Analysis and Design of Class E Power Amplifier with Finite DC-Feed Inductance and Series Inductance Network

Chuicai Rong 1,2, Xiansuo Liu 1, Yuehang Xu 1*, Ruimin Xu 1, and Mingyao Xia 1

1 School of Electronic Engineering
University of Electronic Science and Technology of China, Chengdu, 611731, China
*yuehangxu@uestc.edu.cn

2 School of Physics and Electronic Information
Gannan Normal University, Ganzhou, Jiangxi, 341000, China
chuicair@126.com

Abstract — With the increasing operation frequency, it is essential to take into account the parasitic parameters of transistor for high efficiency microwave power amplifier design. In this paper, a class E power amplifier with finite dc-feed inductance and series inductance network is analyzed including the parasitic inductance of transistor. The analytical design expressions are derived. And the effects of series inductance on the load network parameter are obtained. The results suggest that this new topology can be used in broadband power amplifiers design by making full use of transistor’s output parasitic inductance. A GaN HEMT power amplifier is designed with the proposed topology for validation purpose. Experimental results show that the amplifier can realize from 2.5 GHz to 3.5 GHz (33.3%) with measured drain efficiency larger than 60% and output power larger than 34 dBm. The measured performance shows good agreement with the theoretical performance predicted by the equations.

Index Terms — Broadband, class E power amplifier, finite dc-feed inductance, parasitic inductance.

I. INTRODUCTION

One of the most important features of RF power amplifier (PA) is power efficiency. By increasing the efficiency, PA will consume less supply power and requires less heat sinking. This allows a reduction of battery size and an increase in battery life. The switch mode class E PA [1] is a good candidate for high efficiency PA due to its design simplicity.

The class E PA with finite dc-feed inductance [2, 3] is one important topology of the class E PA. It has smaller inductance than the RF-choke and thus has lower loss [4] due to a smaller electrical series resistance (ESR). It can obtain greater power capability than other class E topology. And the larger load resistance makes the design of the matching network easier. These advantages make this topology widely attracted. In [5], the effects of dc-feed inductance, the quality factor (Q_L) of the series-tuned circuit, and the switching-device on resistance have been analyzed. In [6], the maximum frequency of the class E PA with finite dc-feed inductance is discussed. In [7], an arbitrary duty-cycle and finite dc-feed inductance is discussed. In [8], the power dissipation in each component is calculated. In [9], load transformation networks for wideband operation is investigated. In [10], the analytical expression of the switch peak voltage is presented. With the increasing operation frequency, it is essential to take into account all the device parasitic parameters [11, 12]. In [13, 14], the normalized optimum load network parameters versus normalized bond-wire inductance for parallel-circuit class E PA are presented. But the parallel-circuit class E PA is only one kind of the class E power amplifier with finite dc-feed inductance. To get the general results, it is necessary to further study the effect of the device output series inductance on the load network parameters of the class E power amplifier with finite dc-feed inductance.

In this paper, a theoretical description of the class E PA with finite dc-feed inductance and series inductance network is presented. The analysis takes into account the transistor’s output parasitic inductance on the load network parameters of the class E PA with finite dc-feed inductance. Thus, the analysis can provide useful and accurate design to the class E PA in higher operation frequency. Finally, a design case is constructed in the laboratory in order to verify the theoretical predictions for demonstration purpose.

II. CIRCUIT DESCRIPTION

The class E power amplifier with finite dc-feed inductance and series inductance is shown in the Fig. 1. The load network consists of the shunt capacitance C_u, a series inductance L_series, a parallel inductance L_o, a
series reactive element jX, and a load R. The shunt capacitance C_0 represents the intrinsic device output capacitance. The series inductance L_{series} can be considered as an adjustment parameter which include the bond-wire inductance and lead inductance. A parallel inductance L_0 represents the finite DC-feed inductance and the series reactive element jX can be positive (inductance) or negative (capacitance) or zero. The active device is considered to be an ideal switch.

Fig. 1. Circuit of the class E power amplifier with finite dc-feed inductance and series inductance network.

To simplify analysis of the class E power amplifier with finite dc-feed inductance and series inductance, several assumptions are introduced in [13, 14]. For an idealized theoretical analysis, the moments of the switch-on is $\alpha t=0$ and switch-off is $\alpha t=\pi$ with period of repeatability of the input driving signal $T=2\pi$. Nominal conditions for voltage across the switch prior to the start of switch-on at the moment $\alpha t=2\pi$ are:

$$v(\alpha t)\big|_{\alpha t=2\pi}=0, \quad (1)$$

$$\frac{dv(\alpha t)}{dt}\big|_{\alpha t=2\pi}=0. \quad (2)$$

The output current flowing through the load R is written as sinusoidal by:

$$i_r(\alpha t) = I_r \sin(\alpha t + \phi), \quad (3)$$

where I_r is the load current amplitude and ϕ is the initial phase shift.

