
A Guide to the Parallelization of a FEM Solver using
the MPI Library

C. T. Wolfe

Lexmark International, Inc.
Digital Office Products
Lexington, KY 40550

S. D. Gedney

University of Kentucky
Department of Electrical Engineering

Lexington, KY 40506-0046

Abstract. The MPI (Message Passing Interface) library is a public domain communication library used in
parallel computing systems. This paper shows all necessary functions needed to implement a message-
passing algorithm with the MPI library. Through an example based on a frequency-domain finite-element
solution of the vector wave equation, the basic functionality and application of the MPI library from
design to implementation is presented.

I. Introduction

Many Computational Electromagnetic (CEM) schemes involve the formulation and solution of a large
linear system of equations. One way to efficiently handle large linear systems is to use a multi-processor
computer. Thus, by distributing the data and computational effort, an effective speedup proportional to
the number of processors should be realized. The difficulty of using a multi-processor system is that it can
require an additional layer of programming beyond that required by a traditional sequential machine. This
is generally minimal when using a shared memory paradigm on a coarse-grained parallel system. On such
a system, the code is typically parallelized through the use of compiler switches or directives.
Unfortunately, respectable speedups are realized only with a few processors. Furthermore, compilers are
generally limited to parallelizing loops, which can have limited effectiveness. Larger parallel systems,
such as PC clusters, typically use a distributed memory paradigm. This provides the user with explicit
control over the distribution of the data and computation among the processors. However, it also requires
the programmer to design an effective parallel algorithm. Furthermore, he/she must have the tools to
communicate between processors. The latter task is usually accomplished using a predefined message-
passing library. A popular public domain library that is available is the Message Passing Interface (MPI)
[1]. MPI provides a convenient inter-processor communication abstraction that relieves the programmer
from having to worry about the underlying hardware.

This paper demonstrates the use of MPI for the iterative solution of the large sparse matrices arising
from a Finite Element Method (FEM) solution of the vector wave equation [2][3][4]. The parallel
algorithm is based on a Single Program Multiple Data (SPMD) paradigm that employs a domain
decomposition of the mesh. The use of the MPI library for communication directives is detailed.

The ultimate goal of this paper is to familiarize the reader with the use of the MPI library. While the
example chosen is the FEM solution, it is hoped that the introduction to the MPI library is complete
enough to allow others to easily port more sophisticated codes to distributed memory multiprocessor
systems.

18

II. The Finite Element Implementation

A vector electric field E

r
 produced by a source with time dependence j te ω is distributed in a volume Ω

bound by a surface ∂Ω . The electric field satisfies the vector wave equation
 1 2 0E Eµ ω ε−∇ × ∇× − =

r r
 (1)

within Ω and the appropriate boundary conditions on ∂Ω . The inner product of (1) with a test vector
field T

r
 is performed. Utilizing Green’s first identity results in the weak form equation [2]:

 1 2 1() () 0T E E T d T E n dSµ ω ε µ− −

Ω ∂Ω

   ∇ × ⋅ ∇ × − ⋅ Ω − × ∇ × ⋅ =   ∫∫∫ ∫∫
r r r r r rÒ (2)

A finite element solution for E
r

 is performed by discretizing the volume into element domains, and
expanding the vector fields E

r
 and T

r
 with vector edge elements [2]. The first variation of (2) is then

evaluated at the stationary point, leading to a sparse linear system of equations of the form [2][3][4]:
 K =e f (3)
where e is the vector of unknown coefficients weighting the trial functions in the region Ω , K is the
stiffness matrix, and f is the forcing vector.

