appendix A.




In the last column of Table 2 we give the reflection coefficient based
on equation (A.4). The last column of Table 3 is based on the exact static
formula [equation (13) below] due to the fact that the electric field lines at
the neighborhood of the discontinuity are curved (fringing).

A static approximation for C shown in Figure 8 can be obtained. It is
the excess capacitance over what occurs when the field lines are uniformly
distributed and straight across. The formula is3

2
c=E8 (L&D 1, 3+a 51 (2% )} £/ meter width
T o 1-a) 1-o?
13)
where a=h+/h_

8. Conclusions

The sets of calculations of the reflection coefficients and
capacitances for the infinite parallel plates with a finite discontinuity
show that using grids of different sizes in different regions gives
meaningful results. This approach will save considerable running time
and require less memory than a finer grid throughout would need. In
addition, it will enable smaller objects to be modeled more accurately.
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Fig. 9a: hJh. = .25
Fig.9b: hyh. = .50
Fig. 9¢: hJh. = .75

The incident electric field at x = -2A is Ei(- 2A,t) =1000 sin ot for t 2 0.




1K

Time (ns) Eyi, Incident Eyr, Reflected
1.9957333 -1.9509e+02 4.8245e+01
1.99791667 -9.8016e+01 -1.3807e+01
2.00000 +1.3923e-03 -7.5750e+01

Table la: h_/h_ = .25

1.99375000 -2.9028e+02 1.0602e+01
1.99583333 ' -1.9509¢+02 -2.4998e+01
1.999791667 -9.8016e+01

2.000000 1.392923¢-03

Table 1b: h_ /h_ = .50

1.99375600 -2.9028e+02 1.6992¢+00
1.99583333 -1.9509e+02 -1.2897e+01
1.999791667 -9.8016e+01
2.00000 1.392923e-03

Table lc: h_ /h_ = .75

+

Table 1a,b,c. The incident and reflected Ey at x= -2A. The left boundary of

the calculational grid is at x = -2A and the right boundary of the
calculational grid is at x = +11A.




Calculated R |

h /h, Uniform Uniform Transmission-Line
Coarse Grid Mixed Grid Fine Grid Approx. | R |
25 .629 .627 627 (4-1)/(4+1)
.50 .363 .362 362 (2-1)/(2+1)
5 151 .150 151 (4-3)/(4+3)

Table 2. Calculated and transmission-line-approximation reflection
coefficients.

Calculated C x10'2 f/m
h, /h_ Uniform Uniform From Equation (13)
Coarse Grid (Mixed Grid) Fine Grid
25 - 5.20 5.1 5.22 5.75
.50 2.31 2.27 2.29 2.21
75 .59 .566 .570 5.73

Table 3. Calculated shunt capacitance and the static approximation based
on Equation (13).
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APPENDIX A
Calculation of the Shunt Capacitance
from the Numerical Qutput

From the text we have the incident wave at xj=nA\

Ei(xy,,t) = sin ot t>0 (A1)

[(Equation (5a)]

The reflected wave is

E(x,t) = Re (R /IW24e

with

R = R|e® andx=-n

E'(x,t) = R]|cos (at + 6,-2) = [R|sin(wt+0)

=- [Rsin (et +A) ' (A.2)
where

Ar = Orfnr(orer =‘1t+Ar)

In our numerical examples, A; is a small number. A, can be obtained
directly from the ET vs. wt plot. From equation (12)

2Y

Y, =
. 1+R

Y - Y, (A.3)

Let

R = Rlcos®_+j R(sing, =-WRlcosa, - [R[sina
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2Y (1 +R¥
Yd = - Y_ - Y+
1+R)1A+R¥

2Y 1- |R| cos A)
= 2 3 -Y - Y, }
- |R| cosa)*+ [R|?sin*A_

j2Y |R|sina,

- |R| cosAr)2+ |R|25in2Ar

The value IR | can be read off directly from the computer output, and A, can
be obtained from a numerical interpolation. We also recall that

-l- t for free space.
( h 377 h, :

For the transmission line approximation,

Z-Z h,-h
R=Z+Z°5+n (A.4)
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APPENDIX B
Symbols and "Pseudo” FORTRAN Flow Chart

In this appendix, we show the names of some variables and a
"pseudo” FORTRAN flow chart. The electric field components in zone 1
will be Elx, Ely; the horizontal zone boundaries will be I1L, I1R, etc. The
vertical boundaries will be J1B, J1T, etc. A pseudo flow chart outlining the
steps of calculations, interpolations, etc. is shown in steps (1)-(13).

AT JaT

|

l
L
'-——

——t—— T 3T 3
] !
- ; NN
— |
S 1] ]
718 T28 ’»-5 ;
P I ’
A < >t St -
’ | 4 N A i
I IiR
Eix 2L E2x 129 SN E2x
ELY EaN T3l E3Y Iz
Hlt 43z

HZZ

Fig. B.1. The variable zones, indices and variables.
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Back from (13) \|/
>

(1) Use AT1, advancetot= A;l

— I1 = IlL, I1R

————=Jl = J1B,J1T -1
H1Z(I1,J1)=HI1ZI1,J1) + ....
Continue

I3=13L-1,I3R-1
—————J3=J3B,J3T-1

H3Z(13,J3) = H3Z(13,J3) + ....
Continue

(2) Use AT1, advance tot =AT1

—I1 =11L,I1R-1

—J1 =2,J1T-1
El1x(11,J1) = E1x(I1,J1) + ....
Continue

— 13 = I3L, I3R-1
—dJ3=2,J3T -1

E3x(13,J3) = E3x(13,J3)
Continue

Fixtot=4AT1

Fix the boundary condition for E1Y(I1L,J1)
Fix the boundary condition for E3Y(I3R,J3)
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3  Atthe interface
Saving the old values for interpolation

Jd1 =J1B,J1T-1

E1YT(J1) = E1Y(I1R,J1)
Continue
——dJ3=J3B,J3T-1

E3YT(J1) = E3Y(I3L,J3)
Continue

]
o

tot

Y (4)  Atthe interface
Interpolate and extrapolate tot=0

E2Y(I2L,1) = E1Y(I1R,1)

E2Y(I2L,J2T-1) = E1Y(I1R,J1T-1)

E2Y(I2R,1) = E3Y(I3L,1)
E2Y(I2R,J2D-1) = E3Y(I3L,J3T-1)

K=2,J1T-1
E1Y(I2L,2*K-1)
= .75*E1Y(I1R,K)
+.25*E1Y(I1R,K-1)

E2Y(I2L,2*%(K-1)) = .25*E1Y(I1R,K)
+ .75*E1Y(I1R,K-1))

—— Continue

K=2,J3T-1

E2Y(I2R,2*K-1) = .75*E3Y(I3L,K) + .25*E3Y(I3L,K-1)
E2Y(I2R,2*(K-1)) = .25*E3Y(I3L,K) + .75*E3Y(I3L,K-1)
Continue




5) UseATZ,advanceHZZtota%zATu

—— 12 = 121, I12D-1

J2 =J2B, J2T-1
H2Z(12,J2) = H2Z(12,J2) + ...
—— Continue

— 12 = 12D, I2R-1

J2 = J2B, J2D-1
H2Z(12,J2) = H2Z(12,J2) + ...
——Continue

((6) Use Atl, advance E1Y and E3Y to t = Atl

—I1 =11L+1, 1R
J1 =J1B,J1T-1
E1Y(I1,J1) = E1Y(I1,J1) + ...
Continue

— I3 =1I3L, I3R-1
Jd3 =J3B, J3T-1

E3Y(13,J3) = E3Y(13,J3) + ...
— Continue
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(7 Time average values for E1Y Atl
and E3Y at the interface tot=At, =3