When the switch is turned on for $0\leq \alpha t \leq \pi$, the voltage on the switch is zero. The current flowing through the switch can be written as:

$$i(\alpha t) = \frac{V_{cc}}{\omega L_0(1+\alpha)} \alpha t + \frac{\omega L_0 I_r}{\omega L_0(1+\alpha)} \left[\sin(\alpha t + \phi) - \sin \phi\right], \quad (4)$$

where $\alpha = L_{series}/L_0$.

When switch is off for $\pi \leq \alpha t \leq 2\pi$, the current $i(\alpha t) = 0$ and the current $i_{on}(\alpha t) = i_r(\alpha t) + i_r(\alpha t)$ flowing the capacitance C_0 can be rewritten as:

$$\omega C_0 \frac{dv(\alpha t)}{d(\alpha t)} = \frac{1}{\omega L_0} \int [V_v - v(\alpha t) - v_{on}(\alpha t)]d(\alpha t) + i_{on}(\alpha t) \sin(\alpha t + \phi). \quad (5)$$

Differentiating both sides of (5), the second-order differential equation becomes:

$$\omega^2 C_0 I_0 (1 + \alpha) \frac{d^2v(\alpha t)}{d(\alpha t)^2} + v(\alpha t) - V_{cc} - \omega L_0 I_r \cos(\alpha t + \phi) = 0. \quad (6)$$

Under the initial off-state conditions,

$$v(\alpha t) = 0, \quad (7)$$

The current $i_{on}(\pi)$ flowing through the finite inductance L_0 is:

$$i_{on}(\pi) = \frac{V_{cc} \pi}{\omega L_0(1+\alpha)} - \frac{1-\alpha}{1+\alpha} I_r \sin \phi. \quad (8)$$

The current flowing through the capacitance C_0 is:

$$i_c(\omega t) = i_{on}(\pi) + i_{on}(\pi) = \frac{V_{cc} \pi - 2\omega L_0 I_r \sin \phi}{\omega L_0(1+\alpha)}, \quad (9)$$

$$\frac{dv(\alpha t)}{d(\alpha t)} = \frac{V_{cc} - 2\omega L_0 I_r \sin \phi}{\omega^2 C_0 I_0 (1 + \alpha)} \frac{\omega L_0 I_r}{\omega L_0(1+\alpha)} \left[\cos(\alpha t + \phi) - \cos(\alpha t) - \frac{1}{2} \sin \phi \sin(\alpha t + \phi)\right], \quad (10)$$

where

$$Q^2 = \omega^2 C_0 I_0 (1 + \alpha) = \frac{\omega^2}{\omega_0^2} (1 + \alpha) = \chi^2 (1 + \alpha), \quad (12)$$

$$\omega_0 = \frac{1}{\sqrt{C_0 I_0}}, \quad \chi = \frac{\omega}{\omega_0}, \quad p = \frac{\omega L_0 I_r}{V_{cc}}, \quad (13)$$

where χ is the normalized frequency. With the initial off-state conditions (7) and (11), the general solution of (6) can be obtained in the normalized forms:

$$\frac{v(\alpha t)}{V_{cc}} = C_1 \cos(\frac{\pi}{Q}) + C_2 \sin(\frac{\pi}{Q}) + 1 - \frac{p}{Q^2 - 1} \cos(\alpha t + \phi), \quad (14)$$

$$C_1 = -\left[\frac{\cos(\frac{\pi}{Q}) + \pi \sin(\frac{\pi}{Q})}{Q} \right], \quad (15)$$

$$C_2 = \left[\frac{\cos(\frac{\pi}{Q}) - \pi \sin(\frac{\pi}{Q})}{Q} \right], \quad (16)$$

Applying nominal conditions of (1) and (2), the optimum parameters ϕ and p as functions of Q are:

$$\tan \phi = -\frac{\pi + \pi \cos(\frac{\pi}{Q}) + 2Q \sin(\frac{\pi}{Q})}{2(Q^2 - 1) \left[1 - \cos(\frac{\pi}{Q})\right] + Q\pi \sin(\frac{\pi}{Q})}, \quad (17)$$
The initial phase shift ϕ decreases with the increasing of α, the initial phase shift ϕ decreases and the gradient of the initial phase shift ϕ is slow in broadband. Thus, it is easy to match for load network.