The stiffness matrix K is symmetric and highly sparse. The set of equations can be solved directly
with banded storage [5] using LU decomposition or iteratively with compressed storage [6][7]. An
advantage to solving the system of equations iteratively is that these methods use much less memory than
the direct methods since a dense matrix factorization is not stored. Here the BiConjugate Gradient
method (BCG) is used. The solution of (3) using the BCG algorithm in psuedo-code is provided in Fig. 1.

k = 0
0 0K= −r f e

0 0,denomδ = < >r r
*

0 0 0,β =< >r r
while (δ ε>)
 k = k + 1
 if k == 1
 1 0=p r

 else
 *

1 1 1,k k kβ − − −=< >r r
 1 2/k k kγ β β− −=
 1 1k k k kγ− −= +p r p
 endif
 k kK=v p

 *
1 / ,k k k kα β −= < >p v

 1k k k kα−= +e e p
 1k k k kα−= −r r v

 ,num k kδ = < >r r

 /num denomδ δ δ=
end while

 Fig. 1 The BCG algorithm for a symmetric
complex linear system [2]

In Fig. 1, the lower case letters denote a scalar
quantity, the value ε is chosen for the desired
accuracy of the solution, and the vector inner
product ,< >x y is expressed as:

 *, H
i i

i

x y= ⋅ = ∑x y x y (4)

Analyzing some subtleties in this algorithm,
temporary storage is needed for the vectors kr ,

kp , and kv as well as scalar quantities δ , numδ ,

denomδ , α , 1kβ − , 2kβ − , and γ . When converting
this serial algorithm to a parallel one, it is
understood that the vectors and matrix are stored
in a distributed manner. Thus the inner products
and the matrix-vector product must be
implemented carefully. This is addressed in the
next section.

19

III. Converting to a Parallel Algorithm

The objective of computing in a parallel fashion is to reduce the amount of execution time by

distributing the computational effort. Thus, both the data and the floating-point operations must be
partitioned. For partial differential equation (PDE) based solutions methods, this is typically done by a
spatial decomposition of the mesh. Some examples of spatial decomposition methods include the
recursive inertia partitioning (RIP) algorithm [8], spectral bisection methods [9][10], and the METIS
algorithm [11][12]. The most effective algorithm is dependent upon the problem. For general FEM
solutions, we have found the most robust technique to be the METIS algorithm. Software employing the
METIS algorithm for mesh partitioning is currently free, and can be found at the web site http://www-
users.cs.umn.edu/~karypis/metis/metis/.

With the mesh partitioned among the processors, each processor will store the portion of the matrix K
and the entries of the unknown coefficient vector e associated with the edges of the mesh assigned to the
processor. The computation of the stiffness matrix K is done completely in parallel and requires no
interaction between processors. For the BCG algorithm, the residual and direction vectors r and p and
the temporary vector v are distributed in an identical manner as e . The scalar quantities δ , α , and γ
are stored globally (that is redundantly stored on all processors).

Observing the BCG algorithm in Fig. 1, there are two operations that require inter-processor
communication: a) a matrix-vector product resulting in a distributed vector v, and b) inner products that
result in a global scalar variable. Assume that each processor contains a block of K, designated as iK ,
and a portion of the vector, designated as ie . Note that entries of ie shared by multiple processors are
stored redundantly. The matrix vector product is then performed by the superposition:

1

P

i i
i

K K
=

= = ∑v e e (5)

Each domain computes its local matrix-vector product i iK e . For unknowns that are shared, each
processor communicates their partial products with all other processors sharing this unknown. Each
processor then sums the partial products. At this point each processor contains a copy of v for each
variable that is held common with adjacent domains. It is noted that the communication used for this
operation is local, requiring communication only with adjacent processors with which it shares data.

The inner products of two distributed vectors are also computed via superposition. However, one must
be careful since shared values of the vectors are store redundantly. This can be compensated for in one of
two ways. The first is if the term i ix y is shared by m processors, then these terms can be scaled by 1/m
on all m processors. An alternate approach would be to assign only one of the m processors to be
responsible for the term i ix y . In either case, each processor performs the local inner product, which
results in a scalar value. This is then summed globally by aggregating all the results to a single processor
(the root processor). The final result is then broadcast back to all processors, requiring a global
communication.