E1YT(J1) = .5*E1YT(J1) + .5*E1Y(I1R,J1)

[Jl =J1B, J1T-1
Continue

—dJ3 =J3B, J3T-1
E3YT(J3) = .5*E3YT(J3) + .’5"'E3Y(13L,J 3)
—Continue
(8) Spatial average to get E2Y
Y at the interface to t=At,

E2Y(I2L,1) = E1YT(Q1)
E2Y(I2L,J2T-1) = E1YT(J1T-1)
E2Y(I2R,1) = E3YT(Q1)
E2Y(I2R,J2D-1) = E3YT(J3T-1)
K=2J1T-1
E2Y(I2L, 2*K-1) = .75*E1YT(K) + .25*E1 YT(K-1)
E2Y(I2L, 2%(K-1)) = .25*E1YT(K) + .75*E1YT(X-1)
— Continue

———— K=2,53T-1
E2Y(I2R, 2*K-1) = .75*E3YT(K) + .25*E3YT(K-1)
E2Y(I2R, 2%(K-1)) = .25*E3YT(K) + .75*E3YT(K-1)
Continue

Y
(8a)

Advance the interior E2x, E2Y to t= Aty




(9) Replacing the calculated values in At,
@ gy spatial average (tempor.) tot= -

J1=1,J1T-1
H1Z(I1R,J1) = .25%(H2Z(I2L,1+2*(J1-1))

+ H2Z(I12L+1,1+2*(J1-1))

+ H2Z(12L,2*J1) + H2Z(I2L+1,2*J1))
Continue

——J3=1,J3T-1

H3Z(I3L-1, J3) = .25%(H2Z(I2R-1,1 +2*(J3-1))
+ H2Z(I2R-2,1+2*(J3-1))
+ H2Z(12R-1,2*J3)
+ H2Z(12R-2,2*J3)

Continue

2

(10) Use At2, advance H2Z to t=§At

— 12 = I2L, I2D-1

J2 =J2B, J2T-1
H27Z(12,J2) = H2Z(12,J2) + ...
Continue

12 = 12D, I2R-1 '

J2 = J2B, J2D-1
H27Z(12,J2) = H2Z(12,J2) + ...
Continue

to(11)




(11) Time average of (9) and (10). This replaces
the calculated boundary values by (1) for

t= % At, . These values are then advanced by
(1) to a new time 1:=—:2<)-At:1

—Jl=1,J1T-1
H1Z(I1R,J1) = .5*H1Z(I1R,J1)
+ .5%.25%(H2Z(I2L, 1+2*(J1-1)
+ H2Z(I12L+1, 1+2*(J1-1))
+ H2Z(12L, 2*J1) + H2Z(12L+1, 2*J1))

— Continue

—J3=1,J3T-1
H3Z(I3L-1, J3) = .5*H3Z(I3L-1, J3)
+ .5*.25*(H2Z(I2R-1, 1+2*(J3-1))
+ H2Z(12R-2, 1+2*(J3-1))
+ H2Z(I2R-1, 2*J3)
+ H2Z(I2R-2, 2*J3))

—Continue

to (12)
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" (12) Spatial average to get E2Y at the
interface to t = Aty = 2At,

E2Y(I2L,1) = E1Y(I1R,1)
E2Y(I2L,J2T-1) = E1Y(I1R,J1T-1)
E2Y(I2R,1) = E3Y(I3L,1)
E2Y(I2R,J2D-1) = E3Y(I3L,J3T-1)

K=2,J1T-1

E2Y(I2L,2*K-1) = .75*E1Y(I1R,K) + .25*E1Y(I1R,K-1)
E2Y(I2L,2*(K-1)) = .25*E1Y(I1R,K) + .75*E1Y(I1R,K-1)
Continue

— K=2,J3T-1

E2Y(I2R,2*K-1) = .75*E3Y(I3L,K) + .25*E3Y(I3L,K-1)

E2Y(I2R,2*(K-1)) = .25*E3Y(I3L,K) + .75*E3Y(I3L,K-1)
Continue

Y
(13)

Advance the interior E2Y, E2x to t = 2At2 = Aty

Back to (1)




APPENDIX C
The Finite Difference Equations

The finite difference equations used in this report are derived from
the integral forms of Maxwell's equations, which are

$ &« af- % fuf a8 (C.1)
§ﬁ-d§=%”ei§-d§ (C.2)

For the TM wave appropriate to our problem, we have

E(xyzt) = RExyt) + FE (x3.0) (C.3)
H@&xyzb = 2H (xy,t) (C.4)

and there is no z dependence.

Using (C.1), we have

HIV2G41/2, 41/2) - HY V4172, j41/2)

At

-H Ax Ay
= Ax (ENG+1/2j) - ENG+1/2, j+1))

+ Ay (E;‘ (+1, j+1/2) - E G, j+1/2))

resulting in

n+1/2 ,. . n-1/2 ,. . At n,. . n,. .
Hz (1+1/2,3+1/2) = Hz (i+1/2,j+1/2) - M—A; (Ex (i+1/2§) - E, (l+1/2,J+1))

At
HAX

(E® (i+1, j+1/2) - E® (i,j+1/2))
y y
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Using (C.2), we have

n+l .. @ n . .
e E "~ (i+1/2) - E_G+1/2))
At

Ay el =
1+ (B2 G12501/2) - H™2 (i41/2,§-1/2))

n+l ... n,. .
g E’y (1,j+1/2) - Ey (1,j+1/2)
At

Ax*1 =
1e (H;‘*”"’ (-1/25+1/2) - H™ (i41/2,j41/2))

resulting in

E," (i+1/2) = E] (i+1/2,) + i—"— (H2 Gar/2,41/2) - ™2 G141/25-1/2) )
y

Ey™ (j+1/2) = E] (ij+1/2) + -5— (E2 G1i25e1/2) - H™2 (141/2,j41/2))
X
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MODELLING BY NEC OF AN HF LOG-PERIODIC ANTENNA

G.R. Haack
Electronics Research Laboratory
Defence Science and Technology Organisation Salisbury
‘ GPO Box 2151
Adelaide South Australia 5001

ABSTRACT

The Numerical Electromagnetics Code (NEC) is a computer code for analysing the
electromagnetic response of an arbitrary structure consisting of wires and
surfaces in free space or over a ground plane. It is based on the application
of the Method of Moments to solve the electric field integral equation. A
practical application of NEC which involved calculation of the impedance of a
vertically polarised HF log-periodic antenna and comparison with measurements
is described. A technique for improving the accuracy of the numerical
calculations is discussed in addition to methods for accurately measuring
impedances of antennas employing balanced two-wire transmission line feeders.

1. INTRODUCTION

This paper describes the author's experience in a practical application of NEC
which involved calculation of the impedance of a vertically polarised HF log-
periodic antenna (LPA), and comparison with measurements. The LPA considered
is a proprietary design which was originally designed for use in broadband
high-gain, steerable linear arrays for HF transmitters and receivers.