The normalized load-network parameters inductance L_o, capacitance C_o, and resistance R are presented as functions of parameters p, ϕ, α, Q, as below:

$$\omega L_o = \frac{p(1+\alpha)}{2p + \frac{2\cos \phi - \sin \phi}{\pi}} \frac{1}{p(1+\alpha)^2},$$

$$\omega C_o R = \frac{Q^2}{2p + \frac{2\cos \phi - \sin \phi}{\pi}} \frac{1}{2p + \frac{2\cos \phi - \sin \phi}{\pi}}$$

$$R_{\text{out}}/V_c = \frac{\pi^2 + 2\cos \phi - \sin \phi}{2p + \frac{2\cos \phi - \sin \phi}{\pi}}$$

From the viewpoint of mathematics, they are only functions of parameters α and X. Figure 3 shows the parameter $\omega L_o/R$ versus α and X. With the increasing of X, the parameter $\omega L_o/R$ increases. With the increasing of α, the parameter $\omega L_o/R$ increases.

Figure 4 shows the parameter $\omega C_o R$ versus α and X. The parameter $\omega C_o R$ has maximum of 0.7021 when $X = 0.681$ and $\alpha = 0$. Then the maximum frequency of the class E power amplifier with finite dc-feed inductance and series inductance is $f_{\text{max}} = 0.7021/(2\pi C_o R)$. With the increasing of α, the parameter $\omega C_o R$ decreases.

Figure 5 shows the parameter RP_{out}/V_c^2 versus α and X. The parameter RP_{out}/V_c^2 has maximum of 1.3633 when $X = 0.709$ and $\alpha = 0$. Then the maximum load resistance of the class E power amplifier with finite dc-feed inductance and series inductance is $R_{\text{max}} = 1.3633V_c^2/P_{\text{out}}$. With the increasing of α, the parameter RP_{out}/V_c^2 decreases.

The Equations (22) through (25) below present the analytical expressions of the voltage across the reactance X. The Equations (26) through (29) below present the analytical expressions of the voltage across the resistance R.

$$V_x = \frac{1}{\pi}(V_{x1} + V_{x2} + V_{x3}), \quad V_{x1} = \frac{\alpha(\pi p/2 - 2\sin \phi)}{1 + \alpha} + \frac{\pi p(\alpha^2 - 1)}{2(Q^2 - 1)} + 2\sin \phi.$$
increases.

1.1

and 0.7 versus 0.9

1.2

0.8

1.3

and 0.8

1.5

of the class E PA

0.6

0.6

1

1.4

is equal to zero when the parameter

1.4

the parameter

and 0.7

s

the reactance X is positive

versus 0.9

Fig. 6 shows the parameter X/R versus α and χ.

Table 1: Load network parameters for different class E modes

<table>
<thead>
<tr>
<th>Normalized Load-Network Parameter</th>
<th>Class E with Shunt Capacitance and Shunt Filter[15]</th>
<th>Class E with Finite DC-Feed Inductance and Series Inductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/R</td>
<td>1.4836</td>
<td>0</td>
</tr>
<tr>
<td>$αCR$</td>
<td>0.261</td>
<td>0.7021</td>
</tr>
<tr>
<td>$P_{out}R/V_{cc}^2$</td>
<td>0.4281</td>
<td>1.3633</td>
</tr>
<tr>
<td>$f_{max} C_{out}V_{cc}^2/P_{out}$</td>
<td>0.097</td>
<td>0.1505</td>
</tr>
<tr>
<td>c_p</td>
<td>0.09825</td>
<td>0.1049</td>
</tr>
</tbody>
</table>

III. DESIGN CONSIDERATION

For broadband PA design [15], the susceptance of the network is an important parameter. Figure 7 shows the susceptance $\text{Imag}[V_s^2Y_{out}(\chi)/P_{out}]$ of the class E PA with finite dc-feed inductance and series inductance.
The χ when α increase from 0.0 to 1.0 by step 0.1. When $\alpha=0$, the difference of susceptance is 0.2389 in the frequency range $(0.5 \leq \chi \leq 1.5)$. When $\alpha=1$, the difference of susceptance is 0.0381 in the frequency range $(0.5 \leq \chi \leq 1.5)$. The parameter α can be used to control the difference of susceptance over a wide frequency range.

When $\alpha=0$, the difference of conductance is 0.01 in the frequency range $(0.5 \leq \chi \leq 1.5)$. When $\alpha=1$, the difference of conductance is 0.0381 in the frequency range $(0.5 \leq \chi \leq 1.5)$. The parameter α can be used to control the difference of conductance over a wide frequency range.

In a word, by proper choice of the series inductance αL_{0}, which produces a zero total variation of the susceptance, the conductance and the load phase angle are controllable over a wide frequency range.