IV. Introduction to the MPI Library

The MPI library enables data to be easily shared between processors within a given system. It consists

of several abstractions that can be used to perform several types of functions. However, we will
concentrate only on a subset of basic functions that will enable the reader to start using the MPI library
quickly. The first step is to include the MPI library header file. This may be system dependent, but in
general it takes the form:

include “mpif.h”

The next two routines initialize and terminate the MPI environment:

20

MPI_INIT(IERROR)
 INTEGER IERROR
MPI_FINALIZE(IERROR)
 INTEGER IERROR

No MPI routines should be executed before MPI_INIT or after MPI_FINALIZE.
Once the environment has been initialized, each processor needs to determine its node number. This

can be done with the MPI_COMM_RANK routine that returns the node number within the RANK variable.

MPI_COMM_RANK(COMM,RANK,IERROR)
 INTEGER COMM, RANK,IERROR

Within this routine, the variable COMM represents a group of processes and their communication

context. One of the default communicators is MPI_COMM_WORLD that consists of all processes when
an application begins. Once the environment is initialized and node numbers have been determined, it is
possible to communicate with other nodes.

There are two types of “information passing” routines: blocking and non-blocking. A blocking (or
synchronous) send function returns when the employed transmit buffers are ready for reuse. A non-
blocking (or asynchronous) function returns immediately. When the non-blocking function is used, the
associated transmit request should be tested at a later time to determine if the information transfer has
completed.

Similarly there are blocking and non-blocking “information acquisition” calls. When a blocking
receive call returns, the associated receive buffer is guaranteed to contain an informational message. For
the non-blocking receive call, the function will return immediately, but the associated request must be
tested at a later time to determine if the expected informational message has arrived.

The declarations for the asynchronous send and the synchronous receive functions are shown:

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR

Although these functions use a buffer consisting of COUNT elements of type DATATYPE. It is often

simpler to use a datatype that is defined by a single byte and then explicitly count the total number of
bytes in the buffer. This method is more compatible with other message passing libraries.

The MPI library also contains functions for determining global sums that are needed for the inner
product terms in our BCG solution. Since each node contains different parts of the total sum, a method
for summing these values needs to be used. This is done in a two step process. We first sum the terms
using the MPI_REDUCE call:

MPI_REDUCE(SENDBUF, RECVBUF, DATATYPE, OP, ROOT, COMM, IERROR)
 <type> SENDBUF(*), RECVBUF(*)
 INTEGER DATATYPE, OP, ROOT, COMM, IERROR

For our needs, the OP (or operation) to be performed is a sum (MPI_SUM). This function places the

sum in the output buffer of the process of with a rank of root. This sum now needs to be distributed to all

21

other process nodes. This can be accomplished with a broadcast command from the root node to all other
nodes.

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
 <type> BUFFER(*)
 INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

The final function prototype that we will discuss is synchronization. Using the SPMD (Single

Program Multiple Data) model of computation, issued nodes will be executing the same code, but with
different data sets. However this does not guarantee that all process nodes are executing the same exact
line of code at the same time. It may therefore be necessary to insure that all nodes are synchronized and
waiting at the same location in the code. This is accomplished by using the MPI_BARRIER function.

MPI_BARRIER(COMM,IERROR)
 INTEGER COMM, IERROR

This function blocks until all processes have called it. Only when all processes have called this function,
will execution continue.

V. Implementation with the MPI Library

The previous section detailed all the functions necessary to implement a parallel version of the BCG

solution. We will now show how the MPI library functions are used.
The first task is to initialize the environment and get the local node number (expressed in FORTRAN):

 call MPI_INIT(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD,mynode,ierr)

When computing inner products for the BCG algorithm, first the local inner products are computed.

