Multi-Objective Optimal Design of Surface-Mounted Permanent Magnet Motor Using NSGA-II

S. Mendaci¹, H. Allag², and M. R. Mekideche²

¹ Laboratory of Automatics and Informatics of Guelma-LAIG
University of Guelma, Guelma, 24000, Algeria
mendaci sofiane@yahoo.fr

² Department of Electrical Engineering
University of Jijel, 18000, Algeria
allag hic@yahoo.fr, mek moh@yahoo.fr

Abstract — This paper presents a highly structured procedure for multi-objective optimal design of radial surface Permanent-Magnet Synchronous Motor (PMSM). Firstly, a detailed analytical model based on the resolution of Maxwell’s equations using the separation of variables method is presented. From the same model, analytical expressions of four constraint functions dedicated for the optimal design of the PMSM are developed. These constraints are: electromagnetic torque, back electromotive force (back-EMF), flux density saturation in stator/rotor yoke and saturation in stator tooth. Then, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is employed to optimize the multi-objective problem formed by two objective functions (weight and power loss of the motor) and different constraints. Finally, the finite element method is used to validate the designed 30 kW PMSM.

Index Terms — Analytical model, finite elements, NSGA-II, optimal design, permanent magnet synchronous motor.

I. INTRODUCTION

In recent years, the manufacturers of electrical machines have shown a growing interest for permanent magnet synchronous machines (PMSMs). This interest is mainly due to the high efficiency, high reliability, high power density, small size and decreasing cost of magnets. Different topologies of PM machines are available; e.g., radial flux machines, axial flux machines and transversal flux machines [1]. However, the performances of PMSMs are greatly depends on their optimal design and control.

The design and dimensioning of an electromechanical actuator calls into play a great number of parameters which are subject to the laws which describe physical phenomena on the one hand and to the specifications of the schedule of conditions on the other hand. In the practice, many electromagnetic optimization problems are solved by means of highly accurate models (e.g., finite element model) with different optimization algorithms. However, these approaches are computationally expensive, especially when stochastic optimization algorithms are used [2]. As an alternative, very simplified analytical models are useful tools for first evaluation and design optimization. They are proved fast, but not very accurate [3].

In this paper, the authors attempt to provide helpful tools for the fast analysis and multi-objective optimal design of PMSMs. Prior to the optimization, an analytical model, sufficiently accurate and fast, based on the resolution of Maxwell’s equations using the separation of variables method is presented. Then, the design processes was formulated as a multi-objective optimization problem and solved by NSGA-II method. Finally, validity of the proposed methodology is confirmed through the finite element analysis of the designed 30 kW PMSM.

II. DEVELOPMENT OF THE ANALYTICAL MODEL

The general configuration of a slotted surface-mounted permanent magnet motor considered in the present work is shown in Fig. 1.

The analytical method used in this paper is based on analysis of 2-D model in polar coordinates. The following assumptions are made [4-7]:
- The stator and rotor cores are assumed to be infinitely permeable.
- End effect and saturation are neglected.
- Permanent magnets have a linear demagnetization characteristic.
- Eddy current effects are neglected (no eddy current loss in the magnets or armature windings).
In Region I:

expressed as:

\[\text{flux density and field intensity} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]

In Region I:

\[\text{expressed as:} \]

\[\text{gap (Region II).} \]

In Region II:

\[\text{The flux density and field intensity are} \]

\[\text{can be classified into two parts: PMs (Region I), and air-} \]

\[\text{gap (Region II).} \]
In the general case, the total stator current density can be written as a Fourier series:

\[J(\theta,t) = \sum_{g=-\infty}^{+\infty} J_g(t) e^{jg\theta}, \tag{17} \]

where \(J_g \) is the complex Fourier coefficient given by:

\[J_g(t) = \frac{S_g}{2} \sum_{n=1}^{m} I_n(t) e^{-jg(n-1)\frac{2\pi}{m}}. \tag{18} \]