2.  NUMERICAL MODELLING OF AN HF LOG-PERIODIC ANTENNA

For broadband linear arrays the elements of the array must be very closely
spaced at the low frequency end of the operating band to minimise grating
lobes at the upper frequency limit. At such close spacings the mutual
impedances between elements of such ‘an array have a significant effect on the
impedance of each element which may vary substantially with frequency and
steer angle. The LPA investigated here employs a novel element construction
for the high-frequency radiators, and varying design parameters, o and T along
the structure in an attempt to deal with mutual effects in an optimum manner.

As a first step towards investigating mutual impedance effects in a linear
array of LPAs, an attempt was made to develop a model of a single LPA for use
with NEC. An essential requirement for such a model, if it is to be useful
for analysing arrays of, say, 8 or more LPAs, is that the number of wire
segments be kept to a minimum so that computer core storage and processing
time requirements do not limit the size of the array to be analysed.

A schematic of the LPA under investigation 'is shown in Figure 1. The
construction is largely conventional in that guyed front and rear masts with
catenary wires are used to support the radiating dipole elements which are fed
by a two-wire balanced transmission line. (Guy wires and other wires
supporting the radiating elements are not shown in Figure 1.) A balun at the
feed point of the LPA permits connection to a 50 ohm coaxial system. The
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arrangement used for coupling the low frequency conventional dipole radiators
to the two-wire feeder is shown in Figure 2. The high frequency radiators,
commonly referred to as 'extended aperture elements', are shown in Figure 3,
and differ from the low frequency dipoles by virtue of having an additional
closely-spaced wire parallel to each of the driven arms of the dipole of
approximately double the length of each half of the dipole. An additional
unusual feature of the LPA is that the element spacings and lengths do not
conform to a true log-periodic geometry with constant o and T along its
length, and the wire diameters are equal for all elements rather than
proportional to the element length.

The model initially chosen for the single LPA is as shown in Figure 1. No
attempt was made to model in detail the complex structure connecting the two-
wire feed to the dipole elements, each driven element being represented by a
single wire with crossed transmission lines connected between the centres of
adjacent pairs of elements. The parasitic elements associated with the
'extended aperture elements' were simply modelled as two wires with the same
spacing, length and centre-gap as the actual antenna.

No attempt was made to include catenary or guy wires, partly to minimise the
number of wires required for the model, and also because their effect was
considered to be small due to insulators being inserted at relatively close
spacings to suppress induced currents on these portions of the structure.
Comparison of calculated results using this model with NEC and measured
impedances were encouraging, but showed that an improved numerical model would
be required if close agreement of measurements and calculation were to be
achieved. As shown in the Smith Chart plots of Figure 4, the magnitude or the
measured and calculated impedances are similar, but the phase angle of the
reflection coefficient is in error by about 0.15A for the frequency range
shown. (The frequency range covered in these plots is near the lower end of
the operating band.) Note that this is an expanded Smith Chart with a maximum
VSWR of 2.5:1. :

It was reasoned that the most significant source of error was likely to be due
to the simplified model used for the region connecting the dipoles and the
two-wire feeder. This problem has been considered in detail (R.W.P. King, The
Theory of Linear Antennas; Chapter 11, Harvard Univ. Press, 1958) for various
configurations of two-wire lines feeding dipoles, however extensions of these
techniques to the problem considered here appears somewhat intractible. An
alternative approach which was also considered was to model the region near
the junction of the two-wire feeder and a single driven element using NEC.
This approach was not pursued, as the geometry is such that wire junctions
with 90° bends, abrupt changes in wire radii and multiple wire junctions would
be involved. Reports from other NEC users suggest that such configurations
should be avoided where possible.

In order to further simplify the problem of obtaining a simple LPA model for
use with NEC, a single 'extended aperture element' was fabricated and its
impedance measured. The impedance of the single 'extended aperture element'
near resonance was also calculated using NEC with the simple model shown in
Figure 5. The calculated and measured impedances are shown in Figure 6. It
is seen that the calculated impedance of the 'extended aperture' element near
resonance is of the order of 200 ohms, which is substantially greater than a
simple dipole (~ 70 ohms). The measured impedance is similar to that
calculated, however the former has a significantly greater capacitive
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reactance at all frequencies. This is attributed, to a first order, to the
capacitance between the two halves of the assembly connecting the driven
elements of the dipole to the two-wire feeder, no attempt having been made to
accurately model this region.

If a parallel capacitance is added to the calculated impedance to match the
measured impedance near resonance, the new 'calculated' impedance agrees more
closely with the measured impedance as shown in Figure 7. An independent
measurement of the static (dc) capacitance between the two halves of the
centre portion of the dipole assembly was found to agree quite closely with
that calculated above (4.5 pF calculated from the difference between measured
and calculated impedances near resonance, and 5 pF static capacitance
measured) .

By adding a similar capacitance in parallel with the feedpoint of each element
in the LPA model, the plots of measured and 'calculated' impedance become as
shown in Figure 8. It can be seen that the agreement is substantially
improved compared with the original calculations. Figure 9 compares measured
and calculated impedances over a band 10 MHz wide above the low frequency
operating limit. The agreement is very close. The narrow blip near the
centre of the measured curve is unexplained; it is not evident in the
calculated curve, however this may be due to the 'removal' of low frequency
elements in the model of the LPA as the frequency increases.

3.  THE MEASUREMENT PROBLEM

When comparing measured and calculated impedances of antennas it is necessary
to consider the possible sources of error in the measurements. This is
particularly important for antennas fed by two-wire transmission lines since
most impedance measurement systems operate with 50 ohm coaxial transmission
line test ports, and a balun must therefore be used to enable measurement of
balanced impedances. Since the perfect balun does not exist, measurement
errors will normally be introduced.

However, there are techniques that can be used to minimise such errors. For
example, if the vector accuracy enhancement techniques as described in HP
Application Note 221A, June 1980 are applied to an automated 50 ohm coaxial
network analyser followed by an imperfect balun, then most of the significant
errors due to system imperfections can be eliminated by calibrating the system
with three standard terminations on the two-wire terminals of the balun. The
terminations normally used for calibration are a short-circuit, open-circuit,
and a resistance equal to the two-wire terminal impedance of the balun. This
latter impedance is the reference impedance for all measurements made
following calibration. The first two standard impedances usually are easily
realised at HF, however the matched two-wire line termination may present some
difficulties. The latter problem may be alleviated by fitting coaxial
connectors to each of the balanced output ports of the balun and terminating
each of these ports with high-quality coaxial resistors each equal in value to
half the desired two-wire impedance. Since coaxial resistors are available in
a range of resistance values, calibration at the characteristic impedance at
most two-wire transmission lines is possible. The main source of error with
this technique is the discontinuity between the coaxial connectors and the
two-wire transmission line, which should be small at HF frequencies.
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A further source of errors in the above is the rejection of unbalanced
voltages at the 'balanced' output terminals of the balun. These errors cannot
be easily quantified.

4. CONCLUSION

The results presented show that accurate results can be obtained for complex
structures provided that steps are taken to accurately model the feed region
of centre-driven elements. A technique for accurate impedance measurement of
antennas driven by two-wire balanced transmission lines was also outlined.
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The Computational Expressions of Spheroidal Figenvalues

Wan-xian Wang
Space Astronomy Laboratory, University of Florida
Gainesville, FL 32609

ABSTRACT

The higher order terms of eigenvalues in spheroidal differential equation are
developed by using power-series expansion and asymptotic omes for both prolate and
oblate wave functions, these important multipole expansions greatly facilitate and
improve the computations of the electromagnetic scattering by different kinds of

spheroids with various size parameters, refractive indices, and aspect ratios.