IV. SIMULATION AND IMPLEMENTATION

A complete circuit schematic of class E PA with finite dc-feed inductance and series inductance is shown in Fig. 10. A 0.25 μm gate length GaN HEMT with 1.25 mm total gate-width ($C_{ds} = 0.254 \mu F$) is used to design a Class E PA with finite dc-feed inductance and series inductance. The simulation of amplifier is realized by combing Ansys HFSS and Keysight ADS. The HFSS is used to simulate passive part of matching network. A large signal model is established to simulate the large signal performance of amplifier with HB simulation tool [16]. The total inductance $L_{\text{series}} = L_{\text{para}} + L_{\text{wire}} + L_{1}$, where L_{para} is the output parasitic inductance of transistor, L_{wire} is the inductance induced by bonding wire for hybrid amplifier, and L_{1} is the adjustive inductance. The parasitic output capacitance C_{out} of the transistor, L_{series}, L_{2}, and the reactance C_{1} constitute the double L-type network. The inductance L_{1} and L_{2} is realized by the high impedance transmission line.

Typically, class E PA achieve high efficiency when the output power gain at 3 dB or 4 dB compression point
So it is necessary to suppress the second and third harmonic to improve efficiency. Low pass match was used in operation frequency and suppress the harmonics both in the input and output network [19, 20]. Shunt resistance \(R_1 \) and capacitance \(C_2 \) in the input network was used to improve the low frequency stability. The photo of the class E PA with finite dc-feed inductance and series inductance is shown in Fig. 11.

Fig. 10. The circuit schematic of the class E PA with finite dc-feed inductance and series inductance.

Fig. 11. Photo of fabricated class E PA with finite dc-feed inductance and series inductance.

Figure 12 shows the measured drain efficiency (DE), power added efficiency (PAE), output power, and gain at input power (CW) at 3.1 GHz. The maximum PAE is 63.4\% when the input power is 28 dBm.

Figure 13 shows the measured behavior of DE, PAE [25], output power, and output power gain at the input power of 27 dBm. It can be seen that, the output power gain is large than 8.2 dB, while the output power is more than 35.2 dBm between 2.5 GHz and 3.5 GHz (33.3\% fractional band width (FBW)).

Figure 14 shows the simulated and the measured power second harmonic over the bandwidth. The maximum power of second harmonic in this frequency band is -22 dBc at 2.5 GHz and the minimum is -55 dBc at 3.0 GHz. Most of the second harmonics power is below -30 dBc.

Fig. 12. Simulated and measured DE, PAE, output power and gain versus input power at 3.1 GHz continuous input signal.

Fig. 13. Simulated and measured frequency dependence of DE, PAE, and Gain characteristics performance.

Fig. 14. Simulated and measured second harmonic power.

The measured performance of the proposed PA is compared with other state-of-the-art class E Pas. The results show that the proposed PA can achieve more than
60% DE in such high frequency as summarized in Table 2. The amplifier shows competitive drain efficiency and bandwidth in higher operation frequency. Because of the small gate-width device applied in the present PA, the output power is not very large. However, this report has the highest operation frequency. We can acquire higher output power through increasing the gate-width.

Table 2: Comparison of state of the art GaN PAs

<table>
<thead>
<tr>
<th>(GHz)/FBW (%)</th>
<th>DE (%)</th>
<th>Pout</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 [21]</td>
<td>1.9-2.9 (42%)</td>
<td>>63</td>
</tr>
<tr>
<td>2011 [22]</td>
<td>2.15-2.5 (15%)</td>
<td>>60</td>
</tr>
<tr>
<td>2011 [23]</td>
<td>0.9-2.2 (84%)</td>
<td>>63</td>
</tr>
<tr>
<td>2014 [24]</td>
<td>2.52-2.64 (4.6%)</td>
<td>>60</td>
</tr>
<tr>
<td>2015 [25]</td>
<td>1.7-2.8 (48.8%)</td>
<td>>60.3</td>
</tr>
<tr>
<td>2016 [15]</td>
<td>1.4-2.7 (63.4%)</td>
<td>>63</td>
</tr>
<tr>
<td>This work</td>
<td>2.5-3.5 (33.3%)</td>
<td>>60</td>
</tr>
</tbody>
</table>

V. CONCLUSION

The class E power amplifier with finite dc-feed inductance and series inductance is analyzed in time domain. Analytical expressions of optimum parameters of the load network are derived. It suggests that the topology can be used in higher operation frequency and broadband PA design with competitive efficiency. A GaN HEMT class E PA with finite dc-feed inductance and series inductance is fabricated and measured. The experimental data and theoretical predictions are found in good agreements. The proposed structure may be useful in the coming 5G communication systems.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (Grant No. 61474020), China Postdoctoral Science Foundation (Grant No. 2015M570775, 2015T80969) and the National Key Project of Science and Technology.

REFERENCES