The resolution of the above system (11) gives the constants \(C_1, C_2, C_3, \) and \(C_4 \). They can be expressed as:

\[C_1 = \mu_0 \left(P_2 M_{r,g} + P_3 M_{\theta,g} \right) e^{-j(gpr\Omega - \frac{\pi}{2})} + P_1 S_g \sum_{n=1}^{m} I_n(t) e^{-j(g(n-1)\frac{2\pi}{m} + \frac{\pi}{2})}. \tag{19} \]

\[C_2 = \mu_0 \left(D_2 M_{r,g} + D_3 M_{\theta,g} \right) e^{-j(gpr\Omega - \frac{\pi}{2})} + D_1 S_g \sum_{n=1}^{m} I_n(t) e^{-j(g(n-1)\frac{2\pi}{m} + \frac{\pi}{2})}. \tag{20} \]

\[C_3 = \mu_0 \left(E_2 M_{r,g} + E_3 M_{\theta,g} \right) e^{-j(gpr\Omega - \frac{\pi}{2})} + E_1 S_g \sum_{n=1}^{m} I_n(t) e^{-j(g(n-1)\frac{2\pi}{m} + \frac{\pi}{2})}. \tag{21} \]

\[C_4 = \mu_0 \left(F_2 M_{r,g} + F_3 M_{\theta,g} \right) e^{-j(gpr\Omega - \frac{\pi}{2})} + F_1 S_g \sum_{n=1}^{m} I_n(t) e^{-j(g(n-1)\frac{2\pi}{m} + \frac{\pi}{2})}, \tag{22} \]

where

\[P_1 = i_1 R_{1sp} L_1, \tag{23} \]

\[P_2 = gp \left[\frac{df(R_1)}{dr} L_2 + \frac{df(R_2)}{dr} L_3 + f(R_2)L_4 \right], \tag{24} \]

\[P_3 = \frac{L_2}{2} \left[\left(\frac{df(R_1)}{dr} - 1 \right) L_2 + \left(\frac{df(R_2)}{dr} - 1 \right) L_3 + f(R_2)L_4 \right]. \tag{25} \]

\[D_1 = P_1 R_{1sp}^2. \tag{26} \]

\[D_2 = \frac{P_2 R_{1sp}^2 + \frac{df(R_1)}{dr} R_{1sp}^2}{2}. \tag{27} \]

\[D_3 = \frac{P_3 R_{1sp}^2 + \left(\frac{df(R_1)}{dr} - 1 \right) R_{1sp}^2}{2gp}. \tag{28} \]

\[E_1 = P_1. \tag{29} \]

\[E_2 = P_2 + \frac{gp R_{1sp}^2}{4} f(R_2) + \frac{df(R_2)}{dr} \frac{R_{1sp}^2}{4}. \tag{30} \]

\[E_3 = P_3 + \frac{R_{1sp}^2}{4} f(R_2) + \left(\frac{df(R_2)}{dr} - 1 \right) \frac{R_{1sp}^2}{4gp}. \tag{31} \]

\[F_1 = D_1. \tag{32} \]

\[F_2 = D_2 + \frac{gp R_{1sp}^2}{4} f(R_2) - \frac{df(R_2)}{dr} \frac{R_{1sp}^2}{4}. \tag{33} \]

\[F_3 = D_3 + \frac{R_{1sp}^2}{4} f(R_2) - \left(\frac{df(R_2)}{dr} - 1 \right) \frac{R_{1sp}^2}{4gp}. \tag{34} \]

with

\[L_1 = \frac{1}{2gp} \left(1 - R_{1sp}^2 R_{3sp}^2 \right). \tag{35} \]

\[L_2 = 2R_{1sp}^2 R_{3sp}^2. \tag{36} \]

\[L_3 = -\left(R_{1sp}^2 + R_{1sp}^2 R_{3sp}^2 \right). \tag{37} \]

\[L_4 = gp \left(R_{1sp}^2 R_{3sp}^2 R_{2sp}^2 - R_{2sp}^2 \right). \tag{38} \]

\[f(r) = \begin{cases} \frac{r}{2} & \text{if } gp \neq 1, \\ \ln(r) & \text{if } gp = 1 \end{cases}. \tag{39} \]