I. INTRODUCTION

The prolate and oblate spheroidal eigenvalues Amn are usually calculated following
Bouwkamp's method1 while restricted to the case of small value of size parameter c
(= K(az-bz)%, where « is wave number, a is semi-major axis, and b is semi-minor axis)
and large number n. For large value of ¢ (say > 15) and/or small number n, the asymptotic

expansions must be employed; J. Meixner ’

had performed the asymptotic developments of
prolate and oblate spheroidal eigenvalues up to c-s, respectively. However, for moderate
value of ¢ and the intermediate number n, there appears a gap between Bouwkamp's and the
asymptotic expansions because of the orders of the included terms being not high enough
for these expansiﬁns.

The author has pushed the power—-series expansion forward to cls term, and the prolate
and oblate asymptotic developments till c—s, respectively. Thus the correct arrangement
of the eigenvalues Amnfrom small value through large value of ¢ and from small number
through large number n is formed in increasing order by correspondingly selecting one of
these two expansions. The developments of the analytical expressions of the spheroidal
eigenvalues, together with further improvements on calculating the spheroidal radial

functions, have made it feasible to compute the scattering coefficients for different

kinds of spheroids within very wide range.
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I1. PONER-SERIES EXPANSION OF THE SPHEROIDAL EIGENVALUES

The angular differential equation of the spheroidal wave functions can be written

in the form

25 2
(1-n2) $5m _ 5p dBun 4 (L o2p2 )S__ =0 (1)
dnz dn mn 1 - nz mn

where n is angular coordinate in the spheroidal system, -1 & n g 1;
Smn are the spheroidal angle functions of order m and degree n;

Amn are the eigenvalues of the spheroidal differential equation;

m and n are positive integers with n > m.
This equation is for prolate spheroidal wave functions. By replacing ¢ by -ic in Eq. (1)
we would have the equation for oblate one. For small value of ¢, the following expression
of the eigenvalues Amn in the form of continued fraction can be obtained by using three-
term recursion relation of the expansion coefficients, d:n(c), of the spheroidal angle
functions Smn with respect to the associated Legendre functions Pﬁ:r (where r is the

summation index)?

m m m m
A o= ® o Ba-m — Bn—er il - Bn-m.+2 Bn-m+4 . (2)
on . 'n-m m A — 0 2 - m 3 . m o —
Ynem-2""on" Yn-m-4 "mn Yo-m+2 *mn~ Yn-m+4 "mn
m = 1 2 4m2-1 -
vhere v, = (mtr) (m+r+l) + 3¢2[1 G i) Garaeesy (r 3 0) (2-1)
- - 4
B: - r{r-1) 2m+r) 2m+r-1)c (r 3 2) (2-2)
(2m+2r-1)2 (2m+2r-3) (2m+2r+1)
Substituting in Eq. (2) the power-series expansion
o0
= mn 2k 3
*an Ly © 3)
k=0

and then developing the continued fraction by raising consecutively each partial
denominator up to the associated numerator with the use of binomial expansion, we can find

the coefficients in by equating the power of c2k. The coefficients in the book by

mn

10° it might be remarked that he obtained the coefficient

C. Flammer5 were given till £
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mo

210 as given below, but apart from a sign error in the third term of the second part (the

numerator 6n-25 instead of the correct 6n+25).

In most cases, the coefficients up to 2

12

are often used, the coefficients 2?2 and ETZ are just applied to some certain size parameters

of moderate value of ¢ and intermediate numbers n. To save space the coefficients derived

by author are not fully listed; 2?2 and 2?2 can be found from author’s paper.7

The

power-series expansion of the spheroidal eigenvalues Amn is as follows:

[1 _ 4m2-1 ]
(2n-1) (2n+3)

By By

2(2n-1) 2(2n+3)

(4m? 1)[ 4 ] B, (4m? 1)[ 4 ]
+
4(2n-1)2 L(2n-5) (2n-1) (2n+3) 4(2n+3)2 L(2n+7) (20n+3) (2n-1)

2.
80(4m 1) z

8 (4m2-1)

2 |
-2
4(2n-1)2 L(4m2-1) (2n-5)2(zn-1)3(2n+3)2 4(4m2-1) (2n-3)

32(4m2-1)[ L 8 (4m2-1) . B ]

4(2n+3)2 L(4m2-1) (2n+7)2(2n+3)3(2n-1)2 4(4m%-1) (2n+5)
mn
N 48, . 16 (4m2-1)2
4(2n0~1)2 L(4m?-1) (2n—5)(2n—1)2(2n+3) (20~-5) 3(2n~-1)S(2n+3)3
2(2n-9) (2n-5) (2n-3) (2n-1)2(2n+3)
mn mn
B2(‘““2‘1)[ Yo b, ) 16 (4a2-1)2
4(2n+3)2 L(4m2-1)  (2n0+7) (2n+3)2(2n-1)  (2n+7)3(2n+3)5(2n-1)3

8, (6n+25) ]
2(2n+11) (20+7) (2n+5) (2n+3)2(2n-1)
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(4)

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)




8 - 6 +

(4m2-1)  2(4m2-1)(2n-1)  (2n-5) (2n-1)2(2n+3) (2n-5)2(2n-1)*(2n+3)"

mn
212 =

BO(Amz-l){ [t (z‘}““)2 4 12(4m2-1)12n
4(2n-1)2

_ 32(4m2-1)3 _
(2n-5)*(20-1)7 (2n+3)* °© (4m2-1) (2n-3)

m
i (10n-13)2, . B_, . B_, ]}
16(2n-3) (2n-1)  32(2n-3)(20-1)  96(2n-5) (2n-3)

2_132
B_, [ (4m?-1)2d,
(2n-9)2(2n-5)2(2n-1)*(2n+3) 2

S - g +

(4m2-1)  2(4m2-1)(2n+3)  (20+7) (20+3)2(20-1)  (20+7)2(2n+3)"*(2n-1;

82(4m2-1){ R (22“)2 4900 12(4m2-1)z?“
4(2n+3)2

(4m2-1)2d2

+ +

(20+7)*(20+3) 7 (2n-1)%  (4m?-1) (20+5)

(10n+23) 87" 8 8
+ = + C + 6 ]} (4-7)
16 (2n+5) (2n+3) 32(2n+5) (2n+3) 96 (2n+7) (2n+5)

32(4m2-1)3 B4 [
(2n+11)2(2n+7)2(2n+3)* (2n-1)2

where B_, = 4/c“, 3_2 =g

8 n-m-

= 4 = 4
2 Bn—-md-Z/c ’ 84 Bn—m+14/c ? 8

and d (2n-1)2 + 2(2n-1) (2n-9) + 3(2n-9)2

(2n+3)2 + 2(2n+3) (2n+11) + 3(2n+11)2

(=%
[}

The power-series expansion of the oblate eigenvalues lmn is obtained from Eq. (4)

by simply replacing c? by -c2.