While doing this the appropriate scaling must be used for those edges shared across domains. Then, to
compute the global sum of the inner product at node 0, one would use the call statement:

 call MPI_REDUCE(InnerProduct,InnerProduct,1,MPI_DOUBLE_PRECISION,

 MPI_SUM,0,MPI_COMM_WORLD,ierr)

Then, node 0 will broadcast the result to all processors:

if (mynode .eq. 0) then call MPI_Bcast(InnerProduct,1,MPI_DOUBLE_PRECISION,
 0,MPI_COMM_WORLD,ierr)
For the matrix-vector product, each processor first computes the product of the local sparse block of K

with the local vector. For shared edges, the results must be superimposed with those computed by local
processors sharing the same edge. A list of processors with which mynode shares edges is stored in array
AddressofInterface. Which edges are shared with each processor must also be determined a priori. A
call to a user-defined subroutine then fills a buffer (which is a vector) with the data to be sent to processor
j. This vector is then communicated with the MPI library as:

do j = 1,NumberOfInterfaces
 call fill_buffer(BUF,j)
 call MPI_ISSEND(BUF,NumberOfBytes(j),MPI_CHARACTER,
 AddressofInterface(j),Tag,MPI_COMM_WORLD,ireq,ierr)

22

 call MPI_REQUEST_FREE(ireq,ierr)
enddo

Once the data is transmitted to all neighboring processors, the processor must receive its data. Using the
MPI call below, the data from the j-th processor is received into the buffer BUFR, and a user-defined
subroutine sup_res then superimposes the result of the partial matrix-vector product:

do j = 1,NumberOfInterfaces
 call MPI_RECV(BUFR,NumberOfBytes, MPI_ANY_SOURCE,
 Tag,MPI_COMM_WORLD,status,ierr)
 call sup_res(BUFR,j)
enddo

Finally, after the algorithm has completed we need to terminate the environment with

call MPI_FINALIZE(ierr)

VI. Microstrip Example

To demonstrate the principles discussed in the previous sections, an example problem of a printed
microstrip circuit is studied. To this end, a simple microstrip circuit printed on a 2.1 mm thick substrate
with 3.2rε = excited by a 4.0 GHz source was modeled using 86,943 first-order tetrahedral edge
elements or Whitney elements [2][4]. This gave an average edge length of less than a 20th of a
wavelength in the dielectric. A PML (Perfectly Matched Layer) [13] based on the anisotropic PML
formulation [14] was chosen to terminate the computational domain. The tetrahedral mesh was
decomposed using METIS for parallel simulations.

To study the efficiency of the parallel BCG algorithm, the FEM solution previously outlined was
implemented on a 32-processor subcomplex of an HP SPP2200 [15] computing system. The problem was
solved using processor configurations in powers of two from one to thirty-two.

Table I shows the element time (time to formulate equation (3)), solution time (time to solve equation
(3) using the BCG method) and the total time (element time plus solution time) for each processor
configuration. The total execution time continually decreases as the number of processors increases.

A metric used to evaluate parallel algorithms is speedup. Speedup is defined to be the execution time
need for one processor divided by the execution time need for n processors. Mathematically this concept
is defined as:

1

nprocessors

Execution Time for processor
Speedup

Execution Time for n processors
= (6)

TABLE I
Comparison of Execution Times on an HP 2200 using the MPI library.

Domains Unknowns Element Time Solution Time Total Time

1 86943 424 6405 6829
2 86943 220 3239 3460
4 86943 123 1590 1714
8 86943 69 771 841
16 86943 36 515 531
32 86943 19 345 364

23

0

5

10

15

20

25

30

35

0 10 20 30 40

Domains

S
p

ee
d

u
p

BCG
Ideal

Fig 2. Speedup for the BCG algorithm versus the number of processors as compared to an Ideal (or

linear) speedup on an HP SPP2200 using the MPI library.

Ideal speedup is linear with the number of processors n. This is rarely attainable since this would
insinuate that there are no inefficiencies in the algorithm. Fig. 2 shows the speedup for the parallel BCG
solution. For a small number of processors, close to linear speedup is realized. As more processors are
added inefficiencies start to accumulate. The inefficiencies are mainly due to an imbalance of
computation and communication time across processors. An alternative metric to speedup is efficiency,
which is defined as the speedup for n processors divided by n .

 nprocessors

Speedup for n processors
Efficiency

n
= (7)

The efficiency of the parallel BCG solution is illustrated in Fig. 3. Again, for a small number of
processors, the algorithm maintains nearly perfect efficiency of 100 %. As the number of processors
increases, the efficiency begins to decrease. With few processing elements the geometry of the domains
are very similar. As the number of processors increase above eight, the number of unknowns and
neighbors per domain start to become unbalanced due to the geometry of the problem. Even though
efficiency drops off with an increased number of processors, overall execution time (the most important
metric) continues to decrease as Fig. 4 indicates (using a logarithmic scale on the y-axis). The reference
line is the execution time of one processor while the other data series shows the execution time for the
BCG algorithm for different processor configurations. The gap between the reference line and the data
set continually widens as processors are added to the system.