Hence, the magnetic vector potential is completely defined in the two regions by (6) and (7). Therefore, the flux density in the air-gap and PMs is given by:

\[B_i(r, \theta,t) = \begin{cases} \mu_0 \left(N_{2r}^i M_{r,g} + N_{3r}^i M_{\theta,g} \right) \cos(gpr\Omega - \theta) \\ 2 \sum_{g=1}^{\infty} \left[-N_{1r}^i S_g \sum_{n=1}^{m} I_n(t) \cos\left(g \left(p\theta - (n-1)\frac{2\pi}{m} \right) \right) \right] + \right. \\ \left. T_{1r}^i \sum_{n=1}^{m} I_n(t) \sin\left(g \left(p\theta - (n-1)\frac{2\pi}{m} \right) \right) \right), \tag{40} \]

where \(i=I,II \) design the concerned region.

\[N_{1r}^i = \frac{gp}{r} P_{1r}^i. \tag{41} \]

\[T_{1r}^i = -\frac{df_{1r}^i}{dr}, \quad \text{with } l=1,2,3 \tag{42} \]

and

\[P_{1r}^i = P_{1r}^{sp} + D_{1r}^{sp}. \tag{43} \]

\[P_{2r}^i = P_{2r}^{sp} + D_{2r}^{sp} + \frac{gp}{2} f(r). \tag{44} \]

\[P_{3r}^i = P_{3r}^{sp} + D_{3r}^{sp} + \frac{1}{2} f(r). \tag{45} \]

\[P_{1r}^{sp} = E_{1r}^{sp} + F_{1r}^{sp}. \tag{46} \]

\[P_{2r}^{sp} = E_{2r}^{sp} + F_{2r}^{sp}. \tag{47} \]

\[P_{3r}^{sp} = E_{3r}^{sp} + F_{3r}^{sp}. \tag{48} \]

To improve the precision of this analytical model, Carter’s coefficient \(K_c \) is applied to compensate the slots.
effects. In this case, a new air gap length e_0 is defined by [8]:

$$e_0 = K_c e_c,$$ \hspace{1cm} (50)

where

$$K_c \approx \frac{P_i - b_z^2}{5e + b_z},$$

and $P_i = \frac{2\pi R_i}{2 pmN_{app}}$. \hspace{1cm} (51)

III. CONSTRAINTS DEDUCED FROM THE PROPOSED MODEL

A. Torque constraint

The torque developed on the motor can be obtained by calculating the Maxwell stress tensors in the air-gap [4,6,7]:

$$T_m = \frac{L R s}{\mu_0} \int_0^{2\pi} B_r^u B_y^u d\theta,$$ \hspace{1cm} (52)

where L is the axial length.

Incorporating (40) and (41) in (52) and integrating on the tangential direction yields to the final expression of the torque in terms of field sources ($M_{r,g}$, $M_{d,g}$ and I_n):

$$T_m = \frac{8\pi L p^2}{\mu_0} \sum_{g=1}^{m} \mu_0 (E_{r} F_2 - E_{z} F_1) M_{r,g} + \mu_0 (E_{r} F_3 - E_{z} F_1) M_{d,g}.$$ \hspace{1cm} (53)

where

$$N_g = \mu_0 (E_{r} F_2 - E_{z} F_1) M_{r,g} + \mu_0 (E_{r} F_3 - E_{z} F_1) M_{d,g}.$$ \hspace{1cm} (54)

The torque expression (53) depends on the design parameters. Therefore, this expression can be used as objective function or as constraint in the preliminary PM motor design.

B. Back electromotive force constraint

The back-EMF created by the permanent magnet can be obtained by Faraday’s law:

$$E_n(t) = -\frac{\partial \Phi_{n0}(t)}{\partial t},$$ \hspace{1cm} (55)

where $\Phi_{n0}(t)$ is the phase n flux linkage created by PMs. Based on Stokes theorem, the flux linkage $\Phi_{n0}(t)$ is calculated by:

$$\Phi_{n0}(t) = \int_{S_0} B ds = \int_{1}^{R_0} Adl = L R_s \int_{0}^{2\pi} A_z^u (R_3, \theta, t) C_n(\theta) d\theta.$$ \hspace{1cm} (56)