111. ASYMPTOTIC DEVELOPMENT OF THE PROLATE SPHEROIDAL EIGENVALUES

Let us set

g

= - nl
Smn (1 n ) Umn (5)

substitute this expression in Eq. (1), and make the transformation

n= (20) % 6)
there results
(1 -2y @D S, 2, .
2¢ dx? c dx 3 %m 0 N
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A — (m+1)

where constant K = B e (7-1)

First of all, developing Uas and K in the asymptotic forms of size parameter c:

-1 -2 -3 -k
un = Y + uc + u,c + usc + oo + uce (8-1)

-1 -2 -3 -k
K ao + alc + a,c + a3c 4+ e + akc (8-2)

and substituting them in Eq. (7), we can determine the terms uo, U u2, +++ of eigen-

functions Unn by a series of differential equations of the second order, namely —

2

" - X -
ug" + (ao m )uo 0 (9-1)
u," + (a, - x—2)u = —q u_ + l[xzu "+ 2(m+l)xu '] (9-2)
1 0 4 1 170 2 0 0
u," + (a, - x—z)u = ~-q u, - a.u. + l[xzu "+ 2(m+1)xu '] (9-3)
2 0 4 2 11 20 2 1 1
u"+ (o, ~ x—2-) = ~q -a - cee = u. + l[x2 Y+ 2(m+l) ! (9-k+1)
k 0~ % % 1%k-1 "%2%-2 kU0 T ZF Yk-1 X1
Let
1
% =p +3 (10)

where p is a positive integer or zero. The solution of Eq. (9-1) is

u, = Dp(x) (11)

where Dp(x) is parabolic cylinder function. For simplicity, we just denote it by Dp
In the first approximation of K, we have
1
K= ao =p + 3 (12)
It implies that
)‘mn = (2p + )¢ while ¢ + = (13)

According to the asymptotic property of the eigenvalues Amn’ we find that

)‘mn = [2(n -m) + l]c while ¢ + = (14)

The foregoing suggests that
p=n-m (15)

Next we define the operator8
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9D = x2D " 4 2(m+1)xD '
P P P

'Utilizing the recursion relation of the parabolic cylinder functionms:

! —-— . =
Dp * §Dp pr-l 9

we obtain
VD =C, D +C, D +C. D +C, D +C
P 1,p pt4 2,p pt+2 ,pp 4,p p-2 5,pr—4
1
e z
C = -m

c 2p2+2p+3
= - - m
3,p 4

(]
L}

n|p],

o . lel,
5,p 4

with |p|2 = p(p-1), and Ipl4 = p(p-1) (p~-2) (p-3).

Again, we define the operator

-y 1_%
Aur u + (p+2 3 )ur

where r = 1, 2, -+ k.
Remembering that

AD =0
P

we find that Dp term will not appear in the solution u_ of Egs. (9-2), (9-3), ---.

Furthermore we set

Y T Z A21Dp+22
240

then

Bu, = Z (=20)A5D 42p = Z_; ByePp+2e
840

where we have expressed the right-hand sides of Eqs. (9-2), (9-3), -+- 1in the forms

of Z BoePp+as.
2#0

Hence the coefficients AZZ are found to be
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(16)

(17)

(18)

(18~

(18-

(18-

(18-

(18-!

(19)

(20)

(21)



By

Ay, = - —

2%

28

Now we can solve Egqs. (9-2), (9-3), ---

From Eg. (9-2), we get

L -G 2% W
1 2 8 2
By assuming
q=2p+1
we have
2
. = _ 9°+5+8m
1 16

The term u

f =

Similarly we can obtain the other coefficients a of the eigenvalues Amn

of the eigenfunctions Un is found in the form

[lep+4 FED L HED Lyt fADp_4]

p—t

Nl—

—
[« ) ]

Nig soig
o
N

5l

N
o

F)

and the

terms i, of the eigenfunctions U by the successive substitutions. The expression of

terms u will be lengthy and lengthy while r increases; therefore I only list the

coefficients ar.

_ q(q?+11-32m2)
27

_ 5(q"+2692+21)-384m? (q2+1)
21l

_ (33q5+1594q3+5621q)-128m? (379 3+167q)+2048m"q
15
2

_ (63q5+4940q“+43327q2+22470)-128m2 (1150%+1310q2+735)+24576m" (q2+1)

217
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(23)

(24)

(25)

(26)

27

(27-1)

(27-2)

(27-3)

(27-4)

(28)

(29)

(30)

(31



o, = - [(527q7+61529q5+1043961q3+2241599q)-32m2(5739q5+127550q3+298951q)+

6
=21
2048m™ (355q3+1505q)-65536m°q]2 (32)

a, = - [(9387q8+1536556q6+43711178q“+230937084q2+93110115)-1536m2(2989q5+112020q“+

7
7 -26
648461q2+270690)+196608m“(175q“+1814q2+939)-12582912m6(q2+1)]2 (33)

Therefore the eigenvalues lmn are in the form:

2’ -r+l -7
Amn = qc - é(q2+5—8m2) + Zarc T+ 0Ce )‘ ; (34)
r:

Correspondingly the eigenfunctions umn are in the form:

- -7
u_ = uce t+0() (35)
mn & T
As E.L.Ince said: "If anyone had the courage to push the development on a stage or two

further he would greatly enhance the value of an important expansion. But any reader

who attempts to verify the results given above will realize that the work involved

would be tremendous".9

The expression of the eigenvalues Ahn of the prolate spheroidal differential
equation can be converted to that of the eigenvalue A of the Mathieu differential

equation, as follows:

1 -7 -1 - -
A =-2n2 + 2qh - §(q2+1) —(q3+3q)2 h - (5q“+34q2+9)2 12h - (33q5+410q3+405q)2—17h-—3

- (63q5+1260q"+2943q%+486)2 2 h™" - (527q7+15617q5+69001q3+41607q) 2 25h>
- (9387q%+388780q5+2845898¢+4021884q2+506979)2™ > 'h ™6 + 0(h~’) (36)
where
h=3 (36-1)
Nedpt7-3 e : (36-2)

herein the author has developed one more high order term h-s.

IV. ASYMPTOTIC DEVELOPMENT OF THE OBLATE SPHEROIDAL EIGENVALUES

The oblate spheroidal differential equation for angle functions Smn is expressed as

2 2
(1 - n2) d*Smn _ 2n dSmn + (0 +c2n2-—2 s =0 (37)
dnz dn mn 1 - n2 mn
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Referring to C. Flammer's book, and using three-term recursion relation of the

expansion coefficients, A:n, of the oblate spheroidal angle functions Smn with respect

to the Laguerre functions ngi (where v = % (n-m) if (n-m) is even, and v = % (n-m-1)

if (n-m) is odd, and s is the summation index), we have the following expression of the

eigenvalues Amn in the form of transcendental equation:

2 2 2 2
= Qo Q-l see 4 Ql QZ oo
on TR+ P — A +P,— R_+PF —RA_+P, —

where
Qs = (g+v) (s+v+m)
Ps = 2s(2v+m+l-2c+s)

The eigenvalues Anin are related to the eigenvalues Amn by

= —c2 - Lea241-p2
Amn cc + 2qc 2(q +1-m°) + Amn
where
q=n+1 while (n-m) even
q=n while (n-m) odd

Substituting in Eq. (38) the inverse power-series with respect to size parameter c:

-i
Amn lic
2-

and then expanding the continued fraction by doing same procedure as power-series

expansion discussed in Section II, we can get the coefficients Zi. The eigenvalues

Amn of the oblate spheroidal differential equation would be:

Amn = -c2 + 2qc - %(q2+1-m2) - q(q2+1-mz)2-3c-1 - [(5q“+10q2+1)-2m2(3q2+1)+m“]2_

- q[(33q‘*+114q"‘+37)-2mz(z3qz+25)+13m‘*]2""c‘3 - [(63q5+340q*+239q2+14) -
10m2 (10q*+23q2+3)+3m" (13q2+6)-2m6 ]2 1 0c™* - q[(527q5+4139q"+5221q2+1009)-

mz(939q‘*+3750<;2+1591)+5m"(93c12+127)-5311:16]2‘1:"c‘s - [(9387q8+101836q%+

(38)

(38-1)

(38-2)

(39)

(39-1)

(39-2)

(40)

6 =2
c

205898q"+86940q2+3747)-12m2 (1547q5+9575¢4+8657q2+701) +6m* (1855¢*+5078q2+939) -

-17

12u5 (167q2+85)+51m8]2"7c™® + o(c™7)
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V, DISCUSSION

In order to obtain the accurate spheroidal eigenvalues, we should substitute
the expression of spheroidal eigenvalues with hgigher order terms for Bouwkamp's or
asymptotic expansion, as the initial values, into Eq. (2). Since the terms in the
multipole expansion have been developed in such a high order that the initial
eigenvalues will be immediatel} bound Vithin the convergence circles. Therefore, the
final eigenvalues lmn can be easily reached by iterated procedures at very fast
convergence rates.

The spheroidal eigenvalues an, the spheroidal angular functions Smn’ and the
spheroidal radial functions Rmn’ together with the boundary conditions matching,

make the computational electromagnetic scattering problems solvable.
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Abstract

Experiences of modelling a log-periodic antenna (tapered transmission line
type) using NEC are reported. The antenna is required as a component of a
near-field EMC test range, and hence computation of the near fields was the
primary objective although some discussion of impedance is presented.

Measurements of the near field of the real antenna were undertaken on a
planar measurement range having the ability to scan planes at varying
distances from the antenna. The measurements show good agreement with the
predictions of NEC.

Introduction

As part of a programme to investigate design parameters for low-cost
compact ranges for EMC testing [1,2], the use of an array of seven
broadband elements in a hexagonal array is being investigated. The
elements currently being evaluated are log-periodic dipole antennas of a
standard type intended to operate over the range from 850 to 1800 MHz
(Jaybeam Limited, type 7085). These antennas are of a standard design
(Fig. 1), constructed from metal rods and having a tapered (V-shape)
transmission line. For ease of construction, all of the radiating elements
are made of rods of the same cross-sectional diameter, although this
deviates from the ideal for log-periodic antennas.

In order to facilitate rapid prediction of the behaviour of arrays of these
antennas, a single example was modelled using NEC [3], concentrating on the
near-field distributions, and validated by making direct measurements of
the near fields of a real antenna using a three-dimensional Cartesian
probe—scanning system in an anechoic chamber [4].

The NEC Model

The radiating elements of the antenna shown in Fig. 1 are cylindrical rods,
all having the same constant cross-sectional diameter (9 mm), and the
transmission line is a pair of tubes with constant square cross-section (12
mm wide). To model this antenna with NEC, the radiating elements can be
represented by wires. The transmission line elements may also be
represented by wires, in which case they are modelled by circular wires
with a cross-sectional perimeter equal to that of the square (i.e. 7.64 mm
radius).

Since the width of the tubes is a relatively large fraction of a wavelength
at the upper limit of the operating frequency range, and since the tubes
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come relatively close together at the feed point, some consideration was
given to a more detailed model of the square tubes.

A wire grid model could be wused, constructed from eight parallel
longitudinal wires connected by a sequence of transverse squares of wire:
this approach was rejected due to the very large number of segments that
would be required. A representation using surface patches was tried but
the results were very unsatisfactory (severe errors in the polarisation of
the computed near field) and the approach was abandoned.

The upper and lower halves of the antenna are not mirror images of each
other and hence reflection cannot be used to simplify data inmput. It is,
however, possible to model one half of the antenna and then rotate it
through 180" about the main lobe axis to generate the lower half.

With the wire model of the transmission line it is not possible to satisfy
the criterion for the ratio of segment length (A) to wire radius (a) unless
the extended thin-wire kernel is used, due to the intricacy of the
structure. Even so, it is impossible to avoid A/a ratios of somewhat less
than the desirable minimum of two in a few segments at the upper limit of
the operating frequency range.

The vertical rod joining the ends of the transmission line tubes at the
rear of the antenna was modelled as a cylindrical wire, and a segment
containing a voltage generator was connected to the front ends of the two
transmission line tubes. No attempt was made to model the support
structure beyond the vertical rod.

Physical measurements with a planar near—field probe scanner

Near field measurements were carried out in an anechoic chamber containing
a probe positioner capable of measuring the field at any point in a cubical
volume. In the present case, measurements were performed on two planes
oriented normally to the nominal antenna boresight direction at distances
of 400 and 800 mm from the feed point of the antenna. The electric field
probe used was an electrically-short dipole (46 mm overall length),
connected to a coaxial cable via a broadband balun. In practice, it was
found that the performance of the balun was not ideal, leading to a certain
amount of residual ‘'boresight error' in the probe at most frequencies.
This effect was cancelled out by taking the average of two sets of
measurements, the probe being rotated through 180° between each set. The
fields were measured over symmetrical one-metre scan widths along the two
principal transverse axes only (x and y co-ordinates). The sample spacing
used was 100 mm at 850 and 1000 MHz and 50 mm at 1800 MHz. According to
the Nyquist sampling criterion, these spacings will resolve evanescent
modes with vector wave numbers having imaginary z-components of 25.9 m1,
23.4 m~l and 50.2 m~1 respectively. At the minimum scanning distance of
400 mm, such modes will be attenuated by 90, 81 and 174 dB respectively,
compared with their values on the nominal aperture plane passing through
the feed point of the antenna. It is thus concluded that the sample
spacings used are adequate to resolve the detailed structure of the near
field distribution at the distances chosen.
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Computation using NEC

Using the input data set generated as described above, NEC was run on an
Amdahl 5890-300 computer. The total number of segments used at the three
frequencies of interest (for the single wire representation of the
transmission line) is shown in Table 1, together with the corresponding CPU
times.

Comparison of results

Figures 2 to 4 show the computed and measured results. Only the magnitude
of the dominant x-component of the electric field is shown, as this is the
most useful for comparison purposes, being directly proportional to the
probe output voltage. All of the results shown are normalised to give 0 dB
amplitude and 0° phase in the centre of the distribution at Z = 400 mm.

Comparison of the predicted and measured amplitude distributions shows
reasonably good agreement, the maximum discrepancy being around 1 dB. The
agreement observed between the phase measurements and the NEC predictions
is excellent, even in the regions of rapid phase change at the higher
frequencies: the maximum phase discrepancy being about 10°.

Table 2 gives a comparison of the VSWR, as calculated from the input
impedance predicted by NEC, and the corresponding typical values given by
the antenna manufacturer. These figures show remarkably good agreement at
lower frequencies, but this deteriorates at the upper end of the range.

Conclusions

The results of computation of the near fields of a log-periodic dipole
antenna, using NEC, have been presented and compared with measurements on a
real antenna obtained using a planar near-field probe positioner.

Although some doubts were entertained concerning the validity of use of a
cylindrical wire model for the square tubes forming the transmission line,
the agreement between the measured results and the NEC predictions using
the wire representation is very good, showing a maximum error of about 1dB
in the amplitude and 10° in the phase. Attempts to use a more detailed
model for the transmission line were unsuccessful.