24

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Domains

E
ff

ic
ie

nc
y

BCG

Fig. 3. Efficiency of the BCG algorithm versus the number of processors on an HP SPP2200.

1

10

100

1000

10000

1 2 4 8 16 32

Domains

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

Reference
BCG

Fig. 4. Total execution time for the BCG algorithm versus the number of processors as compared to the

execution time of 1 processor (Reference data set) on an HP SPP2200.

VII. Conclusions

This paper detailed the transition from algorithm to implementation of a parallel solver using the MPI

communication library. We started with a FEM problem description, detailed the solving algorithm,
discussed the communication aspects of the algorithm, showed the implementation of the communication
calls using the MPI library, and presented the results of a microstrip problem on a parallel computing
system. We were able to show that for small number of processors the algorithm was very efficient. This
also implies that the communication overhead was very low. For large number of processors, the
algorithm was less efficient. This is due to the fact that as the local problem size becomes smaller, small
imbalances in the workload and interprocessor communication become more significant in the local
compute time. Generally, the most efficient implementation is to scale the problem size with the number
of processors.

25

Acknowledgements
The authors would like to thank Tim Tillotson of Lexmark International, Inc. for his comments

regarding the development of this manuscript and the University of Kentucky Computing Center for
system support of the HP SPP2200.

References

[1] Message Passing Interface Forum. MPI: A Message-Passing Interface standard (version 1.1).

Technical report, 1995. http://www.mpi-forum.org.
[2] J. Jin, The Finite Element Method in Electromagnetics, John Wiley & Sons, Inc., 1993.
[3] P.P. Silvester and R.L. Ferrari, Finite elements for electrical engineers, Cambridge University Press,

3rd Edition, 1996.
[4] J.L.Volakis, A. Chatterjee, L.C. Kempel, Finite Element Method for Electromagnetics, Institute of

Electrical and Electronics Engineers, Inc., 1998.
[5] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Oxford University

Press, NY, 1986.
[6] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer Verlag, NY, 1994.
[7] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.
[8] B. Nour-Omid, A. Raefsky, and G. Lyzenga, “Solving finite element equations on concurrent

computers,” in Symposium on Parallel Computation and their Impact on Mechanics, Boston, MA,
1987.

[9] S.-H. Hsieh, G. Paulino, and J. Abel, “Recursive spectral algorithms for automatic domain
partitioning in parallel finite element analysis,” Comput. Method. Appl. Mech. Eng., vol. 121, pp.
137-162, 1995.

[10] R. Van Driessche and D. Roose, “An improved spectral bisection algorithm and its application to
dynamic load balancing,” Parallel Computing, vol. 32, pp. 29-48, Jan. 1995.

[11] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular
graphs,” Department of Computer Science, University of Minnesota, Tech. Rep. TR 95-035, 1995.

[12] G. Karypis and V. Kumar, METIS 2.0: Unstructured graph parititioning and sparse matrix
ordering system, Technical Report 97-061, Department of Computer Science, University of
Minnesota, 1997.

[13] J.P. Berenger, “A perfectly matcher layer for the absorption of electromagnetic waves,” J.
Computational Phys., vol. 114, no. 2, pp. 185-200, Oct. 1994.

[14] Z.S. Sacks, D.M. Kingsland, R. Lee and J.F. Lee, “A perfectly matched anistropic absorber for
use as an absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, vol. 43,
pp. 1460-1463, December 1995.

[15] HP MIP User’s Guide, Third Edition, Hewlett Packard, June 1998.

26