After the substitution and the simplification, the final expression of $\Phi_{n0}(t)$ is given by:

$$\Phi_{n0}(t) = 2\pi R L \sum_{g=1}^{m} \Phi_{r,p} (R_z) \cos \left[p \Omega t - \left(n - \frac{1}{2} \right) \frac{2\pi}{m} \right].$$ \hspace{1cm} (57)

with

$$\Phi_{r,p}(R_z) = \mu_0 S_g \left[P_{z1}^2 (R_z) M_{r,g} + P_{s1}^2 (R_z) M_{d,g} \right].$$ \hspace{1cm} (58)

From the equations (55) and (57), the back-EMF created by PMs is given by:

$$E_n(t) = 2\pi R L p \Omega \sum_{g=1}^{m} \Phi_{r,p} (R_z) \sin \left[p \Omega t - \left(n - \frac{1}{2} \right) \frac{2\pi}{m} \right].$$ \hspace{1cm} (59)

C. Stator and rotor yoke saturation constraint

The definition of the no saturation constraint of rotor/stator yoke needs the acknowledgement of the flux density in these regions.

The Fig. 2 shows that the magnetic flux in rotor yoke $\Phi_r(t)$ is equal to the flux in a half PM pole $\Phi_{hp}(t)$:

$$\Phi_r(t) = \Phi_{hp}(t).$$ \hspace{1cm} (60)

From the Fig. 2, the rotor flux yoke is given by:

$$\Phi_r(t) = B_r(t) S_r = L (R_1 - R_0) B_r(t),$$ \hspace{1cm} (61)

where $B_r(t)$ is the tangential component of flux density in the rotor and S_r is the cross section area of the rotor yoke.

In other hand, the magnetic flux in half PM pole at R_1 is given by:

$$\Phi_{hp}(t) = \left[A_z^1 (R_1, \theta, t) - A_z^1 (R_1, \theta, t) \right].$$ \hspace{1cm} (62)

By using (60), (61) and (62) we obtain the analytical expression of the flux density in the rotor/stator yoke (supposed to have the same dimensions):

$$B_r(t) = \left[A_z^1 (R_1, \theta, t) - A_z^1 (R_1, \theta, t) \right].$$ \hspace{1cm} (63)

Usually, to avoid excessive saturation, the maximum flux density of iron core is limited to the range 1.6-1.9 T [3].

D. Stator tooth saturation constraint

In the case of slotted motor, we can introduce a constraint for no stator tooth saturation.

If we neglecting the flux leakage, the flux in the stator tooth $\Phi_{tooth}(t)$ is given by:

$$\Phi_{tooth}(t) = \frac{2 \Phi_{hp}(t)}{mN_{app}}.$$ \hspace{1cm} (64)

The stator tooth flux can be also expressed as:
\[\Phi_{stooth}(t) = B_{st}(t)S_{st}, \] (65)

where \(B_{st}(t) \) and \(S_{st} \) are the flux density and the small cross section area of stator tooth respectively.

By using (62), (64) and (65) we obtain the expression of the flux density in the stator tooth as:

\[B_{st}(t) = \frac{2 L}{S_st m N_{spp}} \left[A_{st}^+(R_1, \theta_1, t) - A_{st}^-(R_1, \theta_1, t) \right]. \] (66)

IV. DESIGN OPTIMIZATION PROCEDURE

A. Optimization problem definition

In order to present the design optimization procedure of surface mounted PMSM, based on the above analytical model, we designed a 30 kw PMSM with the following assumptions: 10 poles, 30 slots, one slot per pole and per phase \((N_{spp}=1)\), based speed \(w_{base}=1500 \) rpm, maximal speed \(w_{max}=4500 \) rpm, current density \(J=7 \) A/mm\(^2\), NdFeB magnets with a remanent flux density of 1.2 and a relative permeability of 1.

The objective functions fixed for this optimization problem (76) are:

- Maximizing the efficiency by minimizing the power loss (PL).
- Minimizing the weight of the motor (M).
- Better spread of solutions and low computational process.