The antenna VSWR deduced from the NEC predictions of the impedance shows
good agreement with the manufacturer's typical data for the real antenna
although the agreement deteriorates at the upper end of the nominal
operating band of the antenna.

Work on the modelling and testing of arrays of these antennas is
proceeding.
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Appendix
Listing of NEC input deck for LPDA at 1000MHz

(NEC modified for free-format input)

CM CALCULATE THE NEAR FIELDS OF A LPDA, WITH THE TRANSMISSION LINE
CM REPRESENTED BY A SERIES OF CIRCULAR RODS, THE ENDS

CM OF THE RODS COINCIDING WITH THE RADIATING ELEMENTS.

CM FREQUENCY = 1000 MHZ

CM RADIUS OF CIRCULAR RODS = 7.64 MM

CE

GW 1011 0 0.012 ~-0.040 0 0.01545 -0.06728 0.00764
GW 1021 0 0.01545 -0.06728 O 0.01777 -0.08564 0.00764
GWw 1031 0 0.01777 -0.08564 O 0.02040 -0.10647 0.00764
GW 104 1 0 0.02040 -0.10647 O 0.02341 -0.13028 0.00764
GW 1051 0 0.02341 -0.13028 O 0.02654 -0.15509 0.00764
GW 106 1 0 0.02654 -0.15509 O 0.03030 -0.18485 0.00764
GW 107 2 0 0.03030 -0.18485 0 0.03456 -0.21858 0.00764
GW 108 2 0O 0.03456 -0.21858 O 0.03888 -0.25281 0.00764
GW 109 2 0 0.03888 -0.25281 O 0.04383 -0.29200 0.00764
GW 110 2 0 0.04383 -0.29200 O 0.04935 -0.33565 0.00764
GW 111 2 0 0.04935 -0.33565 O 0.05537 -0.38327 0.00764
GW 112 2 0 0.05537 -0.38327 O 0.06238 -0.43883 0.00764
GW 113 4 0 0.06238 -0.43883 O 0.07542 -0.54201 0.00764
GW 1 1 0 0.01545 -0.06728 ~0.023 0.01545 -0.06728 0.0045
GW2 1 0 0.01777 -0.08564 0.026 0.01777 -0.08564 0.0045
GW3 2 0 0.02040 -0.10647 -0.031 0.02040 -0.10647 0.0045
GW4 2 0 0.02341 -0.13028 0.034 0.02341 -0.13028 0.0045
GW5 2 0 0.02654 -0.15509 -0.038 0.02654 -0.15509 0.0045
GWw6 2 0 0.03030 -0.18485 0.043 0.03030 =-0.18485 0.0045
GW7 2 0 0.03456 -0.21858 —0.048 0.03456 -0.21858 0.0045
GWw8 3 0 0.03888 -0.25281 0.054 0.03888 -0.25281 0.0045
GW9 3 0 0.04383 -0.29200 -0.061 0.04383 -0.29200 0.0045
GW 10 3 O 0.04935 -0.33565 0.068 0.04935 -0.33565 0.0045
GW 11 3 0 0.05537 -0.38327 -0.076 0.05537 =-0.38327 0.0045
GW 12 4 0 0.06238 -0.43883 0.084 0.06238 -0.43883 0.0045
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Table 1: Total CPU Times on Amdahl 5890 - 300

Frequency (MHz) No. of Segments in model CPU time (s)
850 102 5.27
1000 106 5.42
1800 153 15.27

Table 2: Comparison of VSWRs derived from NEC with Manufacturer's

Typical Data

VSWR

Frequency (MHz) NEC Mfr
850 3.8 3.4
1000 3.0 3.0
1100 345 2.7
1400 333 3.3
1800 2.0 3.5
2000 1.9 3.3

S 0-55m

Fig. 1: The log-periodic dipole antenna
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THE APPLICATION OF THE CONJUGATE
GRADIENT METHOD TO THE SOLUTION OF
OPERATOR EQUATIONS - AN UNCONVENTIONAL PERSPECTIVE

Tapan K. Sarkar
Ercument Arvas
Department of Electrical Engineering
Syracuse University
Syracuse, New York 13244-1240

ABSTRACT: This narrative presents an alternate philosophy for the accurate
solution of operator equations, you might say "both singular and nonsingular"
in general. In this approach, we try to solve the exact operator equation in
an approximate way, quite differently from the matrix methods which try to
solve the approximate operator equation in an exact fashion. The advantage of
this new philosophy is that convergence is assured and a priori error
estimates are available. The conjugate gradient methods are numerical methods
which provide a means to reach this new goal, as opposed to an efficient means
of just solving matrix equations, which some researchers have assumed them to
be. We thereby take the position that there is a heaven-and-hell difference
between the application of the conjugate gradient method to solve an operator
equation and its application to the solution of matrix equations.

1. THE BASIC PHILOSOPHY: The objective is to solve the operator equation
AX = Y, where A is the known integro-differential operator and X is the
unknown to be solved for the known excitation Y. The actual problem setting
is in an infinite dimensional space, which in simple terms means that we have
an infinite number of unknowns to be solved for. Historically, the matrix
methods, starting with Method of Moments, have first projected the original
problem posed in-an infinite dimensional space to a finite dimensional space
(described by the moment matrix) and then have tried to solve the approximate
finite dimensional problem exactly using Gaussian elimination and, in recent
times, with the iterative methods, particularly the conjugate gradient method.
Unfortunately, this basic philosophy lacks mathematical rigor. The area in
which this manifests itself is a complete lack of theoretical convergence
analysis of the sequence of solutions for an arbitrary operator equation.
Whatever convergence analysis exists for matrix methods is generated from
numerical experimentation of a particular problem. Hence, there is no
guarantee that as the number of unknowns is increased, there is a monotonic
convergence of the sequence of approximate solutions [1-2].

What we have tried to do over the years is to usher in a new concept
and also point out the deficiencies of the conventional matrix methods. The
approach taken by us and Van den Berg [3] are philosophically the same and
similar to the work of Hayes [4]. The basic philosophy is simple: Let us not
discretize the problem right from the beginning or assume a set of known
expansion functions by projecting the operator to a finite dimensional space.
Let us see if we can develop a theoretical solution symbolically in an exact
fashion. It is at this stage, that our philosophies differ radically from the
conventional matrix methods viewpoint. First let us see if we can find a
solution to the exact operator equation - let it be in a symbolic fashion. By
developing the solution in this way, we have an absolute guarantee to begin
with, namely that as the degree of approximation is increased, we indeed have
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a monotonic convergence of the solution and that in the limit our solution
converges to the exact solution. So in our method, we start with the
"blessings" of convergence and, unlike matrix methods, we do not have to
"tweak" the expansion functions sometimes in midstream to generate meaningful
results. Now we observe that the computer cannot generate the exact solution
or, for that matter, follow the exact recipe to reach the solution as it
cannot handle an infinite number of unknowns. Therefore, we try to
approximate the exact solution.

In summary, the matrix methods first approximate the operator equation
and then seek to solve it exactly, whereas in our approach we try to solve
exactly the operator equation by utilizing an iterative method, say one of the
conjugate gradient methods [5-7] (there are various versions of the conjugate
gradient method) and then approximate the exact recipe numerically, yielding
an approximate solution. The reward of following the latter procedure is that
there is an unconditional guarantee of monotonic convergence to the true
solution, as the number of unknowns is increased without "tweaking" any
expansion or weighting functions. No such statements can be made for matrix
methods, indicating that there are some fundamental differences, in reality,
between these two procedures - differences which are not tautological.