The main NSGA-II procedure is given below:

1. Create a random population \(P_0 \) (of size \(N \)).
2. Sort \(P_0 \) according to non-domination. Each solution is assigned a new fitness equal to its non-domination rank (1 is the best level). Then, use selection, recombination, and mutation to create the offspring population \(Q_0 \) (of size \(N \)) from \(P_0 \).
3. While generation count is not reached, combine parent and offspring population to form the combined population \(R_t \) (of size \(2N \)).

The non-dominated sorting genetic algorithm is applied.

B. Non-dominated sorting genetic algorithm

To optimize the constrained multi-objective problem (76), the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied.

The NSGA-II is one of the most widely used algorithms in various engineering optimization processes due to its simplicity, parameterless-niching, better convergence near the true Pareto-optimal front, better spread of solutions and low computational requirements [9-11].

Table 1: The exploration domain for each variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner radius of the rotor yoke (m)</td>
<td>(R_0)</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Axial length (m)</td>
<td>(L)</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Thickness of magnet (m)</td>
<td>(L_{PM})</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td>Radius of the rotor yoke surface (m)</td>
<td>(R_1)</td>
<td>0.13</td>
<td>0.2</td>
</tr>
<tr>
<td>Magnet-arc to pole-pitch ratio</td>
<td>(K_{PM})</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Slot-opening to slot-pitch ratio</td>
<td>(K_{So})</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Slot depth (m)</td>
<td>(P_s)</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>

where \(K_{hys} \) and \(K_{eddy} \) are the classical eddy and hysteresis loss coefficients which can be calculated at various frequencies and flux densities from curve fitting of manufacturer data sheets.

Finally, the multi-objective constrained optimization problem is defined as:

Minimize: weight and power loss

Subject to the following constraints:

- Electromagnetic torque, \(T = 191 \) Nm
- Back-EMF at maximum speed, \(E_{max} \leq 500 \) V
- Tator/rotor yoke flux density, \(B_{yoke} \leq 1.6 \) T
- Rotor tooth flux density, \(B_{tooth} \leq 1.6 \) T

Firstly, before solving the above problem (76), we have dimensioning our PMSM by using the direct method proposed in [3]. From the obtained initial dimensioning, we have chosen seven variables, given in Table 1 with their exploration domain, to solve the final problem (76).
- Perform non-dominated sort on the population R_t. Then, calculate the crowding-distance for each solution. It is calculated by the size of the largest cuboid enclosing each solution without including any other point [9,10].

- Construct the next parent population P_{t+1} by choosing only the best N solutions from R_t. Each solution is evaluated by using its front rank as primary criteria and crowding-distance as secondary if it belongs to the last selected front.

- Use the new parent population P_{t+1} (of size N) for selection, crossover, and mutation to create a new population Q_{t+1} (of size N). We note that the selection criterion between two solutions is now based on the crowded-comparison operator (If the two solutions are from different fronts, we select the solution with lowest front rank. But, if they are from the same front, we select the individual with the highest crowding distance).

In this paper, the following parameters are used: population size $N=200$, maximum number of generations is 4000, mutation probability is 0.1, and crossover probability is 0.9. The variables are treated as real numbers and the Breeder Genetic Crossover (BGX) and the real-parameter mutation operator are used [12].

C. Results

The multi-objective optimization takes 70 minutes with NSGA-II method. The Pareto-optimal front for motor weight versus total loss is obtained as shown in Fig. 3.

The variables and the performances of the initial (MI) and two optimized PMSMs (MW: minimum weight and MP: minimum power loss) are presented in Table 2. As shown, the optimized motors characteristics are significantly better than the initial motor. The mass and the total power loss are minimized and are smaller than that of the initial motor. Also, the four optimization constraints are respected, especially the value of the electromagnetic torque.

Table 2: Comparison between the initial and optimized PMSMs

<table>
<thead>
<tr>
<th>Variables and Performances</th>
<th>MI</th>
<th>MW</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0 (m)</td>
<td>0.0955</td>
<td>0.1147</td>
<td>0.113</td>
</tr>
<tr>
<td>L (m)</td>
<td>0.0955</td>
<td>0.06</td>
<td>0.0695</td>
</tr>
<tr>
<td>L_{PM} (m)</td>
<td>0.0077</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>R_f (m)</td>
<td>0.1251</td>
<td>0.1428</td>
<td>0.1439</td>
</tr>
<tr>
<td>K_{PM}</td>
<td>0.833</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>K_{So}</td>
<td>0.5</td>
<td>0.4027</td>
<td>0.3042</td>
</tr>
<tr>
<td>P_s</td>
<td>0.0239</td>
<td>0.0272</td>
<td>0.03</td>
</tr>
<tr>
<td>Number of conductors in slot</td>
<td>8</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Current (A)</td>
<td>100</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Electromagnetic torque (Nm)</td>
<td>177.7</td>
<td>191</td>
<td>191</td>
</tr>
<tr>
<td>Back-EMF at maximum speed (V)</td>
<td>448.9</td>
<td>464.3</td>
<td>461.5</td>
</tr>
<tr>
<td>Maximum yoke flux density (T)</td>
<td>1.9</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Maximum tooth flux density (T)</td>
<td>1.4</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>61.3</td>
<td>44.6</td>
<td>56</td>
</tr>
<tr>
<td>Total power loss (W)</td>
<td>3955</td>
<td>2237.7</td>
<td>2092.5</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.8835</td>
<td>0.9306</td>
<td>0.9348</td>
</tr>
</tbody>
</table>

In order to validate the proposed design procedure, the performances of MW designed machine have been compared with 2D finite element simulations (2D FE). Figures 4 and 5 show respectively the electromagnetic torque and the back-EMF. We can observe that the mean torque and the maximum value of the back-EMF obtained by FE simulations are in good agreement with analytical results. However, the small error between the two models and the ripples in the torque and in the back-EMF are due to the effect of stator slots, considered in implicit way in the analytical model by Carter’s coefficient.

![Fig. 3. Pareto-optimal front.](image)

![Fig. 4. Electromagnetic torque obtained for $w=1500$ rpm (the base speed).](image)
V. CONCLUSION

In this paper, an optimal design procedure of surface mounted PMSM is investigated. Firstly, an analytical model of PMSM is presented. This model is sufficiently accurate and fast to be used in the design optimization with stochastic methods like genetic algorithms. Then, the NSGA-II method is proposed to solve the highly nonlinear constrained multi-objective problem formed by two objectives (motor weight and total power loss) and four important constraints (demanded value of electromagnetic torque, maximum limit of back EMF, flux density saturation in stator/rotor yoke and saturation in stator tooth).

Finally, this design procedure, based on the proposed analytical model and NSGA-II algorithm, has been successfully applied for optimal design of 30 kW/1500 rpm PMSM. The obtained results show that the proposed methodology has a good accuracy and requires a reasonable computation time. Also, the Pareto fronts obtained from this procedure allows the designer to consider a good compromise between efficiency and weight of the motor in an effective manner. Moreover, this method can be used to design another types of machine, such as PMSM with external rotor.

REFERENCES

Sofiane Mendaci was born in Jijel, Algeria, in 1976. He received the B.S. degree from Jijel University, Algeria, in 2000, the M.S. degree from Paris XI University, France, in 2004, and the Ph.D. degree from Jijel University, Algeria, in 2013, all in Electrical Engineering. His research interests include design, modeling, and control of electrical machines.

He is currently an Assistant Professor in the Department of Electrical Engineering at the University of Guelma, Algeria.
Hicham Allag was born in Jijel, Algeria, in 1978. He received the B.S. degree from Jijel University, Algeria, in 2000, the M.S. degree from University of Constantine, Algeria, in 2004, and the Ph.D. degree from Grenoble University, France, in 2010, all in Electrical Engineering. His research interests include magnetic levitation and electromagnetic forces calculation. He is an Associate Professor in the Department of Electrical Engineering at Jijel University, Algeria.

Mohamed Rachid Mekideche was born in Jijel, Algeria in 1957. He received the M.S. degree from the National Polytechnic School of Algiers, Algeria, in 1986, and the Ph.D. degree from Nantes University, France, in 1994, all in Electrical engineering. His research interests include analytical modeling and analysis of electrical machines. He is now at the University of Jijel, as a Professor and Dean of the Engineering Faculty.