In the next section we show how to utilize this new operator form to
generate solutions.

2. THE ACT:

Consider the following integral equation:

1
J f(x')cos x(x-x') dx’' = sin nx ; 0< x <1 (1).
0

The objective is to solve for f(x). Before we start number crunching let us
take a few moments to "meditate" over the problem. The first question that is
raised is: does a solution to this problem exist? The existence of the
solution of an operator equation is given by the Fredholm Alternative Theorem,
which states that a solution to AX = Y exists, iff Y is orthogonal to every
non-trivial solution of the homogeneous adjoint equation A"u = O, where A" is
the adjoint operator. Hence for a solution to exist all u must be orthogonal
to Y. If this condition is violated then a solution to the problem does not
exist. In this example, we have a self-adjoint operator, since

1 1
<Au;v> = dx v(x) dx' u(x')cos x(x-x') = <u;A*v>; so A-A*. (2)
0 0
By expanding the kernel
cos n(xX-xX') = cos nx cos nx’ + sin xxX sin nx’
it is seen that there is an infinite set of nontrivial solutions to the
adjoint homogeneous equation. Hence, unless Y is orthogonal to all such

solutions u, we are just wasting our time trying to solve this problem. It is
seen that sin xx is orthogonal to all such solutions (sin max and cos max for
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m > 1 and m odd) of the homogeneous equation and hence the solution to the
problem exists. However, the solution is not unique, as a solution to the
homogeneous equation can be added to any solution creating a different
solution.

But, what has "existence" got to do with electromagnetics? All
electromagnetics problems do not have solutions! Consider the problem of
electromagnetic scattering from a closed conducting structure at a frequency
corresponding to the internal resonant frequency of the same structure. This
problem has been recently addressed quite exhaustively!!!. Now the simple
truth is that the above problem, when represented by an electric field
integral equation, has for the homogeneous equation a nontrivial solution, and
unless the excitation is orthogonal to every solution of the homogeneous
equation, a solution to the problem does not exist according to the Fredholm
alternative. Therefore, instead of trying to solve a problem which is not
solvable mathematically, we think we ought to pose the problem in a different
way. Yet, methods are still being researched as how to solve this unsolveable
problem! An interested reader should look at the development of the modified
Green'’s function as discussed on pp.215-218 of Stakgold[8].

: Next, questions about uniqueness, ill-conditioning and the like are
addressed. The operator in (1) has a nontrivial solution to the homogeneous
equation and it is a positive semidefinite operator. Hence, any matrix
methods utilized to solve this equation will fail as the matrix is singular.
The strength of the conjugate gradient method lies in the fact that it can
solve singular operator equations and the user does not have to worry about
the nature of the equation. But, now comes the question: what is the meaning
of the solution if the operator is singular? It turns out that the conjugate
gradient method will yield the minimum norm solution, if the iteration was
started with a zero initial guess. The minimum norm solution implies that of
all the possible solutions of this equation, the conjugate gradient method
will yield a solution which has the least energy. The solution procedure for
a positive semidefinite operator will start with x, = 0 and residual
r, =Y - X = sin =x. Since the operator is sel%-adjoinc, P, = £, = sin nx.

We update x| = X, + a,P, » where a, = “ro“2/<Apo;po> =2
and X, = 2 sin ax and r, = O and hence 2 sin nx is the minimum norm
solution. It can be shown that another solution q = (-« /4)x(x-1)
also satisfies (1). However,

1 1
Ix1 )% - lellz dx > th2 dx

and the second solution is not minimum norm. So if we have an ill-conditioned
problem, in this case perfectly singular, we can find the minimum norm
solution through the use of iterative methods. Direct methods do not work
well for ill-conditioned, singular problems. Observe that we have utilized
the conjugate gradient method to solve the operator equation directly as first
suggested by Hayes [4].

In electromagnetics problems, for example, evaluation of Ap, and

"x1u2 cannot be done analytically. Hence, we have to evaluate these
quantities numerically. It is at this point that we introduce numerical
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approximations. An additional advantage of handling it in this way is that
one can have a grasp on the numerical value of the discretization error. The
discretization error in the evaluation of Ap, and [x;]| can be minimized by
simply taking more samples of the functions of interests. For such
situations, the residual -Y will never go to zero as n + » ., Whatever is
left will be the discretization error.

3. EPILOGUE: For illustrative purposes, it is educational to look into the
philosophical differences of first discretizing the operator equation and then
finding an exact solution to the problem, as opposed to first finding s
symbolically exact solution and then finding an approximation to that. In the
conventional matrix methods, let us assume that the elements of the matrix
have been integrated with sufficient degree of accuracy (even if one chooses a
Galerkin procedure) and the final error is always zero as the matrix equation
has been solved to the machine precision using either Gaussian elimination or
conjugate gradient or by any other method.

Now in the conjugate gradient solution of the operator equation, there
are two errors. First the error in the generation of the sequence of the
approximation, i.e. “Xexact - Xn“ after m iterations and, secondly, the
discretization error made in the evaluation of AXn . If we perform a large
number of iterations, presumably [X.,... - X, [+0, whereas the operator
(AX, -Y) would not be zero due to discretization error. So by applying the
conjugate gradient method directly to the solution of the operator equation,
it is seen that the final error may never become zero, unlike that of matrix
methods. The global residual error provides an estimate of the discretization
error (i.e. we have obtained X xact Subject to the stated discretization
error). If this error is large, finer discretization may be preferred. Also
no "tweaking" of the expansion functions is involved when one applies the
conjugate gradient method directly to the solution of the operator equation.
This is the sme philosophy in Van den Berg’'s approach.

Another point to make: What is the difference between applying the
iterative method to the solution of the matrix equation, where each elemeng of
the matrix is evaluated at each iteration and the storage decreases from N
to 6N, as opposed to applying the conjugate gradient method directly to the
solution of the operator equation? It is interesting to note that the
application of the conjugate gradient method directly to the solution of an
operator equation may sometimes even be computationally more efficient than
computing the matrix elements once and using them at each iteration,
particularly, when the scatterer geometry fits into an FFT (Fast Fourier
Transform) grid [6-7]. However, for an arbitrarily shaped structure, it may
not be efficient in some instances to use FFT to perform the evaluation of the
convolution. In that case, application of an iterative method directly to the
solution of an operator-application of an iterative method directly to the
solution of an operator equation may be rather time consuming. However, in
spite of this disadvantage, the reward of applying the conjugate gradient
method directly to the solution of the operator equation lies in the fact that
not only does one have a handle on the discretization error, but also he can
solve a problem to a "global" prespecified degree of accuracy.

CONCLUSION: An alternate philosophy is presented for solving operator

equations. In this new philosophy the exact system is solved in an
approximate numerical fashion as opposed to solving an approximate matrix
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equation in an exact way. The advantage of this new philosophy is that
convergence to the exact solution is guaranteed and a priori error estimates
are available. The conjugate gradient method therefore just turns out to be a
method which accomplishes our desired objective of formulating and evaluating
a symbolic exact solution of the problem. The use of the conjugate gradient
method is distinctly different from its use in solving moment-method matrix
equations, sometimes in an efficient way. The basic difference between these
two philosophies is the stage at which numerical discretization is made. Our
claim is that the new philosophy just presented not only guarantees absolute
convergence but also an estimate of the numerical discretization error
incurred in the actual solution of the problem.
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